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Abstract: The trend of bringing machine learning (ML) to the Internet of Things (IoT) field devices 
is becoming ever more relevant, also reducing the overall energy need of the applications. ML mod-
els are usually trained in the cloud and then deployed on edge devices. Most IoT devices generate 
large amounts of unlabeled data, which are expensive and challenging to annotate. This paper in-
troduces the self-learning autonomous edge learning and inferencing pipeline (AEP), deployable in 
a resource-constrained embedded system, which can be used for unsupervised local training and 
classification. AEP uses two complementary approaches: pseudo-label generation with a confidence 
measure using k-means clustering and periodic training of one of the supported classifiers, namely 
decision tree (DT) and k-nearest neighbor (k-NN), exploiting the pseudo-labels. We tested the pro-
posed system on two IoT datasets. The AEP, running on the STM NUCLEO-H743ZI2 microcontrol-
ler, achieves comparable accuracy levels as same-type models trained on actual labels. The paper 
makes an in-depth performance analysis of the system, particularly addressing the limited memory 
footprint of embedded devices and the need to support remote training robustness. 

Keywords: machine learning; self-learning; edge computing; resource-constrained devices; auton-
omous systems; on-device training; k-NN; decision tree; STM32 NUCLEO 
 

1. Introduction 
Maturation of machine learning (ML) is enabling embedding intelligence in Internet 

of Things (IoT) devices [1]. Various effective machine and deep learning models have been 
deployed on resource-constrained devices to gain insights from collected data. Field de-
vices, such as microcontrollers, consume significantly less energy than larger devices, es-
pecially if their memory footprint is minimized and huge edge-cloud raw data transmis-
sion can be spared by only sending high-level information. 

Typically, ML models are trained on high-performance computers in the cloud and 
then deployed on IoT devices to perform the target inference task. However, in real-world 
applications, statically trained models are not able to adapt to the environment, which 
could reduce accuracy for new samples. Training a ML model on the device, instead, has 
the ability to learn from the physical world and update the system locally. This allows for 
lifelong incremental learning [2] updating its knowledge, as well as personalizing the de-
vice thus improving performance by learning the characteristics of the specific deploy-
ment context. 

Moreover, as millions of new IoT devices are produced every year [3], vast amounts 
of unlabeled data in various domains (e.g., industrial, healthcare, environmental, etc.) are 
generated. Designing systems based solely on supervised learning, which requires a la-
beled dataset, is not ideal for IoT scenarios. Creating labeled IoT datasets is expensive and 
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hardly feasible [4]. Therefore, it is of utmost importance to smartly leverage the quantity 
of unlabeled data produced by the end devices deployed in the field. 

Semi-supervised and self-supervised learning techniques have shown encouraging 
results in learning from unlabeled data. The former approach exploits a partially labeled 
dataset [5], while the latter trains a model using automatically generated pseudo-labels 
[6,7]. Fully automated solutions look particularly suited for applications deployable in 
hostile environments, possibly due to difficulties in communications or the need to keep 
energy consumption and/or costs low. Target applications may involve, for instance, re-
mote agriculture, farming, mining, manufacturing, emergency, or the military. 

We have explored feasibility of a self-supervised learning system in an embedded 
environment in [7]. In this new paper, we are interested in going more in depth with the 
performance analysis, also tackling three research questions. First, we investigate the pos-
sibility of increasing robustness in a sample selection for automated training, as the train-
ing data in such an autonomous system should be as compact and noiseless as possible to 
avoid performance degradation. We are interested in sample selection rather than feature 
selection (which is another method of dataset reduction), as we assume that the sensor 
configuration of a device deployed in the field is already optimized according to the target 
application. Second, we investigate the possible advantages of a memory management 
algorithm for limited resource field devices to minimize the memory occupation associ-
ated with the continuous flow of samples that may be used for the training set. Third, we 
perform a timing analysis on a state-of-the-art microcontroller to evaluate the overall sys-
tem’s ability to meet real-time performance requirements. 

