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Abstract: The state-of-the-art provides data-driven and knowledge-driven diagnostic methods. Each
category has its strengths and shortcomings. The knowledge-driven methods rely mainly on expert
knowledge and resemble the diagnostic thinking of domain experts with a high capacity in the
reasoning of uncertainties, diagnostics of different fault severities, and understandability. However,
these methods involve higher and more time-consuming effort; they require a deep understanding
of the causal relationships between faults and symptoms; and there is still a lack of automatic
approaches to improving the efficiency. The data-driven methods rely on similarities and patterns,
and they are very sensitive to changes of patterns and have more accuracy than the knowledge-driven
methods, but they require massive data for training, cannot inform about the reason behind the
result, and represent black boxes with low understandability. The research problem is thus the
combination of knowledge-driven and data-driven diagnosis in DCV and heating systems, to benefit
from both categories. The diagnostic method presented in this paper involves less effort for experts
without requiring deep understanding of the causal relationships between faults and symptoms
compared to existing knowledge-driven methods, while offering high understandability and high
accuracy. The fault diagnosis uses a data-driven classifier in combination with knowledge-driven
inference with both fuzzy logic and a Bayesian Belief Network (BBN). In offline mode, for each
fault class, a Relation-Direction Probability (RDP) table is computed and stored in a fault library. In
online mode, we determine the similarities between the actual RDP and the offline precomputed
RDPs. The combination of BBN and fuzzy logic in our introduced method analyzes the dependencies
of the signals using Mutual Information (MI) theory. The results show the performance of the
combined classifier is comparable to the data-driven method while maintaining the strengths of the
knowledge-driven methods.

Keywords: fault diagnosis; diagnostic classifier; fault classification; HVAC; DCV; fuzzy Bayesian
belief network; causal relations; relation direction probabilities

1. Introduction

Recent advances in Information and Communications Technology (ICT), especially in
embedded systems, enable the development of embedded control systems that profoundly
couple our physical world to the computation world. Demand Controlled Ventilation
(DCV) and heating systems, as a type of Heating, Ventilation, and Air Conditioning
(HVAC) system, include many variables, signals, look-up tables, and components, with
continuous and discrete dynamics. The complexity of a DCV and heating system increases
when it becomes more extensive with more components and equipment that cooperate
simultaneously. The complexity of HVAC systems makes them error-prone and susceptible
to faults that may lead to a waste of energy, for example, continuous heating in the case of
a stuck-at damper, poor thermal comfort, and unacceptable indoor air quality. Therefore,
the occurrence of faults is unavoidable, and faults, for example, stuck-at or constant faults,
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inevitably occur. Despite the inherent complexity of DCV and heating systems, their
applications require them to be fault and failure-tolerant. A fault- and failure-tolerant
design of DCV and heating systems requires developments in failure detection and fault
diagnosis techniques, which is a challenge. Detection and diagnostic techniques’ testing
and evaluation activities are thus of critical importance for the early detection of faults in
the models in the design phase before they propagate to the actual system. The failure
detection and fault diagnosis in early stages of occurrence avoid threatening situations,
the degradation of system performance, energy loss, or discomfort conditions [1]. For
instance, the faults can be the reason for energy waste in HVAC systems up to 20% of total
energy consumed, excess pollutant emissions, and decremented comfort for occupants [2,3].
Basarkar et al. describe how faults based on type and severity can be the reason for up to
22% of the total energy consumption of HVAC systems [4]. In HVAC systems, probable
faults in building systems are various. For example, ASHRAE Project 1043-RP shows that
a typical water-cooled centrifugal chiller can face more than twenty types of common
faults [5]. ASHRAE Project 1312-RP indicated 68 types of common faults for a typical air
handling unit [6]. Therefore, it is costly to capture sufficient training data for every fault,
and most of the research projects consider only a part of these faults in most data-driven-
based chiller FDD methods.

Many fault diagnosis methods have been reviewed and classified widely in many
studies, for example, Steinder et al. [7] have focused explicitly on fault localization tech-
niques in complex communication systems to find the exact source of a failure from a
set of failure indications. They have classified the fault localization techniques into three
categories of Artificial Intelligence (AI) techniques, that is, rule-based, model-based, and
case-based systems, model traversing techniques, and fault propagation models, that is,
code-based techniques, dependency graphs, Bayesian Networks (BNs), causality graphs,
and phrase structured grammars.

Techniques for Fault Detection and Diagnosis (FDD) in the building energy system
field can be categorized into knowledge-driven and data-driven methods [8]. Knowledge-
driven methods resemble the diagnostic thinking of domain experts with a high capacity
in reasoning of uncertainties; they can work with different fault severities. In contrast,
methods in the data-driven category mainly rely on similarities and patterns [8]. Each
category has its strengths and shortcomings. Zhao et al. studied 135 AI-based FDD papers
from 1998 to 2018 and concluded that new AI-based methods are in demand that can
combine the advantages of knowledge-driven and data-driven methods in the future [8].
The knowledge-driven methods rely mainly on expert knowledge and resemble the di-
agnostic thinking of domain experts with a high capacity in reasoning of uncertainties,
they diagnose different fault severities, and are more understandable. On the other hand,
these methods involve higher and more time-consuming effort, they require a deep un-
derstanding of the causal relationships between faults and symptoms, and there is still a
lack of automatic approaches to improve the efficiency. The data-driven methods rely on
similarities and patterns and they are very sensitive to changes of patterns and have more
accuracy than the other knowledge-driven based methods, but they require massive data
for training, cannot inform about the reason behind the result, and they represent black
boxes with low understandability.

The research problem is thus the combination of knowledge-driven and data-driven di-
agnosis in DCV and heating systems to benefit from both categories. The diagnostic method
presented in this paper involves less effort for experts and quicker approaches without
requiring a deep understanding of the causal relationships between faults and symptoms
compared to existing knowledge-driven methods while offering higher understandability
than other data-driven approaches and higher accuracy than other knowledge-driven
approaches resolved by data-driven-based category. The fault diagnosis uses a data-driven
classifier in combination with knowledge-driven inference with both fuzzy logic and a
Bayesian Belief Network (BBN). The combination of BBN and fuzzy logic in our introduced
method analyzes the dependencies of the signals using Mutual Information (MI) theory.
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In the offline mode, a library of trends and statuses based on training fault cases is
established. The conditional probabilities are calculated based on fuzzy weights of signal
values and statuses that are used to obtain mutual information. The positive MI values
show the dependencies of the subdomains in a pair of measurement signals or statuses
for each fault case (pairwise dependency) and negative MI values show that there is no
dependency. Then, the conditional probabilities of the subdomains in a pair with positive
MI values are calculated and the conditional probability with the higher value indicates
the direction of the dependency in each pair of nodes. Then, these dependencies are stored
in the offline library as the RDPs. In the online diagnosis mode, our strategy compares the
trends and statuses of the real scenario, which can be a fault scenario, with the trends and
statuses that are stored in the offline library to find the most similar trends and statuses
of signals of the fault case to the trends and statuses of signals for example scenarios in
the library. For this comparison, the RDP of the real or faulty scenario is compared to the
RDPs in the offline library and the percentages of similarities are calculated. Then, the
evaluation step determines and sorts the likely faults based on the comparison results
from the highest degree of similarity to the lowest as the diagnostic classifier result. These
percentages of similarities are beliefs sorted from the highest value to the lowest value
where larger values imply a higher probability of the corresponding fault. The overall
benefits are more understandability, less effort for experts, and higher diagnostic accuracy.
Our strategy only needs expert knowledge to define fuzzy sets and the whole process can
intelligently classify the faults compared to the other knowledge-based strategies. The
evaluation results show that our strategy can accurately map a fault case to the predefined
fault in the library.

The method is tested on a demand-controlled ventilation and heating system. Stuck-at
or constant faults at temperature sensors, CO2 sensors, heater actuators, and damper
actuators were investigated. The evaluation results show that 97.22% of faults were truly
diagnosed with better precision, F-score and accuracy compared to a deep neural network.
The diagnosis method sorts the results based on the probability values, for example, the
top ranks are the most likely diagnosis result. However, the method indicates that the
average values of the performance metrics increase when considering more cumulative
ranks, for example, top five ranks, instead of only the first rank.

Literature Review

Luo et al. have proposed a similar method for Sensory Fault Detection and Diagnosis
(SFDD) [9]. In this paper, they have used a k-means data clustering algorithm and classified
each new dataset into different clusters in which the dataset in the same cluster has high
similarity. The featuring Centroid Score (CS) is used to detect this similarity, and the k-
means algorithm detects the closest centroid by calculating the Euclidean distance between
each dataset and its corresponding cluster CS. Through this clustering-based method, the
fault-free sensor readings were close to the cluster’s centroids while those faulty ones would
be far away. The proposed SFDD strategy consisted of database building for sensor fault
detection, database building for sensor fault diagnosis, and online SFDD for measurement
data. However, our approach uses MI and RDP tables to detect the closest fault to the new
datasets. Besides, our approach is implemented not only for the sensor faults but also for
actuators.

The BBN is one of the important approaches in fault diagnosis methods based on
probabilistic theory for modeling uncertain knowledge and reasoning based on conditions
of uncertainty, probabilities, and graph theory [10]. BBNs were introduced by J. Pearl in
the 1980s [11]. BBNs can be combined with other approaches such as machine learning
techniques, signed directed graphs, probabilistic ensemble learning, fuzzy theory, fault
trees, and genetic algorithms. Qiu et al. explain that BBNs have effectively modeled
probabilistic relationships in diagnostic situations by providing a framework for identifying
critical probabilistic mappings [12]. Their Probabilistic method can link symptoms to
failures by calculation of prior probabilities of faults. They defined the symptoms based
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on pure expert knowledge, for example, repair data log and consulting with experts in
printers [12]. However, they have not implemented any data-driven method and used
a single BBN for the FDD process, but our approach creates unique BBN for each RDP
dataset. Their method also needs historical data and a system log for constructing the BBN.

Embedded control systems interact with the environment, and the sensory data
and signals are measured continuously. Therefore, defining an appropriate conditional
likelihood density function in BBNs for continuous attributes is critical. Tang et al. [10]
have presented a Fuzzy Bayesian Network (FBN) for machinery fault diagnosis demanding
intensive experience and expert knowledge described by the natural language, such as
large, high, or fast. They used fuzzy logic to define the fuzzy events, mapped the system to
those uncertain ones, and then produced the BBN. However, they have used a single BBN
for the fault detection process, but our approach creates unique BBNs for each output RDP
dataset. Their approach is also limited to expert knowledge.

In machine learning techniques from the data-driven-based methods, Hu et al. [13]
have proposed an intelligent fault diagnosis network for refrigerant charge faults of a
variable-refrigerant-flow air-conditioning system. This network is developed under the
BBN theory. However, this method as a data-driven-based fault diagnosis is very costly to
obtain sufficient training data for every fault [8].

In signed directed graphs, Peng et al. [14] have proposed a Multi-logic Probabilistic
Signed Directed Graph (MPSDG) fault diagnosis approach in chemical processes based
on the Bayesian inference. They show that the signed-directed graphs cannot be applied
for complicated logic relations, but the authors have shown that the BNs can solve this
complexity. They have two offline modeling and online diagnosis phases. In the offline
mode, they have analyzed the historical data and deviation values and evaluated the
priori probabilities of reason nodes and directed edges. However, constructing the SDG or
MPSDG in systems with no historical data is not possible.

