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Abstract: The establishment of the concept of sustainable, decentralised, multi-carrier energy systems,
together with the declining costs of renewable energy technologies, has proposed changes in off-grid
electrification interventions towards the development of integrated energy systems. Notwithstanding
the potential benefits, the optimal capacity planning of such systems with multiple energy carriers—
electricity, heating, cooling, hydrogen, biogas—is exceedingly complex due to the concurrent goals
and interrelated constraints that must be relaxed. To this end, this paper puts forward an innovative
new optimal capacity planning method for a first-of-its-kind stand-alone multiple energy carrier
microgrid (MECM) serving the electricity, hot water, and transportation fuel demands of remote
communities. The proposed off-grid MECM system is equipped with solar photovoltaic panels,
wind turbines, a hydrogen-based energy storage system—including an electrolyser, a hydrogen
reservoir, and a fuel cell—a hybrid super-capacitor/battery energy storage system, a hot water
storage tank, a heat exchanger, an inline electric heater, a hydrogen refuelling station, and some
power converters. The main objective of calculating the optimal size of the conceptualised isolated
MECM’s components through minimising the associated lifetime costs is fulfilled by a specifically
developed meta-heuristic-based solution algorithm subject to a set of operational and planning
constraints. To evaluate the utility and effectiveness of the proposed method, as well as the technical
feasibility and economic viability of the suggested grid-independent MECM layout, a numerical case
study was carried out for Rakiura–Stewart Island, Aotearoa–New Zealand. Notably, the numeric
simulation results highlight that the optimal solution presents a low-risk, high-yield investment
opportunity, which is able to save the diesel-dependent community a significant 54% in electricity
costs (including electrified space heating)—if financed as a community renewable energy project—
apart from providing a cost-effective and resilient platform to serve the hot water and transportation
fuel needs.

Keywords: microgrids; optimal sizing; optimal design; multi-energy systems; solar photovoltaics;
wind turbines; meta-heuristics; optimisation; multi-carrier; off-grid

1. Introduction

Under the Paris Agreement, the New Zealand government has committed to reducing
greenhouse gas (GHG) emissions by 30% below 2005 levels, by 2030. Based on this commit-
ment and the Productivity Commission’s report, the Ministry for the Environment (MfE) is
driving innovations in clean energy technologies and provisions [1–3]. The proliferation of
renewable energy sources (RESs) and the penetration of green transportation fleets are two
major technological trends among a wide range of clean energy initiatives in the energy
sector that the MfE is pursuing to move New Zealand towards a sustainable future [1–3].
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On a higher level, the International Renewable Energy Agency (IRENA) REmap
analysis [4] estimates that the share of electricity in total global energy demand would
approximately triple by 2050, where non-dispatchable RESs make up around 66% of total
electricity generated (see Figure 1). A considerable portion of the projected increase in
electricity demand is attributable to the so-called “end-use sector coupling” interventions
that involve the electrification of energy demand across different sectors (mainly heat
and transport) with the primary goal of increasing the share of renewable energy in other
energy consumption sectors [5].
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Furthermore, the major shift from synchronous, centralised, fossil-fuel-fired gener-
ators to a diversified, heterogeneous combination of renewable energy generation tech-
nologies with ever-increasing penetrations of distributed energy resources (DERs) presents
potentially significant system balancing challenges given the critical lack of visibility of
distribution network operational conditions by system operators in national grids [6,7]—a
statement that could similarly be made for the operation of highly renewable off-grid
energy systems. In this setting, decentralised smart energy system-based integration of
variable renewable energy has been identified as the most promising way of increasing
the resilience and reliability of variable renewables-dominated electrical grids—in a cost-
optimal manner [8,9]. Moreover, off-grid smart, integrated, renewable energy systems are
at the core of “energy for all” initiatives, which are aimed at providing modern energy
services to coastal, island, and mountain village communities, as well as, more broadly,
rural/peripheral communities [10,11].

In this light, microgrids (MGs) have attracted considerable interest, due to their
potential advantages in terms of facilitating the integration of RESs and green transportation
technologies into the existing and new energy systems [12]. The so-called multiple energy
carrier microgrid (MECM) network refers to an interconnected energy system that provides
a platform for linking different energy vectors from varied DERs to meet a variety of energy
needs in a region—notably, electricity, heat, and transportation fuel. The MECM model
expands on the concept of original electricity demand-oriented MGs with the aspiration
of harnessing the interplay between different energy vectors in addressing nearly all the
energy needs of communities, whilst improving the resilience, reliability, efficiency, and
affordability of renewable energy [13].
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Accordingly, this research was motivated by the need to improve the economic via-
bility of smart, integrated renewable energy systems, and particularly off-grid MECMs,
which is not only central to the roll-out of variable RESs as part of global efforts to address
climate change and energy decentralisation, but is also essential for accelerating universal,
democratic, self-sufficient energy access [10].

The optimal equipment capacity planning of an isolated MECM is exceedingly com-
plex due to the underlying intertwined relationships and interactions between several
energy carriers. More specifically, it forms a combinational, non-deterministic polynomial
time-hard (NP-hard) optimisation problem [14] as a result of: (i) the associated extremely
large and non-convex design (search) space, (ii) the presence of several nonlinear constraints
involved in its formulation, and (iii) the lack of grid support against the fluctuations of
the output powers from RESs—which increases the risk of sub-optimality (oversizing
or high excess curtailments). A novel method, based on artificial intelligence-supported
meta-heuristic optimisation algorithms, is thus needed to calculate the optimal capacity of
stand-alone MECMs’ assets more accurately. Such a method will promote renewable energy
systems successfully and effectively in remote areas by reducing the risks of investing in
grid-independent renewable energy projects, thereby not only addressing Aotearoa–New
Zealand’s climate change and sustainable development policies, but also more broadly
as well.

1.1. Literature Review and Knowledge Gaps

A recent, growing body of literature has formulated a range of equipment capacity plan-
ning approaches for optimal MECM investment planning modelling frameworks [15–17]. The
methods in the literature can be broadly categorised into two classes: (1) analytical solution
algorithms and (2) meta-heuristic optimisation algorithms. The notable exact mathematical
solution algorithms to the optimal MECM sizing problem include linear programming (LP),
mixed-integer programming (MIP), mixed-integer linear programming (MILP), and mixed-
integer nonlinear programming (MINLP). The major limitation of these solution algorithms
is the necessity of several or many decompositions and mean-field approximations, which
lead to the loss of parts of the search space—and consequently, a loss of solution fidelity
that impairs the solution quality [18]. On the other hand, swarm intelligence-oriented
meta-heuristics do not involve any such simplifications of the underlying optimisation
problem, but at the cost of relatively substantially higher computational complexities
(running times). Yet, despite the fact that the outperformance of meta-heuristics to ex-
act mathematical optimisers has been highlighted in a multitude of energy dispatch and
planning optimisation studies [19–25], the existing meta-heuristic-based approaches in
the literature on MECM capacity planning optimisation and, more strikingly, off-grid
MECMs, have remained extremely low, as the summary of the most vigorous studies in the
literature in Table 1 suggests. The table, furthermore, serves to position this paper within
the identified methodological gaps in the mainstream optimal MECM sizing literature.
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Table 1. Summary of the rigorous prior work on the optimal sizing and designing of MECMs.