We have performed this analysis on the Self-Learning Autonomous Edge Learning 
and Inferencing Pipeline (AEP) system. AEP is a software system we have developed for 
resource-constrained devices. Besides the inference capability, the AEP allows autono-
mous field training by means of a two-stage pipeline, involving a label generation with a 
confidence measure step and on-device training. This paper presents an in-depth evalua-
tion of the proposed system on two publicly available datasets for IoT applications, using 
the NUCLEO-H743ZI2 microcontroller. 

The remainder of this paper is organized as follows: Section 2 reviews related work, 
and Section 3 provides some background on the algorithms employed in the pipeline. 
Section 4 presents the proposed system, and Section 5 the experimental analysis. Section 
6 concludes the paper and indicates possible directions for future research. 

2. Literature Review 
A large research effort has been devoted to learning from unlabeled data. We can 

identify three main research areas in the field: combining clustering with classification, 
semi-supervised learning, and self-supervised learning, as shown in this section. 

2.1. Combining Supervised and Unsupervised Learning 
Qaddoura et al. [8] propose a three-stage classification approach for IoT intrusion 

detection. In the first stage, the IoT training data is reduced by 10% after grouping the 
data using k-means clustering. Then, oversampling is performed to address the lack of 
minority class instances. In the final stage, the enlarged dataset is used to train a single 
hidden layer feed-forward neural network. The authors claim that the proposed approach 
outperforms other approaches on the selected dataset. Reference [9] proposes a method 
to improve the classification accuracy by applying clustering techniques, namely k-means 
and hierarchical clustering, to the dataset before the classification algorithms. Their exper-
imental analysis shows that higher accuracy is achieved after applying the classification 
algorithms, namely naïve Bayes and neural network, to the clustered data. The work in 
[10] presents a hybrid framework that uses network traffic to protect IoT networks from 
unauthorized device access. For each device type in the dataset, a binary one-vs-rest ran-
dom forest classifier is trained, and the model is stored. During prediction, if all saved 
classifiers failed to classify the feature vector as a “known” device, the OPTICS clustering 
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algorithm is used to group devices with similar behavior together. Experimental results 
on ten IoT device types (three types are provided without labels) show good accuracy 
levels, and reduced runtime and memory requirements due to the use of an autoencoder. 
Reference [7] proposes an autonomous edge learning and inferencing pipeline with a k-
NN classifier, which is periodically trained with the labels obtained from clustering the 
dataset via k-means. This embedded system performs only slightly worse than manually 
labeled k-means in terms of accuracy, particularly with small data subsets. 

2.2. Semi-Supervised Learning 
Semi-supervised approaches refer to training a specific classifier using a small 

amount of annotated data in conjunction with a large amount of unlabeled data [5]. The 
general workflow first consists of training a classifier using the small set of labeled train-
ing data. Then, the classifier is used to predict the outputs (pseudo-labels) of the unlabeled 
data. The final step is to train the model on the labeled and pseudo-labeled data. 

In [11], Zhou et al. designed a semi-supervised deep learning framework for human 
activity detection in IoT. The proposed method exploits two modules. The auto-labeling 
module is based on reinforcement learning and assigns labels to the input data before 
sending it to the LSTM-based classification module for training. The evaluation of the 
framework shows the effectiveness of the proposed method in the case of weakly labeled 
data (i.e., large amount of unlabeled data and a small amount of labeled data). Ravi and 
Shalinie [12] propose a mechanism for distributed denial of service (DDoS) mitigation and 
detection based on an extreme learning machine algorithm trained in a semi-supervised 
manner. They demonstrate the effectiveness of the proposed approach compared to other 
ML algorithms. Rathore et al. [13] propose a fog-based framework that integrates a semi-
supervised fuzzy c-means with an extreme learning machine classifier for efficient attack 
detection in IoT. The proposed framework achieves better performance and detection time 
when compared to cloud-based attack detection frameworks. 

2.3. Self-Supervised Learning 
The idea behind self-supervision is to find a surrogate task for the network to learn 

that does not require explicit labeling, but rather the inherent structure of the data that 
provides the labels. Self-supervised learning is a branch of unsupervised training in which 
pseudo-labels are automatically generated from the data itself [6]; then, a model is trained 
through supervised learning exploiting such pseudo-labels (e.g., [14]). 