On the other hand, the Fuzzy Bayesian Belief Network (FBBN) combines the BBNs
with the fuzzy theory. Chiu et al. proposed a fuzzy Bayesian classifier with case-based
reasoning to improve diagnosis problems [15]. In this study, they have used fuzzy the-
ory to define conditional density functions in BBNs to cope with the problem caused by
continuous attributes. The accuracy and efficiency of this approach for decision-making
applications have been proved by many studies [16]. The FBBN is often used as an effective
method of uncertain knowledge representation and reasoning. Fuzzy sets are mathematical
sets, the elements of which have degrees of membership derived from the concept of
fuzzy logic, which was introduced by Lotfi A. Zadeh and Dieter Klaua in 1965 [17,18].
Several examples show the effectiveness of FBBNs in solving uncertain problems, applying
Fuzzy sets, and calculating the probabilities of BBNs [19]. Yao et al. [19] have modeled a
Fuzzy Dynamic Bayesian Network (FDBN) for fault diagnosis and reliability prediction in
complex systems using various test information. The quantitative analysis of an FDBN can
proceed along with forwarding (or predictive) analysis and backward (or diagnostic) anal-
ysis. They have presented a model in a fault diagnosis model with uncertain and dynamic
information. Their work introduces a dynamic process to the BN to model a dynamic
system. It includes modeling the BN, the fuzzy theory applied to BN, and Static BN (SBN)
that can be converted to Dynamic Bayesian Network (DBN) models by introducing time
dependency. They have used fuzzy theory to evaluate the system’s reliability with different
language variables very high, high, medium-high, medium, intermediate low, low, and
very low. However, they generated the BN based on the fault statistics and the fuzzy failure
probabilities of root nodes, but in our approach, the starting point is the observations of
the system attributes.

Intan et al. [20] have applied an FBBN for analyzing medial tracks. This paper has
extended the MI concept using fuzzy theory to construct an FBBN based on learning BN
structures using an information-theoretic approach introduced by Cheng et al. [21]. They
used fuzzy labels to determine the relation between two fuzzy nodes. For example, they
have found the relationship of the different disease labels with other factors in a record of
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data for different patients, for example, age, degree, and other types of diseases. However,
they have used this method for analyzing a medical dataset for different patients and
diseases; therefore, the application is different. Further, their approach only measured
the causal relations in FBBN using the relation direction probabilities between different
pairs of parents and children. However, in our approach, we used the causal relationships
in FBBNs based on relation direction probabilities for fault diagnosis, and our approach
includes two modes, an offline training mode, and an online diagnosis phase, to classify
the fault cases.

A suitable Failure Detection and Fault Diagnosis (FDFD) system ensures the HVAC
systems’ proper operation as these systems are subject to various errors, which can lead
to malfunctions. HVAC systems fail typically when the actuators “stick” and no longer
change their set point, despite the commands. This actuator failure can arise in several parts.
For instance, a valve may stick at fully-open, fully-closed, or any intermediate setpoints.
If an actuator sticks in an open or closed position for a specific period, some concerns are
expected, for example, the energy waste or uncomfortable environment [22]. The pure
knowledge-based diagnosis models are also developed, for example, a real-time black-box
tool for a VAV AHU was developed by Shiazoki and Miyasaka using a signed directed
graph. The signed directed graph model is a minimized rules-based model to lower the
effort that can detect the symptoms of the faults to find the root cause [23]. However, the
performance of the method depended on the thresholds set. The wrong thresholds setting
can cause incorrect diagnosis. Threshold settings are also laborious and time-consuming.
Shi et al. introduced a model using probabilistic representations for dependencies of
faults and symptoms in a VAV AHU. The fault diagnostic model is developed based on
a DBN to diagnose persistent and transient faults while maintaining the FDD system’s
good performance [24]. However, calculation of the conditional probability values between
the faults and symptoms is yet manual and depends on expert knowledge. In addition,
for large systems, the amount of data might be unbearable. Therefore, many complicated
faults may not be evaluated unless advanced modeling or sensing methods are used.

Zhao et al. [25] have proposed a three-layer Diagnostic BN (DBN) for chiller faults
diagnosis based on the BBNs using a graphical and qualitative illustration of the intrinsic
causal relationships among three layers of causal factors, faults, and fault symptoms, and
this DBN can be constructed based on the probability analysis and graph theory. The prior
probabilities of root nodes and prior probabilities of faults are the normalized frequencies
of faults, and conditional probabilities show the relations of the nodes in three layers. With
observed pieces of evidence, posterior probabilities for fault diagnosis can be calculated.
This framework uses all beneficial information of the chiller concerned and chiller experts’
knowledge, the quantitative and qualitative knowledge from diverse sources is merged and
has a strong ability to deal with incomplete or even conflicting information. However, there
are major differences to our proposed method. They calculated the conditional probabilities
using statistical or machine learning algorithms, while we have calculated them based on
fuzzy weights. Further, our approach is constructed based on mutual information theory
and the dependencies of the system attributes (i.e., signals) for each fault case using BBN
theory, which only needs expert knowledge to define fuzzy sets. Zhao et al.’s mentioned
approach is also highly dependent on expert knowledge, especially in calculating prior
probabilities. In addition, they have defined rules to conclude the posterior probabilities,
but we used the sorting technique showing that the top ranks show reasonable results with
high accuracy.

Xiao et al. [26] presented a Diagnostic Bayesian Network (DBN) for Fault Detection and
Diagnosis (FDD) of Variable Air Volume (VAV) terminals. In this method, the parameters of
the DBN describe the probabilistic dependencies between faults and evidence. The inputs
of the DBN are the evidence that can be obtained from the measurements in Building
Management Systems (BMSs) and manual tests. The outputs are the probabilities of faults
concerned. The structure of the DBN is a graphical illustration of experts’ diagnostic
thinking, which can illustrate the relationships among faults and symptoms qualitatively.
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They have defined a table including the fault nodes, states of the system, rules for defining
the states, and prior probabilities for each state. In this method, after determining the
nodes, the state of each node should be defined. A fault node may have several states that
help in estimating the conditional probabilities of the fault evidence given the fault. The
rules in the defined table can determine the corresponding states. There are also specific
tables and rules to define evidence nodes. The whole structure of this DBN depends
on expert knowledge and the rules to define the system states. In another paper from
these authors, Zhao et al. [27] have also developed a second study on diagnostic Bayesian
networks (DBNs) for diagnosing faults in air handling units (AHUs) in buildings. This
paper developed four DBNs to diagnose heating/cooling coils faults, sensors, and faults in
a secondary chilled water/heating water supply. However, establishing the FDD strategy
and BBN nodes is highly dependent on expert rules.

Cai et al. [28] have used two BNs for multiple-simultaneous faults with a multi-source
information fusion-based fault diagnosis methodology. These BNs are established based
on sensor data and observed information. The Bayesian network structure is established
according to the cause-and-effect sequence of faults and symptoms. One BN is made based
on sensor data, and the other is based on sensor data and observed information; however,
the relationship between faults and symptoms is based on expert reasoning and purely
knowledge-based.

The features are essential for fault diagnosis. Wang et al. [29] introduced a feature
selection (FS) method that is proposed in their study for chiller Fault Diagnosis (FD) and
merged the Bayesian network with distance rejection (DR-BN) to remove extra features.
First, the candidate existing features that can be retained are nominated through the
following criteria: high existent frequency of sensors installed on the field chillers, high
sensitivity to faults, and small calculation. Supplemental features are added to achieve
a better performance. However, in our introduced method, we have used a different
technique for feature development: RDP generations in the fault library of offline mode
and online diagnostic mode as features for each fault case.

Table 1 indicates an overview of the related works. In summary, the novelties and
main contributions of this paper are based on the following points:

• Integration of data-driven classifier, fuzzy logic, and Bayesian belief network for
the combination of data-driven and knowledge-driven diagnosis: The composed
diagnostic classifier in this paper includes the knowledge-driven diagnosis theories,
that is, fuzzy and Bayesian theories, and data-driven diagnosis strategy based on the
intelligent diagnostic classification algorithm. In offline mode, for each fault class, a
Relation-Direction Probability (RDP) table is computed and stored in a fault library.
In online mode, we determine the similarities between the actual RDP and the offline
precomputed RDPs. The combination of BBN and fuzzy logic in our introduced
method analyzes the dependencies of the signals using Mutual Information (MI)
theory. The method creates a unique RDP table for each class of faults and datasets.
This method can also be extended to additional faults by adding RDPs of new fault
classes to the offline library. This method provides more understandability, less
effort for experts, and higher diagnostic accuracy. Our strategy is less dependent
on the expert knowledge and only requires the expert to define fuzzy sets and the
whole process can intelligently and automatically classify the faults compared to the
other knowledge-based strategies. The evaluation results show that our strategy can
accurately map a fault case to the predefined fault in the library.
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• Reveal of hidden and intrinsic dependencies of trends or statuses in signals over
time in case of faults: In our diagnostic method, a novel strategy is introduced
based on the dependency of trends (for sensors) or statuses (for actuators) in different
subdomains over time. Therefore, our automatic diagnostic method can find the
intrinsic and hidden dependencies of measurement signals and statuses that change
concurrently over time in case of a specific fault based on mutual information and
fuzzy theory. For example, if a damper stick at open status, the room temperature
decreases and makes the heater stick at ON status indirectly because the heater wants
to compensate for the heating load due to the damper, which is a hidden dependency
between damper and heater status signal.

• Extendibility of the strategy in this paper to complex systems: Finding fault-symptoms
dependencies and fault diagnosis in other knowledge-based strategies in the literature
are purely based on the expert knowledge, which can be very hard or impossible if
the target system is complex with many measurement signals and statuses to the limit
that even the experts cannot find the exact and hidden dependencies. However, our
approach can automatically find these dependencies and faults in complex systems.

• Mapping and evaluation of the novel diagnostic method for DCV and heating sys-
tems: The presented diagnostic fault model covers sensor and actuator faults to map
and evaluate the integrated diagnostic method to DCV and heating systems, as an
example use case.

• Experimental evaluation of the introduced diagnostic method based on FBBNs
compared to deep neural network method using simulation framework: Manufac-
turers typically are reluctant to provide the full-set fault data. Therefore, the diagnostic
method in this paper is implemented in a simulation framework that can inject any
desired faults into the system [30]. The evaluation results show a convincing per-
formance of the introduced composed method (knowledge-driven and data-driven)
in fault diagnosis in this paper compared to a deep neural network (data-driven
method) [31]. A review paper on the state-of-the-art [8] shows the lack of accuracy of
the knowledge-driven methods.

• Accurate fault diagnosis independent of prior knowledge and historical data: The
other strategies use the BBN theory, but they use historical data, repair logs, or
experimental data to calculate the prior conditional probabilities. In the strategy
introduced in this paper, the signals only need to be defined as continuous or discrete
variables and use the fuzzy theory to categorize the signal values to create the Bayesian
network.

The rest of the paper is organized as follows. Section 2 presents the system model,
while Section 3 describes the diagnostic algorithm based on a fuzzy Bayesian belief network.
The implementation of the method based on the use case of DCV and heating systems
is shown in Section 4. Section 5 presents the evaluation results and discussion, and the
conclusion is described in the last section of this paper.
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Table 1. Overview of the related works.