Reference MECM Configuration; Components in the
Candidate Pool Energy Carriers Consideration of

Water Heating
Consideration of

Electrified Transportation
Optimisation

Algorithm

Ding et al. [26] Grid-connected; WTs, boilers, a CHP unit,
BESS, TESS

Electricity, natural gas,
heating, cooling % ! MILP

Ghanbari et al. [27] Grid-connected; WTs, solar PV, boilers, a
CHP unit, BESS, TESS, hydrogen storage

Electricity, natural gas,
hydrogen, heating, cooling % % MINLP

Mansour-Saatloo et al. [28] Grid-connected; WTs, boilers, a CHP unit,
BESS, TESS, hydrogen storage, ice storage

Electricity, natural gas,
heating, cooling % % MILP

Mashayekh et al. [29]
Grid-connected; solar PV, solar thermal,
electric chillers, boilers, micro-turbines,

absorption chillers, BESS, TESS, cold storage

Electricity, heating, cooling,
natural gas ! % MILP

Mashayekh et al. [30]
Off-grid; solar PV, solar thermal, electric

chillers, boilers, micro-turbines, absorption
chillers, BESS, TESS, cold storage

Electricity, heating, cooling,
natural gas ! % MILP

Ge et al. [31] Grid-connected; solar PV, CHP, BESS, TESS Electricity, heating, cooling ! % MINLP

Lekvan et al. [32] Grid-connected; WTs, batteries, a CHP unit,
boiler, hydrogen storage

Electricity, natural gas,
heating % ! MILP

Wang et al. [33]
Grid-connected; solar PV, CHP, boilers,

electric chillers, absorption chillers, BESS,
TESS, cold storage

Electricity, natural gas,
heating, cooling ! % MILP

Lorestani et al. [34] Off-grid; WTs, solar PV thermal,
micro-turbines, boilers, BESS, TESS

Electricity, heating,
natural gas % %

Evolutionary particle
swarm optimisation

Lorestani and Ardehali [35]
Grid-connected; WTs, solar PV thermal,

BESS, TESS, electric heaters, electric chillers,
absorption chillers

Electricity, heating, cooling,
natural gas % %

Evolutionary particle
swarm optimisation

Azimian et al. [36] Grid-connected; WTs, solar PV, CHP,
auxiliary boiler, BESS, TESS Electricity, natural gas % % MINLP
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Table 1. Cont.

Reference MECM Configuration; Components in the
Candidate Pool Energy Carriers Consideration of

Water Heating
Consideration of

Electrified Transportation
Optimisation

Algorithm

Sanjareh et al. [37] Grid-connected; WTs, solar PV, fuel cell,
micro-turbine, BESS Electricity, heating, cooling % %

A specifically
developed enumerative

method

Swaminathan et al. [38] Islanded; solar PV, micro-turbine, BESS Electricity, heating, cooling % %
Particle swarm

optimisation

Li et al. [39] Grid-connected; WTs, solar PV, electric
heater, TESS Electricity, heating % %

Improved differential
evolution algorithm

Dakir et al. [40] Islanded; solar PV, diesel generators, BESS,
cold storage system, TESS Electricity, heating, cooling % % MILP

This study

Off-grid; solar PV, WTs, hydrogen storage,
hybrid super-capacitor/battery energy
storage, a hot water storage tank, a heat

exchanger, an inline electric heater, a
hydrogen refuelling station

Electricity, heating, hydrogen ! !
Moth-flame

optimisation algorithm

Abbreviations: BESS = Battery Energy Storage System, CHP = Combined Heat and Power, MILP = Mixed-Integer Linear Programming, MECM = Multiple Energy Carrier Microgrid, MINLP = Mixed-Integer
Nonlinear Programming, PV = Photovoltaic, TESS = Thermal Energy Storage System, WT = Wind Turbine.
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From Table 1, several methodological and knowledge gaps emerge in the optimal
MECM sizing literature, namely:

• A narrow focus on state-of-the-art meta-heuristic-based optimisation algorithms ap-
plied to the MECM equipment capacity planning problem;

• General absence of configurations addressing the electricity, space heating, water
heating, and e-mobility demands simultaneously, and more particularly, paucity of
MECM systems tailored to off-grid applications;

• Negligence of transient power supplies necessary for the stability of MECMs; and
• Lack of multi-energy schemes where the hydrogen energy vector is directly used as a

transportation fuel.

1.2. Objective and Novel Contributions

In response to the identified literature gaps, this paper introduces a novel meta-
heuristic-based method for the long-term strategic sizing and designing of MECMs. In
this context, the main objective of the paper is to generalise the standard MECM designing
and capacity planning optimisation problem in several areas to improve the level of the
associated analyses, both in terms of the number of energy vectors modelled and energy
needs addressed, with a particular focus on applicability in community-scale systems
designed for remote areas where grid extensions are not feasible, if not impossible. More
specifically, the following novel contributions are made, each addressing one of the above-
mentioned four literature gaps:

• Developing a general, meta-heuristic-based solution algorithm for MECMs consider-
ing separate reliability indicators for different end-use energy carriers with associated
specifically devised rule-based dispatch strategies;

• Conceptualising a fundamentally new off-grid MECM configuration driven by non-
dispatchable RESs, and backed by a three-timescale energy storage system to cost-
optimally meet nearly all the energy needs of remote and peripheral communities;

• Cost-optimal integration of electric double-layer super-capacitors (SCs) into MECMs,
which are associated with high power densities and fast transient response, to serve
the transient power load requirements and ensure the stability of such systems; and

• Cost-optimal system integration of a hydrogen refuelling station, where locally-
produced green hydrogen is used as an alternative transportation fuel to power
fuel cells in various zero-emission vehicles, which benefit from the fast filling time.

1.3. Organisation

The remainder of this paper is organised as follows. Section 2 defines the problem and
formulates the specifically developed meta-heuristic-based stand-alone MECM capacity
planning optimisation method. Section 3 presents the test-case MECM system and the
associated mathematical modelling of its components, whilst additionally providing the
input data for the case of Rakiura–Stewart Island, Aotearoa–New Zealand. Subsequently,
Section 4 discusses the numeric simulation results obtained from the application of the
proposed specifically parametrised method to the test-case system model populated for the
site of interest. Finally, conclusions are drawn, and recommended areas for further work
are presented in Section 5.

2. Methodology

The proposed meta-heuristic-based MECM capacity planning method seeks to min-
imise the whole-life cost of the system subject to a set of planning- and operational-level
constraints. It provides a platform to ensure the cost-efficiency, sustainability, and reliability
of stand-alone MECMs supplying the electricity, transportation fuel, and hot water de-
mands of remote communities. Principally, the proposed method determines the optimum
capacity of an MECM’s equipment using the net present cost (NPC) valuations [41], the
loss of power supply probability (LPSP) reliability indicator [42], and a state-of-the-art
mete-heuristic optimisation algorithm, namely the moth-flame optimisation algorithm
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(MFOA) [43]. The MFOA is chosen as its superiority to a wide range of well-established
and state-of-the-art meta-heuristics in MG capacity planning applications is demonstrated
in [25,44], based on rigorous statistical, multi-test-case-oriented analyses. It has also been
shown that it is highly stable against the changes in initial guess, and therefore, descriptive
statistics analyses, based on several independent simulation runs, are not required [44].
The outperformance of the MFOA can be attributed to its unique search process that uses
two types of search agents, moths and flames, enabling it to improve the trade-off between
the exploration and exploitation phases by conducting more effective long-range jumps
around the global search space and an efficient local search near the global optima.

2.1. Objective Function

The total NPC of the MECM, TNPC, is the sum of all the NPCs of the MECM’s
components in the candidate pool. The NPC of each component can be calculated by [45]:

NPC = N ×
(

CC + RC × K +
O&M

CRF(d, R)
− SV

)
, (1)

where N, CC, RC, O&M, and SV denote the optimum capacity, capital cost, replacement
cost, operation and maintenance cost, and salvage value of the component, respectively; K
is the single payment present worth; CRF stands for the capital recovery factor; d denotes
the real interest rate per annum (6%); and R is the expected lifespan of the MECM system
(20 years).

The total NPC of the system, TNPC, can also be annualised as follows [46]:

TNPCann = CRF(d, R) × TNPC. (2)

Furthermore, the MECM’s levelised cost of energy (NZD/kWh) can be calculated
by dividing the total NPC of the system by the total discounted electric, hydrogen, and
thermal energy it serves to the customers over the planning horizon [46].