Related Works Application Domain FDD Method
Approach (e.g., Fuzzy Logic,

BBN, Clustering, NN,
Classification, . . . )

Data Collection, e.g.,
(Simulation/Historical Data)

Diagnostic Method
Assessment (e.g., Accuracy,

Understandability, and Effort)Knowledge-Driven
Method (Yes/No)

Data-Driven
Method (Yes/No)

Luo et al. [9] SFDD for chilled water system Yes
Clustering-based SFDD &

Data-Base Gathering Based on
Centroid Score (CS)

Real sample information data No Yes
Low Expert Effort

Low Understandability
High Accuracy

Qiu et al. [12] FDD for Printers and print defects Yes BBN and fuzzy
logic

Expert knowledge, e.g., repair
data log Yes No

High Expert Effort
High Understandability

Low Accuracy

Tang et al. [10] FBN in Machinery Fault
Diagnosis Yes BN and fuzzy

logic Expert Data Yes No
High Expert Effort

High Understandability
Low Accuracy

Hu et al. [13]
Refrigerant charge faults of variable

refrigerant flow air conditioning
system

Yes Machine learning and Bayesian
network Training data Yes Yes

Low Expert Effort
High Understandability

High Accuracy

Peng et al. [14]
1. A continuous stirred tank heater

(CSTH) process
2. A Tennessee Eastman (TE) process

Yes Multi-logic probabilistic Signed
Directed Graph (MSDG) & BN Historical Data Yes No

High Expert Effort
High Understandability

Low Accuracy

Chiu et al. [15] Car-diagnosing Problems Yes
Fuzzy logic, Bayesian classifier

(with Case-Based Reasoning
(CBR))

Collecting Cases by Experts Yes Yes
Low Expert Effort

High Understandability
High Accuracy

Yao et al. [19]
Fault Diagnosis and Reliability

Prediction in complex systems (large
aircraft equipment)

Yes Fuzzy logic, Dynamic Bayesian
Network (DBN)

Based on observed system, fault
statistics and the fuzzy failure

probabilities of root nodes
Yes No

High Expert Effort
High Understandability

Low Accuracy

Zhao et al. [25] Chiller fault detection Yes Bayesian Belief Network (BBN)
Historical Data, Maintenance,

Repair log and Expert
Knowledge.

Yes No
High Expert Effort

High Understandability
Low Accuracy

Xiao et al. [26] Variable Air Volume (VAV)
terminals Yes Bayesian Network (BN)

Obtained from measurements
in building

management systems (BMSs)
and manual tests

Yes No
High Expert Effort

High Understandability
Low Accuracy

Cai et al. [28] Fault diagnosis of ground-source
heat pump Yes Combination of two Bayesian

networks (BN)

Data Based on sensor data and
observed information of human

being
Yes No

High Expert Effort
High Understandability

Low Accuracy

Zhao et al. [27] Air Handling Units (AHUs) in
buildings Yes Bayesian Belief Network (BBN)

Fault patterns resulted from
literature and three AHU fault

detection and
diagnosis (FDD) projects.

Yes No
High Expert Effort

High Understandability
Low Accuracy

Intan et al. [20] Analyzing Medical Track Records No Fuzzy logic, BBN based on (MI) Historical Data Yes No
High Expert Effort

High Understandability
Low Accuracy.

Behravan et al. (This
Paper)

FDFD in HAVC (DCV and heating)
systems Yes

Fuzzy Logic, BBN Based on
Mutual Information (MI),
Data-driven Classification

Simulation and Observed Data Yes Yes

Low Expert Effort,
Low effort for data gathering

High Understandability
High Accuracy.
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2. System Model

This section explains the system model of a DCV and heating system that tests the
diagnostic methodology. An understanding of the overall behavior of the system is required
before applying any diagnosis technique through system model analysis. Analysis of the
system model leads to knowledge about the system’s functionality. The function of a
system is what the system is intended to do [32], whereas the model specifies what a
system does [33]. The methodology in this paper is introduced based on the DCV and
heating system model as an example scenario of the modern HVAC systems with their
numerous components. In this model, embedded processing units orchestrate the nodes
of Wireless Sensors and Actuators Networks (WSANs) with the physical environment to
adaptively control the air quality and temperature of an office building. The system model
of the HVAC systems includes a typical building with several rooms on different floors, for
example, an example office building with six rooms and a corridor equipped with a DCV
and heating system. Each room is generally occupied by several components, for example,
sensors or actuators. The thermal dynamics of the system model must be established. For
example, the lumped-capacitance method has been used in this paper to model the thermal
dynamics of the use-case office building (thermal network model) where the heat transfer
is illustrated by thermal resistance and heat storage (thermal capacitance). In this model,
each zone and each wall are represented by a thermal node. The nodes are connected via
thermal capacitors to the ground reference and thermal resistors to the adjacent nodes.
In the designed model of this study, for every zone, there is a central node that is later
connected to central nodes of other zones via thermal paths across the walls and windows.
A schematic of this node and its connections can be seen in the Figures 1 and 2.

Figure 1. Schematic of the equivalent lumped capacitance model for a standard room.
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Figure 2. Schematic of the equivalent lumped-capacitance model for an office building with six
rooms and one corridor.

The DCV is a control strategy based on ventilation to modify the amount of fresh air
to improve the indoor air quality while increasing the potential energy saving by automatic
adjustment of the volume of air exchange using damper actuators based on sensor values
received from air quality sensors, for example, CO2 concentration sensors, temperature
sensors, occupancy sensors, heater status, and control theory. Figure 3 shows the role of
the DCV and heating system in optimizing the system considering different parameters.

Figure 3. Role of DCV and heating system in optimizing the system.
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The model considers the heating and ventilation (not the cooling) because the model
studies the winter season when the range of outdoor temperature is below the range of
acceptable indoor temperature. Figure 4 shows an office building sketch for the system
model. The model is developed based on thermal dependencies among different zones
and the environment during a typical winter day in February. Behravan et al. described
the model dynamics in [34]. The differential balance equations for each node have been
solved with an explicit numerical method.

Figure 4. Office building sketch [34].

This paper shows the cluster-tree-mesh topology based on the building architecture
that supports wireless and battery-powered nodes (devices) with minimum routing efforts
in Figure 5 [35]. The sensor nodes in each zone send the measured values, for example,
temperature, occupancy, or CO2 concentration, to the cluster head of the router zone. The
router receives the values and forwards them to the controller via the coordinator. After
calculations, the controller processes the received values, determines the commands, and
exerts them on the actuators, for example, heater and damper actuator, which is finally
applied to the plant.

Figure 5. Network topology based on building architecture [30].
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Faults are inevitable events that affect the components, the system’s functionality, and
performance. Faults may lead to a system-level or component-level failure or malfunction
if they are not detected and mitigated. Failures can involve performance degradation,
safety risks, and excess cost, and energy waste. From the time perspective, faults may
occur during the whole operation of the system as a permanent fault or may be limited to a
specific period as an intermittent fault. Faults with time dependency can be categorized
into abrupt faults (stepwise/short), incipient faults, constant faults, noisy faults, and
intermittent faults [36]. Constant faults arise when a sensor reports a constant value over
time instead of the real and normal sensor values or when an actuator is stuck at a constant
position. Faults can affect components such as sensors, actuators, and computational nodes,
and communication networks. Faults in actuators may lead to loss of controllability. In
sensors, they can affect reliable measurement information, and in the computational nodes,
faults will change the behavior of the entire plant.

In this paper, the following component faults are used for the diagnostic algorithm
introduced. The faults are modeled based on the measured values from the sensors such
as temperature sensors, CO2 concentration sensors, and command or status values in
actuators, for example, heater actuators (thermostats) and damper actuators. These faults
are constant-valued or stuck-at faults, as listed below.

• CO2 Sensor Fault: The CO2 sensor fault represents a wrong sensor reading as a
constant or noisy value. For example, a constant value of 700 ppm or noisy values
within the range of a subdomain from all the subdomains of a domain or attribute.
However, this paper assumed the constant fault;

• Temperature Sensor Fault: This type represents a wrong sensor reading with a con-
stant value, for example, 15 ◦C;

• Damper Actuator Fault: This type of fault represents a stuck-at fault where a damper
is stuck at a specific position. For example, if the damper is stuck at its open position,
it gets the binary value 1, which means excess low-temperature fresh air comes inside.
Therefore, the inside temperature will decrease, and the heater must constantly work
to compensate for the heat loss. If the damper is stuck at its closed position, then it
gets the value 0, which means that the inside air temperature will increase, and the
indoor CO2 concentration will pass the maximum permitted limit;

• Heater Actuator (Thermostat) Fault: This type of fault represents a stuck-at fault
where the heater sticks at a specific position. For example, if the heater is stuck at its
ON position, it gets the value 1, which means inside air temperature increases. If the
heater is stuck at its OFF position, it gets the binary value 0, which means the inside,
air temperature tends to decrease.

The equation that describes the generated data from a sensor and actuator node can
be modeled as a function concerning time f(t) [37], as can be seen:

f (t) = x, (1)

where f(t) represents the value sensed by the node at the time t, x is the non-faulty sensor
value at the time t, knowing that in the real world, there is no ideal signal. Therefore,
the noise n will be added to Equation (1). As a result, this equation can be written as the
following:

f (t) = x + n. (2)

Some factors are added to normalize Equation (2); for instance, A, B, n are factors
that can be used to determine the fault type, where A is the multiplicative constant and
called gain, whereas B is the additive constant and called offset, and n is the external noise.
According to the above, the general form of this equation can be seen here:

f (t) = Ax + B + n. (3)
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Four different types of faults are modeled as examples, gain fault, offset fault, noise
fault, and stuck-at fault. Stuck-at-fault can be defined as faulty data that has a constant
value. The variance of the measured values from the fault occurrence is zero in the stuck-at
fault, and the sensed data shows a constant value A = 0, B 6= 0, n = 0.

f (t) = B. (4)

A further detailed expression of the established DCV and heating system model, faults
models, and fault hypotheses are described by Behravan et al. in [30,34,38,39].

3. Diagnostic Classifier Based on FBBN

This section cuts through the generic steps of the combined diagnostic classifier to
diagnose any stuck-at or constant faults based on the causal relation in a fuzzy Bayesian
belief network using the relation direction probabilities. The result of FBBNs that are causal
relationships is then visualized using the graphs and table of listing based on RDPs. The
graphs are constructed from nodes (indices) and edges (arcs). Figure 6 shows the direction
of the arcs with the direction of the dependency between each pair of nodes based on
the conditional probability values extracted from the Conditional Probability Table (CPT).
Fuzzy association rules are calculated from the network and weights of the relationship
between two nodes are assumed as confidence factor of these rules.

Figure 6. Causal relationships indicated by the graphs.

This section shows the steps of the generic automatic diagnostic algorithm as a classi-
fier that is introduced in this paper. Different steps are data preparation, system attributes
and subdomains definitions, fuzzy theory and generating weighted fuzzy data over rela-
tional data table, probability of subdomains using fuzzy theory, intersection probability
MI theory, finding direction and probability of transitions using conditional probabilities,
and fault diagnosis. Figure 7 shows the scheme of a diagnostic classifier based on causal
relations in FBBNs using RDPs.

3.1. Data Preparation

In the first step, a Relational Data Table (RDT) of all random variables of the system is
created as a basis of the recorded data that must be used for the fault diagnosis. The data
samples include information about all variables or attributes as tuples [20]. A fault injection
framework is a helpful tool for studying the behavior in the presence of faults and eval-
uating diagnostic techniques. Diagnostic techniques can serve for triggered appropriate
recovery actions to achieve an acceptable level of service despite occurring faults. Con-
sidering the vast range of diagnostic methods, establishing an accurate diagnostic model
that maps system failures to the correct faults is a time-consuming task that may involve
extensive try-and-error efforts [34]. In this paper, fault injection is used as a technique to
determine the coverage of the fault diagnosis by producing faults in the system in order
to trace the behavior of the system in existence or absence of different kinds of faults and
evaluate their effect by monitoring several parameters, for example, energy consumption
and occupancy comfort. Table 2 shows the samples with their attributes’ values over time.
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Figure 7. Scheme of a diagnostic classifier based on causal relations in FBBNs using RDPs.

Table 2. Relational Data Table (RDT).

Samples Attribute1 Attribute2 Attribute3 Attributem

S1 Value11 Value12 Value13 Value1m
S2 Value 21 Value 22 Value23 Value2m
Sn Valuen1 Valuen2 Valuen3 Valuenm

In this table, RDT = {S1, S2, S3, . . . , Sn}, where Si is the data sample as a tuple of values
for the i-th time instance. Si = {Valuei1, Valuei2, . . . , Valueim}, where the values are captured
the information for each sample time. Attribute or domain is variable with its measured
values over time.

3.2. System Attributes and Subdomain Definitions

A domain is a set of ranged values for a variable, where this vast range can be divided
into small ranges as a set of subdomains. Figure 8 shows a sample domain with its
subdomains with the values along the Y-axis over time along the X-axis.

Attribute-ith = {Subdomain1, Subdomain2, . . . , Subdomainp}, where subdomains can
be a subset of continuous or discrete values.
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Figure 8. An example domain and its subdomains.

In this step, the attributes will be classified into several subdomains. This classification
can be done using the fuzzy theory [15]. The values with continuous changes will be
classified using the fuzzy functions, while those with discrete changes will be classified
based on their discrete values. Once all the attributes were classified into subdomains, the
Subdomain Label Table (SLT) is generated that includes all attributes and their subdomains.
Table 3 indicates the SLT. All the subdomains of each attribute will then be saved in the
Subdomain Label Vector (SLV). SLV is a vector of all the subdomains extracted from the
SLT table.

Table 3. Subdomain Label Table (SLT).

No. Attributes Subdomains Subdomains Subdomains

1 Attribute1 Subdomain11 Subdomain12 Subdomain1n
2 Attribute2 Subdomain21 Subdomain22 Subdomain2e
n Attributen Subdomainn1 Subdomainn2 Subdomainnf

3.3. Generating Weighted Fuzzy Data Based on Fuzzy Theory

Once the subdomains are defined, the probability of each subdomain as weight (W) is
calculated based on the Membership Degree (MD) using the Membership Function (MF).
The MF obtains the value and produces MD values with a range of [0, 1]. There are various
types of fuzzy membership functions: triangular, trapezoidal, Gaussian, and bell-shaped
membership functions. The Trapezoidal has been used in this paper as follows.

Degreeo f Membership(x : a, b, c, d) =



0 x < a
(x−a)
(b−a) a ≤ x ≤ b

1 b ≤ x ≤ c
(d−x)
(d−c) c ≤ x ≤ d

0 x ≥ d

(5)
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Table 4 shows the MD values or W values (weights) extracted from Equation (5) for
different subdomains in a table called Weighted Fuzzy Relational Data Table (WFRDT)
based on the values in Table 1. All weights of all samples for each subdomain are summed
up to calculate the total weight for each subdomain. The total weight is placed in the last
row of the WFRDT table.

Table 4. Weighted Fuzzy Relational Data Table (WFRDT).

Attribute1 Attribute2

No. of
Records Subdomain11 Subdomain12 . . . Subdomain1m Subdomain21 Subdomain22 . . . Subdomain2e

1 W11 W12 . . . W1m W11 W12 . . . W1e
2 W21 W22 . . . W2m W21 W22 . . . W2e

. . . . . . . . . . . . . . . . . . . . . . . . . . .
n Wn1 Wn2 . . . Wnm Wn1 Wn2 . . . Wne

Total
Weight W1 =

n1
∑
11

W W2 =
n2
∑
12

W . . . Wm =
nm
∑
1m

W W1 =
n1
∑
11

W W2 =
n2
∑
12

W . . . We =
ne
∑
1e

W

3.4. MI and Probability of Subdomains

MI is a concept rooted in information and probability theory. MI of two random vari-
ables is a statistical measurement of the mutual dependence of two random variables [20].
MI measures information about one random variable by observing the other random vari-
ables [40]. There are many definitions of random variables. For example, G. Zeng [41] has
classified MI definitions into two categories: (1) definitions with random variables and (2)
ensembles. The fuzzy theory can be used as an appropriate likelihood density function [42].
Intan et al. [20] defined the MI between two fuzzy sets of A and B as follows

MI(A, B) = MI(B, A) = P(A, B) log2

(
P(A, B)

P(A)× P(B)

)
, (6)

where P(A) 6= 0 and P(B) 6= 0. P(A) and P(B) are the probability values of fuzzy sets A
and B, and P(A,B) is the joint probability value of fuzzy sets A and B or the intersection
between A and B. The equation above determines a correlation measure, that is, MI(A,B) > 0
refers to a positive correlation that describes the fuzzy sets A and B have a relationship in
constructing a network.

P(A) =

|R|
∑

k=1
A(dkj)

|n| and P(B) =

|R|
∑

k=1
B(dki)

|n| , (7)

where R is the number of records and A(dkj), B(dki) ∈ [0, 1] are membership degrees of dkj
and dki for fuzzy sets A and B, respectively [20]. The probability of the subdomains, that is,
P(A), P(B), therefore can be measured by the total weights and using the Equation (8), where
n is the number of samples (No. of Records). Table 5 shows the Subdomain Probability
Vector (SPV).

P(Subdomaini) =

n
∑
1

Weights

|n| . (8)
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Table 5. Subdomain Probability Vector (SPV).

Attribute1 Attribute2

Subdomains Subdomain11 Subdomain12 Subdomain1m Subdomain21 Subdomain22 Subdomain2e
Probability of Subdomain P1 = W1

n P2 = W2
n Pm = Wm

n P1 = W1
n P2 = W2

n Pe =
We
n

3.5. Joint (Intersection) Probability

A joint probability is a statistical measurement for two events occurring at the same
time instance. If event A changes the probability of event B, then they are dependent;
otherwise, they are independent. The probability value for the independent events is equal
to zero. Therefore, the dependent events are determined. In this paper, to calculate the
dependent subdomains, the algorithm compares the fuzzy weights of each time sample in
pairs of different subdomains and different attributes to find the minimum weight value
of that pair. Finally, the algorithm calculates the intersection (joint) probability of that
pair (of subdomains), respectively. The algorithm generates a triangular top matrix of
intersection (joint) probabilities of subdomains called Intersection Triangular Top Matrix
(ITTM). Therefore, if P(A,B) is the probability of two subsets A and B, the Intersection
probability is calculated using the following equation [20]:

P(A, B) = P(A ∩ B) =

|R|
∑

k=1
min

(
A(dkj), B(dki)

)
|R| =

n
∑
1

min
(

A(WSubdomaini), B(WSubdomainj)
)

n
(9)

Here, A(WSubdomaini) and B(WSubdomainj) are the fuzzy weights of subdomains A
and B. Note that P(A,B) is equal to P(B,A); therefore, this is not essential to measure both the
top and down triangular. In this paper, we only consider the values of the top triangular
matrix. Table 6 describes the Intersection Triangular Top Matrix (ITTM).

3.6. Subdomains’ Relation Using MI

After calculation of P(A), P(B), and P(A,B) for all subdomain pairs, Equation (6) will get
the value for the MI. The positive MI value shows a dependency between two subdomains
of a pair, and the negative MI value indicates independent subdomains of a pair. The
diagnosis algorithm in this paper assumes the binary value of 1 for the positive MI values
and the binary value of 0 for the negative MI values. The binary results will then be placed
in a top triangular matrix named Subdomains Relation Table (SRT) as shown in the Table 7.
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Table 6. Intersection Triangular Top Matrix (ITTM) (To show that the algorithm only deals with upper side of the matrix which is highlighted in grey color).

Subdomains
Subdomains

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . i-1 i

1
2 P(2,9)
3
4
5
6
7 P(7,12)
8
9

10
11
12
13 P(13,15)
14
15
. . .
i-1
i
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Table 7. Subdomains Relation Table (SRT) (To show that the algorithm only deals with upper side of the matrix which is highlighted in grey color).

Subdomains
Subdomains

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . i

1
2
3 1 1 1
4 1
5
6 1
7
8 1
9 1 1

10
11
12
13 1
14
15
16

. . .
i



Energies 2021, 14, 6607 20 of 47

3.7. Conditional Probability

In this step, the conditional probabilities are measured. The conditional probabilities
of fuzzy event A given B are denoted by P(A|B) [20].

P(A | B) =
P(A, B)

P(B)
=

|R|
∑

k=1
min

(
A(dkj), B(dki)

)
|R|
∑

k=1
B(dki)

. (10)

This P(A|B) corresponds to P(subdomaini | subdomainj) in the method described in
this paper.

P(subdomaini | subdomainj) =

n
∑
1

min
(

A(WSubdomaini), B(WSubdomainj)
)

n
∑
1

B(WSubdomainj)
. (11)

The conditional probabilities of fuzzy event B given A are also denoted by P(B|A) [20].

P(B | A) =
P(B, A)

P(A)
=

|R|
∑

k=1
min

(
A(dkj), B(dki)

)
|R|
∑

k=1
A(dkj)

. (12)

The above equation corresponds to P(subdomainj | subdomaini) in the method described
in this paper.

P(subdomainj | subdomaini) =

n
∑
1

min
(

A(WSubdomaini), B(WSubdomainj)
)

n
∑
1

A(WSubdomaini)
. (13)

The results from the above equations will be stored in a matrix called the Conditional
Probabilities Table (CPT) shown in Table 8 with the following rules:

• P(A|B) > P(B|A) indicates the direction of dependency between A and B is from B to
A. Then, P(B|A) will be eliminated, and P(A|B) will be stored in Table 8.

• P(B|A) > P(A|B) indicates the direction of dependency between A and B is from A to
B. Then, P(A|B) will be eliminated, and P(B|A) will be stored in Table 8.

In Table 8, the highlighted elements of the matrix with the yellow color show the
conditional probability of each pair of subdomains, for example, P(Subdomain9|Subdomain2)
and P(Subdomain2|Subdomain9). Then, the conditional probability with the higher value
will be kept and saved in the CPT table as the green elements of the matrix, and the
conditional probability with the lower value will be deleted from the CPT table.
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Table 8. Conditional Probabilities Table (CPT) (The background color to show the diameter of the matrix which is highlighted in white color).

Subdomains
Subdomains

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2 P(Subdomain2|Subdomain9)
3
4
5
6
7
8
9 P(Subdomain9|Subdomain2)
10
11
12
13
14
15
16
17
18
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3.8. Relation-Direction Probabilities

Relation Direction Probabilities (RDPs) in Table 9 indicate all the relations and their
features, that is, the direction between dependent subdomains and the conditional prob-
ability of the transmission. The RDP table includes the parents’ and children’s columns
generated based on the subdomains and the conditional probabilities of these pairs listed
in the CPT table.

Table 9. Relation Direction Probability (RDP).

Number of
Relations Parents Children Conditional Probabilities

1 Subdomaini Subdomainj P(Subdomainj | Subdomaini)
2 Subdomaink Subdomainw P(Subdomainw | Subdomaink)
n Subdomainn Subdomainm P(Subdomainm | Subdomainn)

All existing elements in the CPT table are ordered in this table in which the condi-
tional probability of P (Subdomainj | Subdomaini) presents that there is a relation between
Subdomainj and Subdomaini and the direction is from Subdomaini (Parent Node) to Subdomainj
(Child Node) with the probability of P(Subdomainj | Subdomaini).

3.9. Causal Relation in FBBN Using the Relation Direction Probabilities

As mentioned, the FBBN shows the causal relationships between each pair of sub-
domains that are extracted from the RDP table. The conditional probabilities indicate the
direction of the dependency in each pair of nodes. Figure 9 is an example that shows
Subdomainj (Child Node) is related to Subdomaini (Parent Node).