2.2. Constraints

The minimisation of the MECM’s total NPC is carried out subject to the target reliabil-
ity requirements to supply the electric, heating, and transportation fuel (hydrogen) energy
demands. To this end, three separate reliability indices based on the LPSP technique mea-
sure the consistency of the supply of electricity, hot water, and hydrogen as a transportation
fuel. The LPSP reliability indicator in meeting the electricity/hot water/transportation fuel
requirements can be determined by [42]:

LPSP = 100 × ∑N
i=1 hours[Psupp(i) < Pdem(i)]

N
, (3)

where Psupp denotes the supplied electric/thermal/hydrogen power, Pdem is the demand
for electricity/hot water/transportation fuel, and N is the total number of hours considered
in the operational horizon over which the MECM is representatively dispatched (8760 h).
In this study, the LPSP indices are set to 0%; that is, loads are always met.

In addition to the requirement of satisfying the specified reliability criteria, the optimi-
sation problem is subject to a number of other constraints, namely:

• Non-strict equality of the initial and terminal states of energy stored (terminal energy
in-store greater than or equal to the initial energy in-store) in the battery bank, the SC
bank, and the hydrogen reservoir over an entire representative operational horizon
(8760 h); the storage devices are assumed to be half-full-charged at the beginning
of simulations to avoid oversizing due to the peaks occurring early in the net load
time-series data;

• The demand–supply balance of energy at each time-step of operating the MECM;
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• Enforcing the states of energy stored in the SC bank, battery bank, and the hydrogen
tank to lie within their pre-defined allowable limits (in percentages) at each time-step
of operating the MECM;

• Enforcing the operating points of all the components to lie between zero and the
associated rated capacities; and

• Adhering to the pre-specified upper bounds of the design variables (capacity of
the MECM’s equipment), in compliance with the target site’s real-world, physical
limitations, such as land access.

2.3. Meta-Heuristic Optimisation Algorithm

The non-convexity of the derived objective function, which is subject to several non-
linear constraints, precludes the utilisation of exact mathematical optimisation methods to
solve the problem at hand, as illustrated earlier. Accordingly, the MFOA meta-heuristic [43]
is utilised to minimise the total NPC of the MECM subject to the formulated constraints.
In this study, the population size is considered to be 45 and the maximum number of
iterations is set to 300.

2.4. Overview of the Method

Figure 2 shows an overview of the proposed method for the optimum investment
planning of the conceptualised stand-alone MECM addressing various energy needs of
a remote community. As shown in the figure, first, all input data including the adjusted
control parameters of the employed meta-heuristic, hourly forecasts of meteorological and
load demand data, techno-economic specifications of the components of the MECM, as well
as the project lifetime and real interest rate are loaded. Then, the first estimates of the size
of the equipment are determined following the initialisation of the selected meta-heuristic.
The system is subsequently operated (Equations (4)–(17)) with an hourly granularity using
the first estimates of the equipment size subject to the operational-level constraints, namely
the supply–demand balance, as well as the minimum and maximum allowable operating
points of the components. At this stage, the LPSP index (Equation (3)) is calculated for each
energy carrier and if the associated reliability constraints, as well as the imposed constraints
that the terminal energy in-store needs to be greater than or equal to the initial energy
in-store for every storage medium, are all satisfied, the algorithm reports the obtained mix
of capacities as the cost-optimal choice (Equations (1) and (2)); otherwise, it proceeds to
iteratively change the positions of the search agents in the defined solution space (which
is bounded by the upper limits of design variables) following the specific rules of the
selected meta-heuristic and evaluate the fitness of each design by operating the system
for the corresponding size estimates, whilst adhering to the associated dispatch-level
constraints, until all the design-loop constraints are relaxed, which yields the desired cost-
minimal solution. Accordingly, the inner operational-level if-block is nested within the outer
planning-level if-block and, in this way, the overall nested conditional structure ensures that
all the constraints that are designed to capture the potential physical, real-world limitations
of off-grid MECM installations are adequately met.
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3.1. Wind Turbines

Fuhrländer AG’s FL100 (100 kW) wind turbines (WTs) were considered [47]. The
output power from the overall WT plant (kW) at different wind speeds is modelled by the
following equation [48]:

PWT(t) = NWT ×


0 i f v(t) ≤ vci or v(t) ≥ vco,
A i f vci < v(t) ≤ vr,
PWT,r i f vr < v(t) < vco,

(4)

A =
PWT,r

v3
r − v3

ci
v3(t) −

v3
ci

v3
r − v3

ci
PWT,r, (5)

where NWT is the optimal number of turbines (determined over the course of the iterations
of the iterative solution algorithm), v(t) is wind speed at time-step t, vci is the turbine’s
cut-in wind speed (2.5 m/s), vr is the turbine’s rated wind speed (13 m/s), vco is the
turbine’s cut-out wind speed (25 m/s), and PWT,r is the turbine’s rated power (100 kW) [49].
Additionally, the following equation is used to normalise the wind speed profile to the hub
height of the selected WT [50]:

Vh = Vre f ×
(

h
hre f

)γ

, (6)

where Vre f is the reference speed recorded at the height of hre f and γ is a number in the
range (0.1, 0.25) that reflects the status of the terrain on which the turbine is planned
for installation. The value of this parameter is 0.25 for the non-flat, tree-covered land
considered in this case study [51].

3.2. Solar PV Panels

Canadian Solar’s CS6K-280P (280-W) poly-crystalline solar photovoltaic (PV) panels
were considered [52]. The power output from the PV plant at each time-step, PPV(t) (kW),
can be calculated as follows [53]:

PPV(t) = NPV × PPV,r × DF × IG(t)
ISTC

×
(

1 −
Kp

100
× (Tm(t) − TSTC)

)
, (7)

Tm(t) = Ta(t) + IG(t) × NMOT − 20
0.8

, (8)

where NPV is the optimal quantity of panels; PPV,r is the rated capacity of the panels under
the standard test conditions (STC), which equals 0.28 kW; Kp denotes the temperature
coefficient of the panel (–0.40%/◦C); Tm, Ta, and TSTC (25 ◦C) denote the PV panel tempera-
ture, ambient temperature, and the panel temperature at the STC, respectively; IG and ISTC
(1 kW/m2) represent the global solar irradiance on the horizontal surface and the solar
irradiance at the STC, respectively; and NMOT (43 ◦C) and DF (85%) denote the nominal
module operating temperature and derating factor, respectively. The tilt angle is assumed
as 30◦. The numeric values 20 and 0.8 represent the ambient temperature (◦C) and solar
irradiance (kW/m2), respectively, at which the NMOT is defined.

3.3. Hybrid SC/Battery System

The energy content of the SC modules and battery packs integrated into the hybrid
SC/battery bank at each time-step of the operation of the MECM can be expressed by the
following equation:

ESC/B(t) = ESC/B(t − 1) +

(
Pch,SC/B(t) −

Pdch,SC/B(t)
ηSC/B

)
× ∆t, (9)
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where ηSC/B is the round-trip efficiency of the SC modules (95%) and battery packs
(90%), while Pch and Pdch denote the charging power and discharging power of the hybrid
SC/battery storage system, respectively.

3.4. Fuel Cell

The electrical output power of the generic polymer electrolyte membrane (PEM) fuel
cell unit, which is driven electrically (i.e., it is treated as an electrically lead system) with
the associate waste heat considered as a by-product (which is recovered using the heat
exchanger), can be calculated by [45]:

PFC,e = ηFC × PHT−FC, (10)

where ηFC is the fuel cell’s electrical efficiency, which is assumed as 50%, and PHT−FC is
the power directed from the hydrogen tank to the fuel cell unit.