Figure 9. Causal relation in FBBN using the relation direction probabilities.

3.10. Fault Diagnosis Classification Based on Causal Relations in FBBNs

The research in this paper shows that the FBBN causal relation based on the RDPs
can determine all the cause-effect relationships among every subdomain in case of faults.
Therefore, the authors used this capacity to diagnose stuck-at fault types for several
components with various stuck-at values at different time instances. This research considers
the constant faults because the constant values will be in a subdomain from a whole range
of values for a parameter. Therefore, the diagnosis method can correlate the faulty value
with the fault. In this section, an overview of the overall methodology is described.

This diagnosis method has two modes: the online mode and the offline mode. The
offline mode includes the generation phase of the reference libraries, including various
faulty conditions (fault objects) for diagnosing different real fault cases with random/real
faulty values. Figure 10 indicates an overview of the fault diagnosis method introduced in
this paper based on the causal relations in FBBNs using the relation direction probabilities.
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Figure 10. Overview of fault diagnosis based on the causal relations in FBBNs using the relation
direction probabilities.

3.10.1. Offline Training Mode

The offline training mode includes a library of different fault modes. In this library,
a fault object for each type of fault is created that is named: Fault_Objecti, i = {1, n}. The
n value depends on the total number of subdomains (p) and the time vector (t). Table 10
shows an overview of the offline library of the fault cases. The fault object is defined as a
class in MATLAB as function (1) that contains four properties: type of fault (Type), time of
fault injection (Time), the system parameters’ values for each fault case (Data), and the RDP
table. This library is generated for every fault type that includes all subdomains of a domain
and for different fault injection times. To include all the subdomains, a representative for
each subdomain and for each time interval is defined. The time interval is a vector of time
values for the total time domain.
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Function 1. Fault Class Definition
classdef Fault
properties
Type;
Time;
Data;
RDP;
end
end

Table 10. Offline library of fault cases.

No. of Faults 1 2 3 n-1 n

Objects for Different Fault cases Fault_Object1 Fault_Object2 Fault_Object3 Fault_Objectn-1 Fault_Objectn

3.10.2. Online Diagnostic Mode

The online mode represents the real case scenario simulated in this research using the
fault injection framework. Time, type, and value in this fault injection are the properties of
the real scenario with random values within a range. The RDP table in the online mode
contains all the relations of subdomains of the real case (RealCase). For the diagnosis of
the real case, the RealCase Diagnosis Class is defined in Function 2 with three properties,
including Type, Time, and Value of random case. This class also includes two more
properties: Percentage_List and Evaluation_List.

Function 2. RealCase Diagnosis Class Definition
classdef RealCase Diagnosis
properties
Type;
Time;
Value;
Percentage_List; // the size of this list is equal to n or the number of fault cases in the

offline library
Evaluation_List; // The size of this list is equal to x
end
end
The result from the function above for fault casei will be stored in the elementi of

a list called Percentage_List. This list includes n number of percentages of similarity
for a RealCase compared to the n fault objects in the offline library. Table 11 shows the
Percentage_List for a RealCase object. After that, the x number of top-ranked similar fault
cases based on the highest percentages in the Percentage_List will be distinguished by the
diagnosis algorithm as the most relevant results, stored in the Evaluation_List.

Table 11. Percentage_List for a RealCase object.

No. of Fault Object in the Offline Library 1 2 . . . i

Calculated Percentage of Similarity between the
RealCase fault object and each Fault Object in the

Offline Fault Library

Percentage of
Similarity1

Percentage of
Similarity2

. . . Percentage of
Similarityi

The evaluation list in Table 12 consists of x elements, and every element j (1 < j < x)
has three properties: type, time, and percentage. The type and the time are allocated from
the fault casei in the offline library. The percentage is the percentage of similarity that is
actually the belief and the larger the fault belief means the higher the possibility of the
corresponding fault. The diagnosis algorithm sorts the evaluation list by the rank order of
values in the percentage column. “ranking” in statistics is the data transformation that the
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number or order of values are justified by their rank when they are sorted. Therefore, the
elements with the higher percentages of similarity will be placed at the top ranks, and the
lower percentages of similarity will be placed at the lower ranks.

Table 12. Evaluation_List for a RealCase object.

No. Type Time Percentage

1 Offline_FaultType1 Offline_FaultTime1 Highest_Percentage1
2 Offline_FaultType2 Offline_FaultTime2 Highest_Percentage2
3 Offline_FaultType3 Offline_FaultTime3 Highest_Percentage3
j Offline_FaultTypej Offline_FaultTimej Highest_Percentagej

The type and time of element j of this list are the type and time of the fault casei object
in the offline library. Finally, the comparison results of the type and the time values of
the Evaluation_List with the type and the time of the RealCase object which can determine
the belief of the fault diagnosis method in this paper based on the causal relation in fuzzy
Bayesian belief network using the relation direction probabilities.

4. Implementation of the Diagnostic Classifier Based on the Example System Model

As mentioned in Section 3.10.2, the RDP tables are the primary data required for the
online diagnosis phase. This section describes an example scenario for the introduced diag-
nostic method in Section 3 for a DCV and heating system use-case in MATLAB/Simulink.
Here, an example fault type is selected in the DCV and heating system model’s fault injec-
tion framework to show the diagnosis methodology’s detailed description. The selected
fault type is the CO2 sensor fault with a stuck-at value of 700 ppm with the fault injection
time of 18,000 s. The simulation is run for 86,400 s or one typical winter day.

4.1. Data Preparation in System Model

The Data Preparation step includes extracting the data from signal values of Simulink-
Model and initializing the RDT table. An output from the system model in MATLAB/Simulink
prepares RDT required for the introduced diagnosis methodology in this paper. An exam-
ple RDT based on the DCV and heating system model is shown in Table 13. The attributes
can be domains with continuous or discrete values. In this table, the samples for 86,400 s or
one-day simulation time can be recorded. Therefore, RDT = {S1, S2, S3, . . . , S86400}.

Table 13. Use-case RDT for CO2 sensor fault in 18,000 s Fault (The Background color shows the fault injection time sample).

Seconds
(Samples)

Daily
Temperature

Occupancy
Number

Room
Temperature

Room CO2
Concentration Heater Status Damper Status

1 7.0004 0 19.9905 400 0 0
2 7.0007 0 19.9810 400 0 0
3 7.0011 0 19.9715 400 0 0
4 7.0015 0 19.9620 400 0 0
5 7.0018 0 19.9525 400 0 0

. . . . . . . . . . . . . . . . . . . . .
17,999 11.8293 6 19.5583 579.0654 1 1
18,000 11.8294 6 19.5570 700 1 1
18,001 11.8295 6 19.5556 700 1 1
18,002 11.8296 6 19.5543 700 1 1
18,003 11.8297 2 19.5530 700 1 1

. . . . . . . . . . . . . . . . . . . . .
86,399 6.9996 0 16.8578 700 1 1
86,400 7 0 16.8581 700 1 1
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4.2. Attributes and Subdomains Preparation in System Model

Attributes and subdomains preparation step includes defining the labels of attributes
and subdomains of the system for analysis and defining fuzzy sets over these attributes.

4.2.1. Attributes in System Model

For defining attributes, they are first divided into two types—continuous and discrete.
The continuous attributes have continuous changes in their values, such as room tempera-
ture, daily temperature, room CO2 concentration, and occupancy parameters. The discrete
attributes are heater status and damper status. There is also a simulation clock as a discrete
attribute required for the evaluation step.

4.2.2. Subdomains in System Model

Once the continuous and discrete attributes and subdomains were defined in the
previous section, the SLT table is created, shown in Table 14. The subdomains are also
named nodes. For example, subdomains for the continuous daily temperature attribute
are three subdomains of low daily temperature, middle daily temperature, and high
daily temperature. These subdomains are used to create the fuzzy sets for the fuzzy
function. Eighteen subdomains based on seven attributes can facilitate the conditional
probability measurement of the BBN. The subdomain index is considered as a reference to
the subdomain title. Table 14 shows three example subdomains for the attribute of room
temperature. Figure 11 illustrates the subdomains and fuzzy sets for room temperature
signal.

Table 14. Use-case SLT.

No. Attributes Subdomains Subdomains Subdomains

1 Daily Temperature Low_Daily_Temperature (No. 1) Middle_Daily_Temperature (No. 2) High_Daily_Temperature (No. 3)
2 Occupants Number Low_Occupancy (No. 4) Normal_Occupancy (No. 5) High_Occupancy (No. 6)

3 Room Temperature Lower_than_Threshold_
RoomTemperature (No. 7)

Within_Threshold_
RoomTemperature (No. 8)

Upper_than_Threshold_
RoomTemperature (No. 9)

4 Heater Status Heater_Status_On (No. 10) Heater_Status_Off (No. 11) ———
5 Damper Status Damper_Status_Open (No. 12) Damper_Status_Close (No. 13) ———
6 Simulation Clock Healthy_Mode (No. 14) Faulty_Mode (No. 15) ———

7 Room CO2 Concentration Lower_than_Threshold_CO2Value
(No. 16)

Within_Threshold_CO2Value
(No. 17)

Upper_than_Threshold_CO2Value
(No. 18)

Figure 11. Illustration of subdomains and fuzzy sets definitions for room temperature.

4.3. Fuzzy Rules in System Model

In this section, fuzzy rules or membership functions are defined to generate the proba-
bility weights based on the MD values from the fuzzy function. The conditional probability
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of each subdomain will be measured by the MD of each sample of the subdomain through
the following steps.

4.3.1. Fuzzy Membership Functions

In this section, the fuzzy membership functions that get the MD value for each x input
value are explained.

Room Temperature Fuzzy Membership Function
The total range of the room temperature has been considered between [0–40]. This

range can be divided into three subdomains of low room temperature with a [0–17.5] range,
middle room temperature with a [17.5–22.5] range, and high room temperature with a
[22.5–40] range. Twenty degrees centigrade is the nominal temperature value of the system.
Equations (17)–(19) show the fuzzy membership functions respective to each subdomain.
Figure 12 shows the overall room temperature fuzzy membership function with the related
fuzzy function of each subdomain in three various colors of blue for low temperature
values, green for middle-temperature values, and red for high-temperature values.

Low_Room_Temperature_Fuzzy_Membership_Function(x) =


1 x ≤ 17.5

(19.5−x)
(19.5−17.5) 17.5 ≤ x ≤ 19.5

0 x ≥ 19.5

(14)

Middle_Room_Temperature_Fuzzy_Membership_Function(x) =



0 x < 17.5
(x−17.5)

(19.5−17.5) 17.5 ≤ x ≤ 19.5

1 19.5 ≤ x ≤ 20.5
(22.5−x)

(22.5−20.5) 20.5 ≤ x ≤ 22.5

0 x ≥ 22.5

(15)

High_Room_Temperature_Fuzzy_Membership_Function(x) =


0 x < 20.5

(x−20.5)
(22.5−20.5) 20.5 ≤ x ≤ 22.5

1 x ≥ 22.5

(16)

Figure 12. Room temperature fuzzy membership functions.
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Daily Temperature Fuzzy Membership Function
The total range of the daily temperature has been considered between [0–14]. This

range is divided into three subdomains: the low daily temperature with [0–5] range, middle
daily temperature with [5–9] range, and high daily temperature with [9–14] range. Below,
the fuzzy membership functions are shown and their illustration is in Figure 13.

Low_Daily_Temperature_Fuzzy_Membership_Function(x) =


1 x ≤ 5

(6.825−x)
(6.825−5) 5 ≤ x ≤ 6.825

0 x ≥ 6.825

(17)

Middle_Daily_Temperature_Fuzzy_Membership_Function(x) =



0 x < 5
(x−5)

(6.825−5) 5 ≤ x ≤ 6.825

1 6.825 ≤ x ≤ 7.175
(9−x)

(9−7.175) 7.175 ≤ x ≤ 9

0 x ≥ 9

(18)

High_Daily_Temperature_Fuzzy_Membership_Function(x) =


0 x < 20.5

(x−7.175)
(9−7.175) 7.175 ≤ x ≤ 9

1 x ≥ 9

(19)

Figure 13. Daily temperature fuzzy membership functions.



Energies 2021, 14, 6607 29 of 47

CO2 Concentration Fuzzy Membership Function
The CO2 concentration values are considered in a range of [0–1200]. The CO2 con-

centration variable is divided into three subdomains of the low CO2 concentration with
[0–400] range, middle CO2 concentration with [400–800] range, and CO2 concentration
with [800–1200] range. Figure 14 illustrates the fuzzy membership function of the CO2
concentration.

Low_CO2_Concentration_Fuzzy_Membership_Function(x) =


1 x ≤ 400

(585−x)
(585−400) 400 ≤ x ≤ 585

0 x ≥ 585

(20)

Middle_CO2_Concentration_Fuzzy_Membership_Function(x) =



0 x < 400

(x−400)
(585−400) 400 ≤ x ≤ 585

1 585 ≤ x ≤ 615

(800−x)
(800−615) 615 ≤ x ≤ 800

0 x ≥ 800

(21)

High_CO2_Concentration_Fuzzy_Membership_Function(x) =


0 x < 615

(x−615)
(800−615) 615 ≤ x ≤ 800

1 x ≥ 800

(22)

Figure 14. CO2 concentration fuzzy membership functions.

Occupancy Fuzzy Membership Function
The number of occupants in this system model differs in a range of [0–6] people based

on an example scenario. An occupancy with less than three people in a day is considered
low occupancy, with three and four people as middle occupancy, and with five and six
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people as high occupancy. These variations are illustrated in the fuzzy membership degree
functions in equations below and Figure 15.

Low_Occupancy_Fuzzy_Membership_Function(x) =


1 x ≤ 2

(3−x)
(3−2) 2 ≤ x ≤ 3

0 x ≥ 3

(23)

Middle_Occupancy_Fuzzy_Membership_Function(x) =



0 x < 2
(x−2)
(3−2) 2 ≤ x ≤ 3

1 3 ≤ x ≤ 4

(5−x)
(5−4) 4 ≤ x ≤ 5

0 x ≥ 5

(24)

High_Occupancy_Fuzzy_Membership_Function(x) =


0 x < 4

(x−4)
(5−4) 4 ≤ x ≤ 5

1 x ≥ 5

(25)

Figure 15. Occupancy fuzzy membership functions.

4.3.2. Weighted Fuzzy Relational Data Table Based on RDT

This step generates the WFRDT based on RDT for the use case CO2 sensor fault shown
in Table 15. For this, a matrix of 86,401 rows and 18 columns is created. An example fault
type that is the CO2 sensor fault with a stuck-at value of 700 ppm with an example fault
injection time of 18.000 s is considered. Every column of the table is a subdomain and
contains fuzzy weights for continuous attributes and normal weights of occurrence for
discrete attributes. The fuzzy weights based on the output from MD functions for each
sample are measured for each subdomain. Each sample is a measured data sample in every
second of simulation time. In the last row of this table, the total weights over one column
are calculated.
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Table 15. Use-Case Weighted Fuzzy Relational Data Table for CO2 Sensor Fault (The Background color shows the fault injection time sample).

Attributes Daily Temperature Occupancy Room Temperature Heater
Status Damper Status Simulation Clock Room CO2

Concentration

No. Samples
Subdomains

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0

2 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0

3 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0

4 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0

5 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17,999 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0.0321 0.9679 0
18,000 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0.5405 0.4595
18,001 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0.54054 0.4595

18,002 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0.54054 0.4595

18,003 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0.54054 0.4595

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

86,399 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0.54054 0.4595

86,400 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0.54054 0.4595

Total Weight 37,133.7942 12,132.4114 37,133.7942 61,199 18,001 7200 53,381.5449 24,902.6097 8115.8453 85,676 724 73,790 12,610 18,000 68,400 6038.3843 48,643.6590 31,717.9565
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4.4. Probability of Subdomains in System Model

As mentioned in Section 4.4, the probability of the subdomains can be measured by
the total weights for each subdomain divided by the number of samples using the Equation
(12). Therefore, the Subdomain Probability Vector (SPV) is calculated, and the result is
shown in the Table 16.

Table 16. Use-Case Subdomain Probability Vector (SPV) for CO2 Sensor Fault.

Attribute Daily Temperature Occupancy Room Temperature Heater
Status

Damper
Status

Simulation
Clock

Room CO2
Concentration

Subdomain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Probability 0.4298 0.1404 0.4298 0.7083 0.2083 0.0833 0.6178 0.2882 0.0939 0.9916 0.0084 0.8541 0.1459 0.2083 0.7917 0.0699 0.5630 0.3671

4.5. (Intersection) Probability of Subdomain Pairs in System Model

In this step, a triangular top matrix is generated to store the intersection probabilities
of subdomain pairs. The intersection probability of P(A,B) is equal to P(B,A). Therefore,
it makes sense to calculate the probabilities upper than the main diagonal of the ma-
trix. Therefore, Table 17 shows the following matrix with 18 rows and 18 columns using
Equation (13).

4.6. Subdomains’ Relation Using MI

In this step, a top triangular matrix is generated based on the MI calculations using
Equation (6) to find the dependency between the subdomains of a pair named Subdomains
Relation Table (SRT) for the use case of CO2 sensor fault in Table 18. For the pairs that have
a positive amount of correlation measurement, the matrix element gets the value 1, and
for the negative result of the MI equation, it gets the binary value of 0. As mentioned in
Section 3.6, the positive values indicate the dependency between the subdomains of a pair
(pairwise dependency) [40].

4.7. Conditional Probabilities

The direction of transition arcs and conditional probability between pairs after finding
the correlation between subdomains of each pair is known. In This step, every conditional
probability of each pair of A and B as P(A|B) and P(B|A) based on Equations (14) and (15)
are calculated. For this, a Top-Down triangular matrix including all the conditional proba-
bilities of all corresponding subdomains for each pair is generated, which is named CPT
and is shown in Table 19. Then, the conditional probabilities for each pair of subdomains
from both sides from A to B and from B to A are compared, and the direction with the
corresponding probability with a higher probability value is kept and the direction with
the corresponding probability with a lower probability value is eliminated. For example,
the conditional probability value of 0.8315 that is the conditional probability of subdomain3
given subdomain5 (P(subdomain3|subdomain5) = 0.8315), was higher than the conditional
probability of subdomain5, given that subdomain3 is already eliminated, and its value is
replaced with 0.

4.8. Relation Direction Probability (RDP) in Example System Model

In this step, the RDP table is based on the filtered results in the CPT matrix. The RDP
table shows the direction of the dependency between subdomains of each pair from the
parent node to the child node and respective conditional probability values as a result for
the example CO2 Sensor Fault is shown in Table 20.
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Table 17. Use-case Intersection Triangular Top Matrix (ITTM) for CO2 sensor fault (The background color is the boundary of the upper triangular matrix).

Subdomains
Subdomains

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0.0299 0 0.4298 0 0 0.4298 0 0 0.4298 0 0.4298 0 0 0.4298 0 0.2472 0.2123
2 0 0 0.0299 0.1053 0.0351 0 0.1076 0.0204 0.0249 0.136 0.0035 0.1053 0.0351 0.0351 0.1053 0.0351 0.0818 0.0707
3 0 0 0 0.1732 0.1732 0.0833 0.0828 0.2803 0.0792 0.4249 0.0049 0.3190 0.1108 0.1732 0.2566 0.0374 0.2812 0.1287
4 0 0 0 0 0 0 0.5069 0.1420 0.0594 0.7048 0.0035 0.6250 0.0833 0.0833 0.6250 0.0646 0.3565 0.2872
5 0 0 0 0 0 0 0.0917 0.0884 0.0282 0.2035 0.0049 0.1583 0.0501 0.0833 0.1250 0.0030 0.1455 0.0599
6 0 0 0 0 0 0 0.0193 0.0578 0.0063 0.0833 0 0.0708 0.0125 0.0417 0.0417 0.0023 0.0610 0.0201
7 0 0 0 0 0 0 0 0.0476 0 0.6153 0.0026 0.6149 0.0029 0.0107 0.6071 0.0050 0.3566 0.2998
8 0 0 0 0 0 0 0 0 0.0305 0.2835 0.0048 0.2341 0.0541 0.1037 0.1845 0.0267 0.2058 0.1077
9 0 0 0 0 0 0 0 0 0 0.0929 0.0010 0.0050 0.0889 0.0939 0 0.0467 0.0526 0.0031

10 0 0 0 0 0 0 0 0 0 0 0 0.8512 0.1404 0.2000 0.7917 0.0664 0.5587 0.3666
11 0 0 0 0 0 0 0 0 0 0 0 0.0028 0.0056 0.0084 0 0.0035 0.0043 0.0005
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0624 0.7917 0.0033 0.4857 0.3650
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1459 0 0.0666 0.0773 0.0021
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0699 0.1351 0.0034
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4279 0.3637
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0166 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3671
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 18. Use-case Subdomains Relation Table (SRT) for CO2 sensor fault.

Subdomains
Subdomains

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1
2 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1
3 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0
4 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1
5 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0
6 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0
7 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1
8 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1
9 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1
11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 19. Use-case Conditional Probabilities Table (CPT) for CO2 sensor fault.

Subdomains
Subdomains 1 2 3 4 6 8 9 10 11 12 13 14 15 16 17 185 7

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5783
2 0 0 0 0 0 0 0 0 0.2653 0 0.4171 0 0 0 0 0.5024 0 0
3 0 0 0 0 0.8315 1 0 0.9724 0.8430 0 0.5829 0 0.7594 0.8315 0 0.5349 0 0
4 1.0 0.75 0 0 0 0 0.8204 0 0 0 0 0 0 0 0 0.9247 0 0.7822
5 0 0.25 0 0 0 0 0 0 0.3006 0 0.5829 0 0.3431 0.4001 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1.0 0.7659 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6333 0.8165
8 0 0 0 0 0.4244 0.6931 0 0 0.3245 0 0.5687 0 0.3705 0.4978 0 0.3823 0 0
9 0 0 0 0 0 0 0 0 0 0 0.1249 0 0 0 0 0.6680 0 0

10 1.0 0 0 0.9951 0 1 0.9958 0 0 0 0 0.9967 0 0 1 0 0.9923 0.9985
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1.0 0 0 0.8824 0 0 0.9952 0 0 0 0 0 0 0 1 0 0.8627 0.9943
13 0 0.25 0 0 0 0.1504 0 0 0.9467 0 0.6644 0 0 0 0 0.9526 0 0
14 0 0.25 0 0 0 0.4999 0 0 1 0 1 0 1 0 0 1 0 0
15 1.0 0 0 0.8824 0 0 0.9827 0 0 0 0 0 0 0 0 0 0 0.9908
16 0 0 0 0 0 0 0 0 0 0 0.4171 0 0 0 0 0 0 0
17 0.5751 0.5822 0.6542 0 0.6982 0.7319 0 0.7140 0 0 0 0 0 0.6484 0 0 0 1
18 0 0.5032 0 0 0 0 0 0.3735 0 0 0 0 0 0 0 0 0 0
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Table 20. Use-case Relation Direction Probability (RDP) for CO2 sensor fault.