The amount of thermal power generated by the fuel cell at a given operating power,
PFC,e, can be determined by [54]:

PFC,h = rh
FC × PFC,e, (11)

where rh
FC is the ratio of the fuel cell’s thermal to electrical output power, which equals 0.8.

The water produced by the fuel cell absorbs part of PFC,h, and the rest of it (here, 65% of
PFC,h) is used for heat recovery purposes.

The mass of stored hydrogen in the hydrogen reservoir (kg) at time-step t can be
obtained from:

mHT(t) =

(
EHT(t − 1) +

(
PE−HT(t) − (PHT−FC(t) + PHT−S(t))

ηtank

)
× ∆t

)
/HHVH2 , (12)

where EHT is the state of hydrogen energy stored in the tank, HHVH2 is the higher
heating value of hydrogen (39.7 kWh/kg [45]), PE−HT is the power directed from the elec-
trolyser to the tank, PHT−S is the power directed from the tank to the hydrogen refuelling
station, and ηtank is the round-trip efficiency of the tank, which is assumed as 98%.

The amount of thermal energy (in the form of hot water) (kW) delivered from the hot
water storage tank to the inline electric heater is calculated by [55]:

EHW(t) =
.

moutlet × cp × ηHW × (Tout − Tin)/(3600), (13)

where
.

moutlet is the mass flow rate of the hot water at the tank outlet (kg/h), cp represents
the specific heat capacity of water (4.19 kJ/kg-◦C [54]), ηHW is the hot water tank’s efficiency
(96%), with Tin and Tout denoting the temperature of the water inflowing/outflowing
to/from the hot water storage tank, respectively. In this study, Tin is assumed to be constant
at 12 ◦C.

3.5. Other Components

Furthermore, the generic heat exchanger, the inline electric heater, the hydrogen
refuelling station, the PEM electrolyser, and the inverter are modelled by their efficiencies,
which are set to 90%, 97%, 95%, 60%, and 95%, respectively, in the same way as for the
electrical output power of the fuel cell in Equation (10).

The hydrogen refuelling station serves the purpose of refilling the hydrogen fuel cell
(HFC)-powered vessels and vehicles. It comprises a high-pressure compressor, a cooling
system, and a dispenser, the efficiencies of which are lumped into a single value for the
overall system.

3.6. Dispatch Strategy

The output power of the WT and solar PV generation systems, due to their weather-
dependent nature, varies temporally—seasonally, monthly, daily, and instantaneously.
On the other hand, the variability in electric load demand occurs over a wide range of
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timescales, from fractions of a second to several months, over a one-year operational
planning horizon. Accordingly, three different energy storage systems—the electric double-
layer SC bank, the LiFePO4 lithium-ion battery bank, and the stationary hydrogen-based
energy storage system—are considered to compensate for the mismatches in supply and de-
mand and meet the net loads (loads minus onsite variable generation). The rationale behind
the use of these components lies in their different characteristics in terms of energy and
power densities [56]. Specifically, fuel cells and SCs are associated with high energy/power
densities, but low power/energy densities; thus, they are best suited to address the mid-to-
long-term/instantaneous mismatches in renewable power supply and electricity demand.
In addition, batteries bridge the gap between the SCs and fuel cells; they are fit for the
purpose of compensating for the daily to weekly fluctuations in supply–demand owing to
the intermediary level of both their energy and power densities.

In this light, a rule-based cycle-charging energy dispatch strategy is formalised to
decide the operation of the conceptualised off-grid MECM. Accordingly, a low-pass energy
filter initially decomposes the non-dispatchable supply–demand mismatch signal into low-
and high-frequency components. The low-frequency component is subsequently used
to produce hydrogen using the electrolyser or to govern the operation of the fuel cell,
depending on the total non-dispatchable power excess or shortage. On the other hand,
the high-frequency component is passed through another low-pass energy filter with a
higher cut-off frequency, as compared to the previous one. Then, the associated low- and
high-frequency components of the second filter’s output are adopted to charge/discharge
(depending on the state of the power mismatch) the battery and SC banks, respectively.
The corresponding cut-off frequencies of the two filters are optimised by making effective
use of a logarithmic transformation in accordance with the technical capabilities of each
storage technology, particularly the duration of energy storage capacity per unit of power
capacity, whilst additionally leveraging the “roll-off” concept [57]. In mathematical terms,
this can be expressed as follows: First, the power mismatch signal is broken down into
the low- and high-frequency components using a first-order passive low-pass filter with a
transfer function given in Equation (14).

H(s) =
Kω2

0
s2 + (ω0/Q)s + ω2

0
, (14)

where ω0 denotes the cut-off frequency (3.9545 × 10−4 Hz), K represents the DC gain (1.586),
and Q = 1/2ξ identifies the filter quality, with ξ indicating the damping factor (0.707).

By applying the filter, the low-frequency component of the shortage/excess power
(addressed by the hydrogen storage system) at time-step t can be obtained as follows:

PL
ex/sh

Pex/sh
=

ω2
n(

1 − z−1

∆t

)2
+ ωn

Q
1 − z−1

∆t + ω2
n

, (15)

PL
ex/sh(t) =

ω2
n∆t2Pex/sh(t) +

(
2 + ωn∆t

Q

)
PL

ex/sh(t − 1) − PL
ex/sh(t − 2)

1 + ωn∆t
Q + ω2

n∆t2
, (16)

where the value of PL
ex/sh in the first two time-steps is assumed to be equal to the corre-

sponding value of Pex/sh. That is, PL
ex/sh(1) = Pex/sh(1) and PL

ex/sh(2) = Pex/sh(2).
The high-frequency component of the excess/shortage signal, which is directed to the

hybrid battery/SC bank, can then be obtained as:

PH
ex/sh(t) = Pex/sh(t) − PL

ex/sh(t). (17)

A similar process is followed for decomposing the high-frequency component of
the mismatch signal to the high and ultra-high sub-components, which are addressed by
the respective dedicated battery packs and SC modules. Accordingly, the optimal cut-off
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frequencies of the first and second filters were determined to be 3.1970 × 10−5 Hz and
8.3331 × 10−4 Hz, respectively. Expectedly, the second filter’s cut-off frequency is greater
than that of the first one, as it is geared towards decomposing renewable excess/shortage
signals on a finer scale.

The temperature of the hot water demand is enforced to be constant at 40 ◦C. To this
end, an inline electric heater, which is powered by non-dispatchable renewables (solar
PV and WT power plants), is used to heat up the water at the tank outlet to the desired
temperature of the consumers (40 ◦C) if the temperature of the water in the tank is below
40 ◦C. In this way, the inline electric heater acts as a backup to the electrically lead fuel
cell for serving the thermal loads. Note that it is by no means optimal to oversize the fuel
cell solely for meeting the thermal loads or, more inappropriately, using a thermally lead
fuel cell dispatch strategy. This is because both strategies necessitate dumping the excess
electric power output from the fuel cell as part of the associated fixed energy management
strategies, which would have been indispensable if the inline electric heater was not used as
a resource to compensate for any lack of thermal power generation. A dedicated controller
also ensures that the temperature of the water stored in the tank does not exceed the
acceptable limit of 65 ◦C, past which curtailing the excess heat is necessary due to the
associated technical constraints. Accordingly, it is assumed that the consumers adjust the
ratio of cold to hot water to achieve the desired temperature of 40 ◦C if the temperature of
the water outflowing from the hot water storage tank is above 40 ◦C with a consequent
linear decrease in the demand for hot water.