No. of Relations Parents Children Conditional Probabilities

1 Upper_than_Threshold_CO2Value Low_Daily_Temperature 0.57827
2 Upper_than_Threshold_RoomTemperature Middle_Daily_Temperature 0.26533
3 Heater_Status_Off Middle_Daily_Temperature 0.41713
4 Lower_than_Threshold_CO2Value Middle_Daily_Temperature 0.50239
5 Normal_Occupancy High_Daily_Temperature 0.83153
6 High_Occupancy High_Daily_Temperature 1
7 Within_Threshold_RoomTemperature High_Daily_Temperature 0.97244
8 Upper_than_Threshold_RoomTemperature High_Daily_Temperature 0.84297
9 Heater_Status_Off High_Daily_Temperature 0.58287

10 Damper_Status_Close High_Daily_Temperature 0.75943
. . . . . . . . . . . .
65 Lower_than_Threshold_RoomTemperature Faulty_Mode 0.98268
. . . . . . . . . . . .
70 Upper_than_Threshold_CO2Value Within_Threshold_CO2Value 1
71 Middle_Daily_Temperature Upper_than_Threshold_CO2Value 0.50319
72 Within_Threshold_RoomTemperature Upper_than_Threshold_CO2Value 0.37354

4.9. FBBN Causal Relation Using the Relation Direction Probabilities

As mentioned in Section 3.9, the FBBN shows the causal relationships between each
pair of subdomains extracted from the RDP table. Figure 16 is an example that shows that
the subdomain of High_Daily_Temperature (Child Node) is related to the subdomain of
Normal_Occupancy (Parent Node) with the conditional probability value of 0.8295.

Figure 16. An example causal relation in FBBN based on the RDPs.

4.10. Fault Diagnosis in System Model

This section shows the implementation result of the diagnosis method introduced in
this paper for both fault diagnosis and the evaluation of the introduced method for the DCV
and heating system model. As described generally in Section 3.10, the fault diagnosis phase
is constructed from two offline and online modules. A sample RealCase fault object with a
known RDP table, fault type, and fault type is considered in the evaluation phase. However,
in the real and normal operation, only the RDP table is available and is generated, and the
fault type and the fault time are the diagnosis result. Here in Figure 17, the overview of
the evaluation of fault diagnosis method based on the causal relation in FBBN using the
relation direction probabilities using a sample RealCase fault object using the fault injection
with known RDP table, fault type, and fault type is shown compared to the Figure 10.
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Figure 17. Overview of fault classifier in the evaluation.
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4.10.1. Offline Mode of the Fault Diagnosis in System Model

In the offline mode of fault diagnosis, a library of fault cases is created. The offline
library includes ten types of faults stored in a vector called Fault_Injection_Type_Vector, and
17 time instances for the fault injection stored in a vector called Fault_Injection_Time_Vector.
Therefore, the offline library has 170 injected fault objects for all combinations of mentioned
fault types and injection times that is shown in Table 21. For each injected fault_casei, the
Type, Time, Data, and RDP values will then be stored in the i-th element of the Offline
Library, where 1 < i < 170. The implemented offline library of the example system model is
depicted below.

Function 3. Offline Mode Fault Injection Type and Time Vectors
Fault_Injection_Type_Vector = [“CO2SensorLow”, “CO2SensorMiddle”, “CO2SensorHigh”,

“DamperActuatorOff”, “DamperActuatorOn”, “TemperatureSensorLow”,
“TemperatureSensorMiddle”, “TemperatureSensorHigh”, “HeaterActuatorOff”,
“HeaterActuatorOn”]; // This vector has 10 elements
Fault_Injection_Time_Vector = 5000:5000:86400; // This vector has 17 elements

Table 21. Implemented offline library of 170 fault cases in the DCV and heating system.

No. of Fault Object Fault_Object1 Fault_Object2 Fault_Object3 . . . Fault_Object169 Fault_Object170

Details

Type “CO2SensorLow” Type “CO2SensorMiddle” Type “CO2SensorHigh”

. . .

Type “HeaterActuatorOff” Type “HeaterActuatorOn”
Time 5000 Time 5000 Time 5000 Time 85,000 Time 85000

Data 86,400 × 10
double Data 86,400 × 10

double Data 86,400 × 10
double Data 86,400 × 10

double Data 86,400 × 10 double

RDP 144 × 3 string RDP 144 × 3 string RDP 144 × 3 string RDP 144 × 3 string RDP 144 × 3 string

4.10.2. Online Diagnostic Mode in System Model

In the online mode of the diagnosis method, a random RealCase fault object with its
specifications, that is, Type, Time, Value, is injected into the system, and the Percentage_List
and Evaluation_List are stored as an example scenario of the reality to test and monitor the
response of the diagnosis method introduced in this paper. For this, a fault type from the
Fault_Injection_Type_Vector with a random time of fault occurrence and its value is selected.

Function 4. Online Mode Fault Injection Type Vector
Fault_Injection_Type_Vector = [“CO2Sensor”, “DamperActuator”, “TemperatureSensor”,
“HeaterActuator”];

Function 5. Random Fault Injection using Randi Function
RealTime_Fault = randi(86400);
switch Fault_Mode
case “CO2Sensor”
CO2_FaultInjectionValue = randi([300,850],1);
case “DamperActuator”
Damper_ FaultInjectionValue = randi([1,2],1)−1;
case “TemperatureSensor”
TempSensor_ FaultInjectionValue = randi([10,30],1);
case “HeaterActuator”
Heater_ FaultInjectionValue = randi([1,2],1)−1;
otherwise
end
A RealCase example has shown in Table 22. In this RealCase object example, a

stuck_at_off fault mode in the heater actuator at the fault injection time of 70,393 s is
simulated.
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Table 22. RealCase object Example for the DCV and heating system.

RealCase_Object1

Type “Heater_Actuator”
Time 70,393
Value 0

Percentage_List 170 × 1 double
Evaluation_List 20 × 3 string

As mentioned in Section 3.10.2, the Percentage_List shows the percentage of similarity.
Further, the generation of the Evaluation_List is the final step of fault diagnosis in this
paper. The diagnosis method introduced in this paper can diagnose the fault with its
type, value, and time of fault occurrence. For this, the Evaluation_List is created based on
comparing the percentages of similarity in the Percentage_List of the RealCase Example
with every fault case available in the offline library. The Percentage_List table is eliminated
in this paper as it includes all the percentage of similarity values with every 170 fault
objects available in the fault library. The diagnosis algorithm sorts the evaluation list by
the values in the percentage column. Therefore, the elements with the higher percentages
of similarity will be placed at the top ranks, and the lower percentages of similarity will
be placed at the lower ranks. Finally, the comparison results of the type and the time
values of the Evaluation_List with the type and the time of the RealCase object, which was
initiated from the fault injection, can determine the belief of the fault diagnosis method in
this paper based on the causal relation in FBBN using the relation direction probabilities.
In the Evaluation_List table for the example test scenario that is shown in Table 23, the top
20 highest ranks of diagnosed fault cases have been considered for the fault diagnosis, and
the first row of the table below is the diagnosis result with the highest rank, which has the
same type and time of the injected fault as the RealCase example, which shows the highest
belief or highest probability of the correct diagnosis result. It is also clear that the diagnosed
time of fault occurrence is very close to the real value with an excellent estimation. A more
exact result is possible with an enormous offline library with more example fault scenarios
for more fault injection instances.

Table 23. Evaluation_List Table for the RealCase Example.

No. Type in Offline Library Time in Offline
Library

Percentage in
Percentage_List

1 HeaterActuatorOff 70,000 51.3889 The Diagnosed Case in the First Rank
2 HeaterActuatorOff 65,000 50 Second Rank
3 HeaterActuatorOff 60,000 49.3056

Third Rank4 HeaterActuatorOff 75,000 49.3056
5 HeaterActuatorOff 55,000 47.9167 Fourth Rank
6 HeaterActuatorOff 50,000 45.8333 Fifth Rank
7 HeaterActuatorOff 45,000 45.1389
8 TemperatureSensorLow 70,000 45.1389
9 HeaterActuatorOff 80,000 45.1389
10 TemperatureSensorLow 65,000 43.75
11 TemperatureSensorHigh 70,000 43.75
12 TemperatureSensorLow 75,000 43.75
13 TemperatureSensorLow 60,000 43.0556
14 TemperatureSensorHigh 65,000 42.3611
15 TemperatureSensorHigh 75,000 42.3611
16 HeaterActuatorOff 40,000 41.6667
17 TemperatureSensorLow 55,000 41.6667
18 TemperatureSensorHigh 60,000 41.6667
19 TemperatureSensorHigh 55,000 40.9722
20 TemperatureSensorLow 80,000 40.9722
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5. Evaluation and Results

This section discusses the evaluation and results of the diagnostic classifier introduced
in this paper. This method is a classification which is a combination of data-driven-based
and knowledge driven-based methods. Performance metrics evaluate the effectiveness
of a method and compare various classification models [42]. Statistical classification
distinguishes various classes of a set of elements in a classification problem, for example,
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). In these
terms, the word “positive” is the output of the diagnosis algorithm that is predicted and
diagnosed. TP shows the number of positive elements classified accurately. TP indicates
that the injected faults are also correctly predicted. FP is a false alarm and describes the
number of actual negative elements that are classified as positive. FP shows the incorrect
diagnosis of the system as a healthy mode when it is faulty. TN indicates the number of
negative examples classified accurately (correct rejection). TN describes the truly healthy
mode that is not also diagnosed. FN is defined as the missed class of faults or the number
of positive elements classified as negatives. FN shows the faults in the system known
from the fault injection, but the diagnostic classifier did not successfully diagnose them.
Figure 18 shows an overview of the performance metrics.

Figure 18. Performance metrics.

As mentioned earlier, this paper also studies the fault diagnosis as a classification
problem, as it is introduced as a combined method. Therefore, the evaluation metrics for
the classifiers are applied here, for example, precision, recall, F1, and accuracy, and a binary
(or double-class-) confusion matrix is established as shown in Figure 19.
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Figure 19. A binary or double-class confusion matrix [43].

Precision or Positive Predictive Value (PPV) indicates how many of the total diagnostic
results are correct. The precision [44] is calculated as the fraction of the truly predicted
elements to the total detected elements. The precision is measured by the equation below.

Precision =
TP

TP + FP
. (26)

Recall or sensitivity or True Positive Rate (TPR) describes the fraction of correctly
detected items among all the items that must be detected [44] and is the ability to find all
relevant elements. The recall is measured by the equation below.

Recall =
TP

TP + FN
. (27)

F-Measure or F-score combines precision and recall and is defined as the harmonic
mean of precision and recall considering F1 as an F-Measure with evenly weighted recall
and precision. The F-measure shows the accuracy of a system under test [44]. F1 is
measured by the equation below:

F1 =
2

1
Precision + 1

Recall
. (28)

Accuracy is the proportion of correct predictions [45], as described below:

ACC =
TP + TN

TP + TN + FP + FN
(29)

During the evaluation phase, the total number of 110 fault cases has been considered
calculated based on 22 fault injection values and five injection times. A specific fault
was injected for every evaluation round, and in only one round was a healthy mode
evaluated. These fault cases have been injected in five different instances of time {17,000,
34,000, 51,000, 68,000, 85,000}, And four fault types of {“CO2Sensor”, “DamperActuator”,
“TemperatureSensor”, “HeaterActuator”} with 22 fault values for these four fault types
shown in the function below. The range of values for each signal is divided into three
subdomains. Therefore, the value vectors are defined to ensure that sufficient fault samples
from each subdomain are considered.