Furthermore, to keep the energy balance of the system, any surplus power beyond
the capacity of the electrolyser, hydrogen reservoir, SC bank, and battery bank (across the
designated timescales) is used in the inline electric heater to meet the hot water demand—if
there exist any as-yet-unsupplied thermal loads. Under this scenario, if the capacity of
the heater is not adequate for meeting the thermal demand, the surplus power (beyond
the heater’s capacity) is dumped through a DC load consisting of a resistor bank—which
increases the loss of thermal power supply probability reliability index. That is, thermal
loads are served by a combination of fuel cell generations and inline heater supplies; the
former is controlled by electrical loads, whereas the latter is dispatched only during the
periods where excess power is present. Moreover, any non-dispatchable power larger
than what the overall system can absorb is dissipated in the dump load. On the other
hand, when the capacity of the battery bank, SC bank, hydrogen tank, or the fuel cell
is not adequate for meeting non-dispatchable power shortages (for electricity supply),
load-shedding ensures the MECM system’s power balance, which consequently increases
the loss of electric power supply probability.

The power balance problem is solved at an hourly resolution for the baseline year
and subsequently, it is assumed that the developed year-long energy dispatch decisions
are repeated for each of the ensuing years in the MECM life-cycle. The recurring energy
supplies are then discounted in the cash flow (out-years) to the present for the associated
levelised cost calculations.

3.7. Data: Techno-Economic Specifications of the Components

The techno-economic specifications of the conceptualised MECM’s components are
summarised in Table 2 [25,55,56,58–61]. The leading brands of equipment in New Zealand’s
renewable energy asset market were chosen based on the first author’s judgement of both
prevalence and viability, the costs of which are reported in 2019 New Zealand dollars
(NZD) in the table—hence, all cost estimates are cited in 2019 NZD throughout this paper
(the 2019 annual average exchange rate: NZD 1 = USD 0.69).
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Table 2. Techno-economic specifications of the MECM’s equipment (data sources: [25,55,56,58–61]).

Component
Rated

Capacity/Capacity
Step-Size

CC 1 (NZD) RC 1 (NZD) O&M Cost 1

(NZD)
Efficiency 2

(%)
Lifetime

PV panels 280 W 437/unit 350/unit 1.9/unit/year 17 20 years

WTs 100 kW 120 k/unit 100 k/unit 4.6 k/unit/year N/A 3 20 years

SC modules 166 F, 48
V ≡ 0.054 kWh 1.3 k/module 0.7 k/module 5/module/year 95 10 years

Battery packs 1 kWh 910/kWh 620/kWh 2.2/kWh/year 90 12 years

Electrolyser 1 kW 1 k/kW 1 k/kW 20/kW/year 60 15 years

Hydrogen
reservoir 1 kg 470/kg 470/kg 9/kg/year 98 20 years

Fuel cell 1 kW 1.1 k/kW 900/kW 0.02/kW/hour 50 4 10 k hours

Heat exchanger 1 kW 100/kW 90/kW 2/kW/year 90 15 years

Hot water tank 5 1 L 0.5/L 0.3/L 0.001/L/year 96 15 years

Inline electric
heater 1 kW 1 k/kW 1 k/kW 8/kW/year 97 15 years

Hydrogen
refilling station 1 kg-H2 6 k/kg-H2/h 5 k/kg-H2/h 180/kg-

H2/h/year 95 20 years

Electric loads’
inverter 1 kW 350/kW 300/kW 7/kW/year 95 15 years

1 The capital, replacement, and O&M costs include the costs associated with the converters shown inside the dashed lines in Figure 3. 2 The
equipment efficiency is reported excluding the efficiencies associated with the converters shown inside the dashed lines in Figure 3. All the
power electronics devices are associated with an efficiency of 95%. 3 The WT plant is modelled using Equations (4) and (5), which model
the relationship between its output power and the hub height wind speed. 4 The value represents the fuel cell’s electric efficiency. 5 The hot
water tank’s specifications include the techno-economic specifications associated with the water pump shown in Figure 3.

Table 3 lists the data sources for model scalars.

Table 3. Data values and sources for model scalars.

Scalar Value Source Scalar Value Source

cp 4.19 kJ/kg-◦C [54] vr 13 m/s [47]

DF 85% [52] γ 0.25 [51]

HHVH2 39.7 kWh/kg [45] ηB 90% [25]

ISTC 1 kW/m2 [52] ηE 60% [45]

Kp –0.40%/◦C [52] ηFC 50% [45]

NMOT 43 ◦C [52] ηH 97% [45]

PPV,r 280 W [52] ηHE 90% [54]

PWT,r 100 kW [47] ηHW 96% [54]

rh
FC 0.8 [54] ηI 95% [45]

Tin 12 ◦C [54] ηS 95% [25]

TSTC 25 ◦C [52] ηSC 95% [25]

vci 2.5 m/s [47] ηtank 98% [45]

vco 25 m/s [47]
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3.8. Case Study Site: Rakiura–Stewart Island, Aotearoa–New Zealand
3.8.1. Background

Rakiura–Stewart Island (latitude 46.9973◦ S, longitude 167.8372◦ E) is situated ap-
proximately 30 km south of the South Island of New Zealand. As of August 2021, it has
approximately 405 permanent electricity consumers connected to a distribution network
powered by a central diesel power station. The generation plant has a 4(+1) configuration,
with a total nameplate capacity of 1646 kW. Several studies have been carried out to exam-
ine the economic viability of extending a cable from the port of Bluff on the South Island
to Rakiura–Stewart Island, all of which suggested prohibitive capital, replacement, and
operation and maintenance (O&M) costs. In this light, the cost of electricity on Rakiura–
Stewart Island is higher than that of the national grid electricity provided to customers
in the North and South Islands. At around 0.52 NZD/kWh, electricity costs nearly three
times that on mainland New Zealand. The current diesel power station operates at an
average production efficiency of 4.28 kWh/litre of diesel fuel, while the most recent cost of
diesel is approximately 1.75 NZD/kWh. Moreover, each litre of diesel consumed by the
existing generators produces 2.7 kg of CO2. Advantageously, local residents believe that
reducing the consumption of diesel and developing a renewables-based energy genera-
tion system is one of the island’s highest priorities. Collectively, these statistics and facts
suggest that using renewable energy rather than fossil fuels to serve the energy needs of
the community residing on the ecologically sensitive Rakiura–Stewart Island is of utmost
importance [62–64].

In this setting, the proposed notional stand-alone MECM could provide clean, reliable,
affordable electricity (including space heating loads), transportation fuel, and hot water
to the 405-strong remote community residing on Rakiura–Stewart Island. In a systematic
study carried out on the assessment of the potentials for the utilisation of RESs on Rakiura–
Stewart Island, Mason and McNeil [65] suggested that solar PV and WT power generation
technologies are the most technically feasible and cost-effective sources of renewable energy
generation among a range of RESs due to the resource abundance and small permanent
land and environmental footprints compared to the other options available. This, in
retrospect, explains the choice of solar PV and WT generation plants in the proposed
stand-alone MECM architecture. However, any other RESs could be readily integrated into
the conceptual system, in accordance with the renewable energy potentials of other sites
of interest.

3.8.2. Data: Meteorological and Load Demand Forecasts

To forecast the hourly basis, year-round power output profiles for solar PV and WT
generation systems, historical solar irradiance, ambient temperature, and wind speed data
were first collected from the New Zealand’s National Institute of Water and Atmospheric
Research (NIWA) CLiFlo database [66] for Rakiura–Stewart Island for the years 2011 to
2020, and then averaged in intervals of 1 h. The forecasted monthly mean 24-h profiles for
solar irradiance (kW/m2), ambient temperature (◦C), and wind speed (m/s) are shown in
Figures 4–6, respectively.

The hourly basis, year-round electrical power load profile is synthesised based on the
New Zealand GREEN grid household electricity demand study, which accounts for the
space heating energy demand [67]. The hourly basis, year-round thermal load power (hot
water demand) profile is synthesised as suggested in [54], assuming that each person uses
44 L of hot water per day. The monthly mean 24-h profiles for the forecasted electric power
loads (kW) and thermal power loads (kW) are shown in Figures 7 and 8, respectively. It
should be noted that the dispatch decisions are made on an hourly basis and the above-
mentioned profiles are presented vs time-of-day (24 h) as averaged over the month only
for better visualisation reasons.

The typical daily profile for hydrogen loads (kg-H2/h) imposed on the conceptualised
isolated MECM model—populated for the case of Rakiura–Stewart Island with the goal of
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decarbonising the transportation sector—is shown in Figure 9. The following assumptions
were made in deriving the daily hydrogen load profile:

• One HFC-powered ferry, five HFC-powered heavy-freight trucks, and five HFC-
powered heavy-duty tractors, which can store 208 kg, 32.9 kg, and 8.2 kg of hydrogen,
respectively, in their purpose-built carbon composite tanks are considered for integra-
tion into the system. The 100-seater marine vessel serves the purpose of transporting
the passengers between Rakiura–Stewart Island (at the port of Oban) and the port
of Bluff (six crossings per day in summer, and four in winter, and hence, an annual
average of five crossings per day), while the trucks and tractors effectively contribute
towards achieving the objectives of agricultural sustainability;

• A fleet of thirty 8.5 kW HFC-powered light-duty passenger vehicles also utilise the
hydrogen station to refill their 1.5 kg hydrogen tanks;

• A valley-filling energy management scheme that refuels the vessel, heavy-duty trac-
tors, and heavy-freight trucks in the early morning hours (by uniformly distributing
their hydrogen loads over the hours 1 a.m. to 6 a.m.) is adopted, while the light-duty
passenger vehicles utilise the station randomly during day-time hours (from 9 a.m. to
8 p.m.), following a specifically derived normal distribution; and

• The hydrogen tanks of the light-duty passenger vehicles, heavy-duty tractors, and
heavy-freight trucks need to be refuelled from 5% to 100% of their rated capacities
every 3, 4, and 5 days, respectively, while the hydrogen tank of the ferry is refuelled
from 23% to 100% of its nominal capacity every 2 days [68,69].
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4. Numerical Simulation Results and Discussion

The numerical simulation and optimisation of the conceptualised MECM were coded
using the MATLAB® software. The optimum combination of the capacity of the MECM’s
equipment yielded by solving the formulated problem using the MFOA-based solution
algorithm subject to the imposed constraints is presented in Table 4. The minimised total
NPC of the MECM system is found to be NZD 7,940,348.

Table 4. Optimal capacity of the MECM’s equipment.

Component Optimal Size

PV panels (no.) 796

WTs (no.) 31

SC modules (no.) 329

Battery packs (no.) 18

Electrolyser (kW) 964

Hydrogen reservoir (kg) 619

Fuel cell (kW) 261

Heat exchanger (kW) 213

Hot water tank (L) 283,301

Inline heater (kW) 97

Hydrogen station (kg-H2/h) 17.2

Inverter (kW) 741

4.1. Benchmarking the MFOA

To validate the effectiveness of the MFOA in nearing the globally optimum solution of
the off-grid MECM design problem, its performance on the test-case under consideration
is compared with those of the well-established meta-heuristics in the MG capacity plan-
ning literature, namely: the genetic algorithm (GA) [70], the particle swarm optimisation
(PSO) [71], the hybrid GA-PSO [72], the artificial bee colony (ABC) algorithm [73], the
ant colony optimisation (ACO) [74], and the hybrid ABC-ACO [75]. Table 5 presents the
adjusted control parameters of the selected meta-heuristics for the comparative analyses,
as suggested by the corresponding developers of the algorithms. The number of search
agents (population size) and the maximum number of iterations were fixed at 45 and 300,
respectively, for all the meta-heuristics under evaluation.

Table 5. Developer-suggested parameter settings of the algorithms under comparative analyses.

Algorithm Parameter Settings Reference

MFOA The constant that defines the shape of the logarithmic spiral = 1 [43]

GA Mutation rate = 0.05, crossover probability = 0.1, mutation probability = 0.9 [70]

PSO Acceleration coefficients = 2, inertia weight = 0.7 [71]

Hybrid GA-PSO Mutation rate = 0.05, crossover probability = 0.1, mutation probability = 0.9,
acceleration coefficients = 2, inertia weight = 0.7 [72]

ABC Number of onlooker beers = 25, number of employed bees = 25 [73]

ACO Archive size = 50, locality of search = 0.1, convergence speed = 0.85 [74]

Hybrid ABC-ACO Number of onlooker beers = 25, number of employed bees = 25,
archive size = 50, locality of search = 0.1, convergence speed = 0.85 [75]
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Tables 6 and 7 present the comparative results of the efficiency of the meta-heuristics
under consideration in nearing the globally optimum MECM design results. Given that the
proposed meta-heuristic-based solution algorithm is (inherently) relatively computationally
costly to execute, the running times associated with the meta-heuristics of interest were not
factored into the comparative analyses. Put differently, the difference in the computational
complexity of optimising a solution to the problem at hand using different meta-heuristics
is negligible on a percentage basis. In this setting, Tables 6 and 7 are revealing in the
following ways:

• In the context of off-grid MECM designing and equipment capacity planning opti-
misation, the performance of the MFOA is superior to the other six meta-heuristics
investigated in terms of yielding the least-cost solution. Notably, it outperforms the
second-best algorithm (the hybrid GA-PSO) by a significant ~8% (equating to a saving
of ~NZD 714,255). The following rank order is achieved for the evaluated algorithms:
the MFOA > the hybrid GA-PSO > the GA > the PSO > the hybrid ABC-ACO > the
ABC > the ACO.

• Although no significant dependence of the optimal resource portfolio—in terms of
the overall configuration and the selected components from the candidate pool—on
the chosen meta-heuristic was observed (or in other words, none of the components
were rejected and were not even downsized with increases in optimised total system
cost due to the sub-optimality of the solutions yielded by the benchmarking meta-
heuristics)—to illustrate, in some cases, sub-optimality results in lower than optimum
sizes for some of the components at the cost of increases in the size of other compo-
nents, but this has not occurred here—similar patterns of stagnation in local optima
were found in the solution sets returned by the algorithms that have been hybridised.
More specifically, although the performance of the hybrid version is slightly better, the
GA, the PSO, and the hybrid GA-PSO return practically the same equipment mix (and
in turn, practically the same total discounted system cost values), which is also the
case for the ABC, the ACO, and the hybrid ABC-ACO. This provides further evidence
to support the argument that the hybridisation of meta-heuristics does not necessarily
result in improved solution quality in any application.

• The practically unaltered optimal resource mix yielded by the seven meta-heuristics
of interest in terms of system configuration indicates that the superiority of the MFOA
to the well-established algorithms in off-grid MECM sizing applications stems largely
from its well-balanced exploration and exploitation phases, rather than accessing the
regions that are invisible to the well-established algorithms. More specifically, the
global superiority of the MFOA can be attributed to its unique feature of systematically
rebalancing exploration—the early stages of the optimisation process that mimics the
long-range movement of individuals—for improved exploitation—the local search
around promising regions—of the search space for potential solutions.

Table 6. Comparative total discounted system cost returned by the evaluated meta-heuristics and
the associated CPU usage times.

Algorithm Total NPC (NZD) CPU Time (s)

MFOA 7,940,348 181,749

GA-PSO 8,654,603 178,325

GA 8,771,219 161,088

PSO 8,924,580 159,957

ABC-ACO 9,541,309 164,412

ABC 9,621,367 183,560

ACO 9,849,651 188,217
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Table 7. Comparative resource mix solutions obtained by the evaluated meta-heuristics.