Function 6. Value Vectors of Fault Injection
Fault_Injection_Co2Value_Vector = [350, 400, 450, 550, 600, 650, 750, 800, 850];
Fault_Injection_DamperValue_Vector = [0, 1];
Fault_Injection_TempValue_Vector = [16, 17, 18, 19, 20, 21, 22, 23, 24];
Fault_Injection_HeaterValue_Vector = [0, 1];
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The numbers of truly diagnosed faults considering the type and the time of faults in
different cumulative ranks are depicted in Table 24. This table shows the number of correct
diagnoses (TPs) categorized in different cumulative ranks for different fault types.

Table 24. Number of diagnoses in different cumulative ranks for different fault types.

Fault Type
Total Number of

Injected Fault
Cases

Number of
Diagnoses (TPs) in

Rank1

Number of
Diagnoses (TPs) in

Rank 1, 2

Number of
Diagnoses (TPs) in

Rank1, 2, 3

Number of
Diagnoses (TPs) in

Rank 1, 2, 3, 4

Number of
Diagnoses (TPs) in

Rank 1, 2, 3, 4, 5

CO2 Sensor 45 38 41 43 43 43
Damper Actuator 10 10 10 10 10 10

Temperature Sensor 45 35 40 41 41 42
Heater Actuator 10 10 10 10 10 10

Total Number 110 93 101 104 104 105

The accuracy of the diagnostic classifier is shown in Table 25. This table and Figure 20
show that the cumulative accuracy increases from 90.76% to 97.28% when considering the
top five ranks instead of only the first rank.

Table 25. Accuracy of diagnostic classifier in different cumulative ranks for different fault types.

Fault Type Accuracy for Rank 1 Accuracy for Rank 1, 2 Accuracy for
Rank 1, 2, 3

Accuracy for
Rank 1, 2, 3, 4

Accuracy for
Rank 1, 2, 3, 4, 5

CO2 Sensor 0.847826087 0.913043478 0.95652174 0.95652174 0.956521739
Damper Actuator 1 1 1 1 1

Temperature Sensor 0.782608696 0.891304348 0.91304348 0.91304348 0.934782609
Heater Actuator 1 1 1 1 1

Average Accuracy 0.907608696 0.951086957 0.9673913 0.9673913 0.972826087

Figure 20. Accuracy and average accuracy in different ranks for different fault types.

The recall is measured for the diagnostic classifier in this paper and the results are
shown in Table 26 and Figure 21. The average recall of the diagnostic classifier shows the
recall increases from 90.55% to 97.22% when considering the top five ranks instead of only
the first rank.

Table 26. Recall of diagnostic classifier in different cumulative ranks for different fault types.

Fault Type Recall for Rank 1 Recall for Rank 1, 2 Recall for Rank 1, 2, 3 Recall for Rank 1, 2, 3, 4 Recall for Rank 1, 2, 3, 4, 5

CO2 Sensor 0.844444444 0.911111111 0.95555556 0.95555556 0.955555556
Damper Actuator 1 1 1 1 1

Temperature Sensor 0.777777778 0.888888889 0.91111111 0.91111111 0.933333333
Heater Actuator 1 1 1 1 1
Average Recall 0.905555556 0.95 0.96666667 0.96666667 0.972222222
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Figure 21. Recall and average recall in different ranks for different fault types.

In this paper, the TN is always one because each diagnosis procedure considers only a
fault case and healthy mode, and the system can detect the healthy mode when there is
no fault in the system. Further, FP is always zero as no healthy mode was predicted when
a fault was injected into the system in the evaluation phase. Therefore, precision or PPV
is always calculated with a value of one (100%). F1 is also measured for the diagnostic
classifier in this paper, and the results are shown in Table 27 and Figure 22. The average F1
or F-score of the diagnostic classifier shows the F1 increases from 94.76% to 98.56% when
considering the top five ranks instead of only the first rank.

Table 27. F1 of diagnostic classifier in different cumulative ranks for different fault types.

Fault Type F1 for Rank 1 F1 for Rank 1, 2 F1 for Rank 1, 2, 3 F1 for Rank 1, 2, 3, 4 F1 for Rank 1, 2, 3, 4, 5

CO2 Sensor 0.915662651 0.953488372 0.97727273 0.97727273 0.977272727
Damper Actuator 1 1 1 1 1

Temperature Sensor 0.875 0.941176471 0.95348837 0.95348837 0.965517241
Heater Actuator 1 1 1 1 1

Average F1 0.947665663 0.973666211 0.98269027 0.98269027 0.985697492

Figure 22. F1 and average F1 in different ranks for different fault types.

The overview of the performance metrics shows the average indicators increase when
considering the top five ranks instead of only the first rank. For example, the diagnosis
result when considering the top five ranks is usually better than when considering only the
top two. The summary of the captured data is shown in Table 28.
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Table 28. Overview of performance metrics for the diagnostic method based on causal relations in FBBNs using RDPs.

Fault Labels Relevant Elements TP FP TN FN TotPop Precision Recall F-Score or F1 Accuracy

CO2 Sensor Rank 1 45 38 0 1 7 46 1 0.844444444 0.915662651 0.847826087
CO2 Sensor Rank 1, 2 45 41 0 1 4 46 1 0.911111111 0.953488372 0.913043478

CO2 Sensor Rank 1, 2, 3 45 43 0 1 2 46 1 0.955555556 0.977272727 0.956521739
CO2 Sensor Rank 1, 2, 3,

4 45 43 0 1 2 46 1 0.955555556 0.977272727 0.956521739

CO2 Sensor Rank 1, 2, 3,
4, 5 45 43 0 1 2 46 1 0.955555556 0.977272727 0.956521739

Damper Actuator Rank 1 10 10 0 1 0 11 1 1 1 1
Damper Actuator Rank

1,2 10 10 0 1 0 11 1 1 1 1

Damper Actuator Rank 1,
2, 3 10 10 0 1 0 11 1 1 1 1

Damper Actuator Rank 1,
2, 3, 4 10 10 0 1 0 11 1 1 1 1

Damper Actuator Rank 1,
2, 3, 4, 5 10 10 0 1 0 11 1 1 1 1

Temperature Sensor
Rank 1 45 35 0 1 10 46 1 0.777777778 0.875 0.782608696

Temperature Sensor
Rank 1, 2 45 40 0 1 5 46 1 0.888888889 0.941176471 0.891304348

Temperature Sensor
Rank 1, 2, 3 45 41 0 1 4 46 1 0.911111111 0.953488372 0.913043478

Temperature Sensor
Rank 1, 2, 3, 4 45 41 0 1 4 46 1 0.911111111 0.953488372 0.913043478

Temperature Sensor
Rank 1, 2, 3, 4, 5 45 42 0 1 3 46 1 0.933333333 0.965517241 0.934782609

Heater Actuator Rank 1 10 10 0 1 0 11 1 1 1 1
Heater Actuator Rank 1,

2 10 10 0 1 0 11 1 1 1 1

Heater Actuator Rank 1,
2, 3 10 10 0 1 0 11 1 1 1 1

Heater Actuator Rank 1,
2, 3, 4 10 10 0 1 0 11 1 1 1 1

Heater Actuator Rank 1,
2, 3, 4, 5 10 10 0 1 0 11 1 1 1 1

This section also compares the evaluation results captured for the classifier based on
the causal relation FBBNs using RDPs to implicit classification based on deep learning in
another study of the authors [31]. Table 29 shows that the performance of classification
is as good as implicit classification based on deep learning, knowing that classifiers are
designed, implemented step-by-step, and they are one of the white-box approaches; how-
ever, the implicit approaches are mainly categorized as black-box approaches and need
more computation capacities. The performance metrics of the AI-based method are also
calculated for the stuck-at faults to make the parameters comparable with the classifier.

Table 29. Comparison of the evaluation results of combined classifier from this paper with implicit classifier in [31].

Type of Classifier Accuracy Precision Recall F1 or F-Score

Combined Classifier (This Study) 97.28% 100% 97.22% 98.56%
Implicit Classifier—Overall 97.40% 96.70% 98.20% 97.46%

Implicit Classifier—For only stuck-at
or constant faults NA 98.60% 98.40% 98.55%

The precision and F-score values show the superiority of the presented diagnostic
classifier over the implicit classifier with a value of 100% for the precision of the combined
classifier and 96.70% for the overall precision of the implicit classifier and 98.60% for the
precision of the implicit classifier for stuck-at or constant faults (more relevant prediction
of combined classifier than the implicit classifier). The F-score of the combined classifier
is 98.56% compared to 97.46% for the overall F-score of the implicit classifier and 98.55%
for the F-score of the implicit classifier for stuck-at or constant faults. The accuracy of the
combined classifier is measured at 97.28% compared to the overall accuracy of the implicit
classifier (97.40%), which shows a reasonable accuracy. The recall values for the implicit
classifier (98.20%) and 98.40%) are comparable to the recall value of the combined classifier
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(97.22%), describing that the implicit classifier diagnosed more items from the relevant
items than the combined classifier.

6. Conclusions

The state-of-the-art provides data-driven and knowledge-driven diagnostic methods.
Each category has its strengths and shortcomings. The knowledge-driven methods rely
mainly on expert knowledge and resemble the diagnostic thinking of domain experts with
a high capacity for the reasoning of uncertainties; they diagnose different fault severities
and are more understandable. On the other hand, these methods involve higher and
more time-consuming effort, they require a deep understanding of the causal relationships
between faults and symptoms, and there is still a lack of automatic approaches to improve
the efficiency. The data-driven methods rely on similarities and patterns and they are very
sensitive to changes of patterns and have more accuracy than the other knowledge-driven
based methods, but they require massive data for training, cannot inform about the reason
behind the result, and they represent black boxes with low understandability. The research
problem is thus the combination of knowledge-driven and data-driven diagnosis in DCV
and heating systems in order to benefit from both categories. The diagnostic method
presented in this paper involves less effort for experts and quicker approaches without
requiring deep understanding of the causal relationships between faults and symptoms
compared to existing knowledge-driven methods, while offering higher understandability
than other data-driven approaches and higher accuracy than other knowledge-driven
approaches resolved by a data-driven-based category. The fault diagnosis uses a data-
driven classifier in combination with knowledge-driven inference with both fuzzy logic
and a BBN.

In offline mode, for each fault class, an RDP table is computed and stored in a fault
library. In online mode, we determine the similarities between the actual RDP and the
offline precomputed RDPs. The combination of BBN and fuzzy logic in our introduced
method analyzes the dependencies of the signals using MI theory. The method creates a
unique RDP table for each class of faults and datasets. This method can also be extended
to additional faults by adding RDPs of new fault classes to the offline library.

Several performance metrics are considered, such as accuracy, precision, recall, and
F Score. The evaluation results show that this method can, overall, diagnose 97.22% of
faults truly (TPs over the whole five cumulative ranks). This combined diagnostic classifier
sorts the diagnosis results based on the probability values, for example, the top-most
ranks are the most likely diagnosis result. The method indicates the average values of the
performance metrics with a cumulative basis from only considering the diagnosis results
from the first top rank increase to when the fault diagnosis classifier considers more top
ranks, for example, when the accuracy increases from 90.76% for the first rank to 97.28% for
five cumulative ranks, the recall increases from 90.55% to 97.22%, and the F-score increases
from 94.76% to 98.57%.

Future work will extend the classifier to cover more types of faults, for example, offset,
drift, or gain faults, or the evaluation of the classifier with the activation of multiple faults.
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