Algorithm MFOA GA-PSO GA PSO ABC-
ACO ABC ACO

PV panels (no.) 796 971 974 982 1021 1028 1091

WTs (no.) 31 34 35 35 38 38 39

SC modules (no.) 329 381 382 397 425 431 439

Battery packs (no.) 18 48 48 57 79 85 85

Electrolyser (kW) 964 1015 1020 1055 1104 1122 1127

Hydrogen reservoir (kg) 619 731 732 762 788 793 795

Fuel cell (kW) 261 279 280 294 329 336 351

Heat exchanger (kW) 213 285 285 298 331 332 359

Hot water tank (L) 283,301 370,214 376,097 380,017 401,257 411,104 419,185

Inline heater (kW) 97 148 152 155 191 199 219

Hydrogen station (kg-H2/h) 17.2 19.4 20.1 20.3 20.9 20.9 21.0

Inverter (kW) 741 741 741 741 741 741 741

Figure 10 displays the comparative convergence patterns of the selected meta-heuristics.
As the figure shows, the selected values for the population size and the maximum number
of iterations are adequate for the convergence of the studied meta-heuristics. Although the
computational speed has not been considered as a criterion for ranking the algorithms, it
can be seen from the figure that the MFOA is associated with a comparable convergence
point—the iteration after which the meta-heuristic’s returned solution does not change
anymore—to the well-established algorithms under consideration. This is the main under-
lying reason for the observation that the total CPU running (execution) times associated
with the algorithms are in the same range as no increased maximum number of iterations
is required.
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4.2. Total Discounted Cost Breakdown

This section presents a breakdown of the total NPC of the simulated MECM system as
estimated by the MFOA as the identified superior algorithm. As stated above, the optimal
life-cycle cost of implementing the notional MECM on Rakiura–Stewart Island is found to
be NZD 7,940,348. The radar chart in Figure 11 shows a breakdown of the total NPC of the
MECM into the life-cycle cost incurred by each component in the present value. That is, it
depicts the contribution of the associated NPCs of the components to the whole-life cost
of the MECM system for the best combination of the component sizes optimised by the
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MFOA. Although the numbers shown on the graph represent the real NPCs associated with
the optimum capacities of the MECM’s components, the chart is plotted on the logarithmic
scale for the sake of better visualisation.

As can be seen in the figure, the total NPC of non-dispatchable generation systems
constitutes the largest cost component (NZD 4,127,158), followed by the aggregate NPC
of the hydrogen-based energy storage system’s components: electrolyser, fuel cell, and
hydrogen tank (NZD 2,811,765). More specifically, the aggregate NPC of non-dispatchable
generation systems (WT and solar PV plants)—as the dominant cost factor for installing the
proposed MECM system—comprises approximately 52% of the total NPC of the system, of
which 74% is attributable to WTs and 26% is attributable to solar PV panels. The hydrogen-
based energy storage system, which represents the second-highest cost factor, accounts
for around 35% of the total NPC of the MECM system, of which 51%, 38%, and 11% are
occupied by the fuel cell, electrolyser, and hydrogen tank, respectively.

Accordingly, the aggregate NPC of the other components takes up around 13% (equat-
ing to NZD 1,001,425) of the expected whole-life cost of the system, with the breakdown as
follows: SC bank, 3.7%; loads’ inverter, 3.7%; battery bank, 1.6%; inline heater, 1.5%; hydro-
gen station, 1.4%; heat exchanger, 0.4%; hot water tank, 0.3%. Note that the (potential) sal-
vage values of the components are factored in the associated component NPC calculations.

It is also noteworthy that the relatively large cost of the fuel cell unit can be explained,
in large part, by the observation that it is replaced two times over the lifespan of the
project; specifically, in years 8.11 and 16.22 over the 20-year life-cycle of the MECM system.
It should be recalled that, unlike all other components, the lifetime of the fuel cell is
specified in terms of operating hours. Therefore, the expected number of years of the fuel
cell’s service is an output variable, which is determined based on the number of hours
it is operated per year, in accordance with the developed dispatch strategy. To illustrate,
given that the fuel cell has a lifetime of 10,000 operating hours, the associated expected
lifetime of 8.11 years indicates that it operates around 1233 h during one year of the system
operation—10,000 h divided by 8.11 years.
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4.3. Energy Balance Analyses

This section presents annually resolved energy balance analyses of the conceptualised
MECM system, which include an overview of the balance of energy generation and con-
sumption (including energy losses). All the analyses were made based on the least-cost
energy mix solution estimated by the proposed MFOA-based method. The resulting values
are based on a one-year operational period with hourly granularity under the reliability
constraint of maximum LPSP = 0 for all the end-use energy carriers. Note that given the
considered 100% energy supply reliability constraint, on any given timescale, the total
energy supplied by the onsite DERs is equal to the sum of the total energy demand on
the system, the total excess energy curtailed, the total net storage charging energy, and
the total losses due to power and energy conversions—and non-ideal characteristics of
the associated components. On the other hand, the terminal state-of-charge (SOC) of the
storage media are enforced to be greater than or equal to the pre-specified initial energy
in-store values (initial SOCs = 50%). Expectedly, the optimal cost solution returns a terminal
SOC of 50% for all the storage devices to avoid unnecessary extra allocation (oversizing)
of the associated non-dispatchable generation infrastructure. In this light, the annually
resolved energy balance analyses could be reduced to the primary energy generation and
consumption components. That is, the charging power and discharging power of the
storage devices can be excluded from the associated analyses.

The results of the overall energy flow analyses of the conceptual MECM for the
generation and consumption components are summarised in Figure 12 in terms of their
percentage contributions to the total generation and consumption of energy. Note that, as
illustrated above, only the primary sources of energy generation and consumption within
the MECM are incorporated in the energy flow analyses. Moreover, while the thermal
and hydrogen end-use carriers specifically address the hot water demand and electrified
transportation loads on the system, the analysis of energy consumption within the system is
not sub-categorised to detail the share of each end-use carrier in the overall energy demand
(refer to Figures 7–9 for a high-level comparative analysis of the share of each end-use
carrier in the overall energy demand), or the specific electrical end-uses of the customers.
In the figure, energy generation and consumption are represented by positive and negative
signs, respectively. Moreover, the total system losses include: (i) the losses associated with
power conversion in power electronics devices (such as the loads’ inverter), (ii) the losses
associated with energy conversion due to the non-ideal performances of the energy storage
devices and energy conversion components (such as the electrolyser), as well as (iii) the
spilled energy in the dump load as a result of producing more non-dispatchable power
than the system can absorb. The former two categories of system-wide energy loss are
characterised by the associated constant efficiencies of the relevant equipment.
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Accordingly, the results presented in Figure 12 provide an annual energy balance
outlook for the notional MECM under consideration. As the figure shows, wind power is
the main source of primary energy generation in the system, which makes up around 79%
of the total energy supply, whereas the energy generated by the solar PV plant accounts
for around 21% of the total supply. On the consumption side, as expected, power loads
are the main component of energy use, which account for nearly 48% of the total energy
consumption within the system. The other load demand components, namely the hydrogen
demand of the station and hot water demand, make up approximately 21% and 19% of the
total MECM energy consumption, respectively. Accordingly, the aggregate system-wide
energy losses are responsible for approximately 12% of the total energy consumption.
The total system losses consist of the energy circulated in the DC dump load as spilled
energy (0.9%), the efficiency-dependent power conversion losses in the dedicated power
electronics devices (2.7%), as well as the efficiency-dependent energy conversion losses in
the energy storage and conversion components (8.4%, in aggregate), with the breakdown
as follows: hydrogen-based energy storage system (3.8%), SC bank (1.3%), battery bank
(1.1%), inline heater (1.0%), hydrogen station (0.9%), heat exchanger (0.2%), hot water
tank (0.1%). Importantly, the negligibly low amount of curtailed energy validates the
effectiveness and utility of the devised rule-based energy dispatch algorithm used in the
meta-heuristic-based optimal sizing solution algorithm and, more generally, the efficacy
of the proposed method in identifying the cost-optimal mix of the assets in the candidate
pool—without the overbuilding of non-dispatchable generation technologies.

4.4. Capital Budgeting

To evaluate the financial viability of installing the proposed MECM on Rakiura–
Stewart Island, the levelised cost of energy of the MECM model is determined by dividing
the estimated total NPC by the total discounted energy it supplies to the electric, heat, and
hydrogen loads during its lifespan of 20 years, which is found to be 0.27 NZD/kWh. The
levelised cost of energy is then split into the levelised costs of electricity, heat, and hydrogen,
considering the fact that only the costs associated with delivering a particular energy service
over the MECM’s duty cycle—electricity, heat, or hydrogen—should be factored into the
associated carrier-specific levelised cost calculations—and the demand for the other types
of energy should be entirely withdrawn from the system. For instance, the hydrogen
station, inline heater, and loads’ inverter should only be considered in the calculation of
the levelised costs of hydrogen, heat, and electricity. For the components that take part in
producing more than one energy type (for example, the fuel cell), the associated NPCs are
split according to the percentage of their capacities used to serve the corresponding end-
use carriers. Accordingly, the levelised costs of electricity, hot water (for direct use), and
hydrogen production using the conceptualised 100% renewable MECM for Stewart Island
are determined as 0.24 NZD/kWh, 0.0091 NZD/L, and 6.97 NZD/kg-H2, respectively.

As stated above, presently, the electricity on Rakiura–Stewart Island costs as high as
0.52 NZD/kWh, on average. Furthermore, the most recent studies on renewable hydro-
gen production in New Zealand have reported the levelised costs of 14 NZD/kg-H2 and
8.91 NZD/kg-H2 for small- and large-scale hydrogen production schemes, respectively [76,77].
Moreover, in general, depending on the availability of RESs, scale of the system, and tech-
nologies utilised to heat the water renewably, a litre of hot water is expected to cost between
NZD 0.0077 and NZD 0.028 [78].

Based on the above premises, the proposed MECM system, if realised, would impose
substantially lower electricity charges on the customers compared to the existing non-
renewable power system on the island. It would also produce hydrogen at a levelised
cost well below that of the state-of-the-art green hydrogen production schemes, which
could facilitate the transition towards a low-carbon transportation system. Moreover,
it would be able to satisfy the residential needs for hot water at a levelised cost that
is highly competitive with those of the advanced renewables-based technologies and
systems for water heating. Thus, it could be concluded that the proposed MECM system
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introduces a cost-effective plan to realise the targets of decarbonising the island’s energy
sector, whilst also improving the site’s energy resilience, reliability, self-sufficiency, security,
independence, and adequacy.

In order to further validate the long-term economic viability of implementing the
suggested MECM project for Stewart Island, a thorough cost-benefit analysis is carried
out using the following three financial sustainability metrics: (1) the discounted payback
period (DPP), (2) the profitability index (PI), and (3) the internal rate of return (IRR) [79].
Table 8 presents the obtained values for these economic indicators.

Table 8. Economic sustainability evaluation of the MECM project under consideration.

DPP (years) PI (%) IRR (%)

8.79 2.45 13.68

The resulting values for the considered financial viability metrics imply that not
only is the proposed renewable energy project financially sustainable, but it also could
be identified as a low-risk, high-yield opportunity for investment, which creates a steady
revenue stream and makes a high return on capital without any subsidies.

5. Conclusions

Energy systems are undergoing a major transition from centralised, top-down struc-
tures with a large dependence on fossil fuels to distributed, decentralised, clean energy
solutions, in line with efforts on climate change, the depletion of natural resources, and
energy security on national and continental scales. The increased focus on renewable
energy technologies on such large scales has driven the ever-declining costs of distributed
renewable energy generation, storage, and conversion technologies. This, in turn, has
facilitated the supply of reliable, affordable, clean energy to millions of people without
electricity access living in communities far-removed from national grids through the pro-
liferation of autonomous, low-voltage, low-inertia, local renewable energy networks, in
line with the UN’s Sustainable Development Goal 7 towards providing universal sustain-
able energy access. In this setting, the recent establishment of the concept of renewable
multi-carrier MGs has proposed additional changes in the energy industry towards the
development of interconnected energy systems tailored to serving nearly all the energy
needs of communities in an integrated way.

Accordingly, this paper has demonstrated the economic benefits of developing a
sustainable, carbon-neutral, stand-alone MECM system that satisfies nearly all the energy
needs—electricity, space heating, hot water, and hydrogen as a transportation fuel—of
a remote community residing on Rakiura–Stewart Island, Aotearoa–New Zealand. The
conceptualised MECM system is also equipped with a three-timescale energy storage
system consisting of an SC bank, a battery bank, and a hydrogen-based energy storage
system to support the system in meeting the net load over transient, inter- and intra-day,
and seasonal timescales, respectively.

To optimally size the conceptualised system, a novel meta-heuristic-based MECM
capacity planning method has been introduced, which considers separate reliability in-
dicators for different energy carriers. A novel rule-based dispatch strategy has also been
devised as part of the method to cost-efficiently integrate the fleets of HFC-powered light-
duty passenger vehicles, heavy-duty tractors, and heavy-freight trucks, as well as one
ferry, into the proposed 100% renewable MECM model, which serves to pave the way
towards realising a green transportation system for the island. More specifically, to assist
the associated energy planning decision-making processes, the proposed MECM designing
method minimises the total discounted system cost subject to the following constraints:
(i) the fulfilment of pre-defined reliability levels for supplying the electrical, thermal, and
transportation fuel load demands, (ii) the hourly balance between the generated and con-
sumed energy on the MECM’s network over the indicative year-long operational horizon,
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(iii) the satisfaction of the dynamic stability requirements of the system, (iv) the non-strict
equality of the initial and terminal states of energy reserves of the system (terminal energy
in-store greater than or equal to the initial energy in-store), and (v) the compliance with the
functional and technical characteristics of the employed components.

The proposed energy planning optimisation modelling framework tailored specif-
ically towards small- to medium-scale off-grid MECMs—which is parametrised for the
conceptualised test-case system—could be readily adapted for application to other cases,
either by incorporating other renewable energy technologies in accordance with the site
of interest’s renewable energy potential, or by adding a grid interface for grid-connected
systems. Hence, it can provide a credible general path forward in advancing the global
transition to a sustainable, low-carbon energy economy.

The effectiveness of the specifically developed MFOA-optimised solution algorithm
in yielding the least-cost solutions to the strategic long-term off-grid MECM applications
has, furthermore, been validated through comparative analyses of the results with those of
the well-established meta-heuristics in the field.

Importantly, the financial appraisal analyses for the case of Rakiura–Stewart Island
have indicated that the optimally sized system can save the diesel-dependent community
a significant 54% in electricity costs—if financed as a community renewable energy project.
However, the contribution of the MECM’s simplified business model and ownership
structure to the potential overestimation of the financial viability of the system cannot
be ruled out. For example, classifying the consumers as stakeholders would require the
system designer to include subsidised costs of hydrogen vehicles/vessels into the model by
using appropriate multi-stakeholder business models, which could potentially involve the
government, system operator, investors, and consumers. This points to a rich and fruitful
ground for future research.

Further work could also seek to add new dimensions to the proposed MECM planning
decision-support framework by extending the derived single-objective formulation to a
multi-objective optimisation model addressing various conflicting objectives, such as the
minimisation of total discounted system cost, maximisation of reliability/resilience/self-
sufficiency, minimisation of excess renewable energy generation curtailment, maximisation
of system security/adequacy, as well as maximisation of battery utilisation factor and
renewables utilisation factor. In addition, future work could seek to systematically quantify
the most salient problem-inherent parametric uncertainties, such as the uncertainties in
load demand and non-dispatchable (weather-dependent) power generation forecasts.
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