In this area, Wu et al. [15] propose a framework for on-device training of convolu-
tional neural networks that consists of two approaches: a self-supervised early instance 
filtering of the data to select important samples from the input stream, and an error-map 
pruning algorithm to drop insignificant computations in the backward pass. The frame-
work reduces the computational and energy costs of training with little loss of accuracy. 
Human activity detection with self-supervised learning is introduced in [16]. Signal trans-
formation is performed as a pretext task for label generation and various activity recogni-
tion tasks are performed on six public datasets. The results show that self-supervised 
learning enables the convolutional model to learn high-level features. Saeed et al. [17] pre-
sent a self-supervised method that learns representations from unlabeled multisensory 
data based on wavelet transform. The approach is evaluated on the datasets with sensory 
streams and achieves comparable performance to fully supervised networks. 

2.4. IoT Infrastructure and Data 
The Internet of Things refers to billions of devices connected to the Internet, which 

collect and share data from the field [18]. Typical IoT architectures consist of a set of tech-
nological layers, bringing scalability, modularity, and configurability (e.g., [19,20]). The 
first layer (namely, the perception layer) consists of smart objects equipped with sensors, 
such as fiber optic sensors (FOS), microelectromechanical systems (MEMS), sensors, radio 



Energies 2021, 14, 6636 4 of 20 
 

 

frequency identification (RFID) sensors, etc. The second layer is the network layer. Cur-
rent networks, often connected with very different protocols, have been deployed to sup-
port machine-to-machine (M2M) networks and their applications. There may be a local 
area network (LAN), such as Ethernet and Wi-Fi connections, or a personal area network 
(PAN) such as ZigBee, Bluetooth, and ultra wideband (UWB). Sensors that require low 
power and low data rate connectivity typically form networks commonly known as wire-
less sensor networks (WSNs). Besides the sensor aggregators, the connection to backend 
servers/applications in the cloud is made over wide area networks (WAN) such as GPRS, 
LTE, and 5G protocols that are widely used for IoT, including constrained application 
protocol (CoAP), message queuing telemetry transport (MQTT), extensible messaging 
and presence protocol (XMPP), etc. Finally, the application layer is responsible for deliv-
ering services to the user exploiting the IoT field data. This layer also includes data stor-
age, management, and processing. The data management infrastructure includes common 
data stores, such as relational or non-relational databases, distributed file systems, such 
as the hadoop distributed file system (HDFS), etc. The data processing techniques are gen-
erally based on machine learning or artificial intelligence and pattern recognition algo-
rithms. 

The overall application latency is typically dominated by the propagation delay be-
tween the edge and the data centers on the cloud. Another significant performance pen-
alty factor is given by packet losses [21]. This, together with consideration about band-
width, energy consumption, and privacy, suggests the importance of edge computing, 
thus keeping the computation as much as possible close to the information source [22]. 

Reference [23] singles out four main characteristics of IoT data in cloud platforms: 
multisource high heterogeneity, huge scale dynamic, low-level with weak semantics, and 
inaccuracy. These characteristics are important, as they highlight key features that should 
be provided by an effective IoT data framework (e.g., source characterization, variety of 
source data configurations/aggregation, outlier computation) [24]. 

IoT data characteristics are largely dependent on delay, incompletion, and dynamic 
variation. 

3. Autonomous Edge Pipeline (AEP) Algorithms 
Before presenting the AEP system architecture and the supported workflow, we give 

a short overview of the underlying algorithms. Particularly, we use k-means clustering 
for unsupervised learning, which provides the binary labels for training a decision tree or 
a k-NN classifier (supervised learning), which is used for the actual classification of the 
samples. 

3.1. Unsupervised Learning 
Unsupervised learning is a branch of ML that derives interesting patterns and in-

sights directly from unlabeled datasets. Clustering consists of the unsupervised classifica-
tion of (unlabeled) samples into groups or clusters such that data points in the same group 
are similar to each other and different from data points in other clusters [25]. 

In the AEP implementation, we use one of the most common clustering methods, 
namely k-means clustering. This algorithm works iteratively to partition a set of observa-
tions into k (predetermined) distinct and non-overlapping clusters based on feature simi-
larity. It first selects k random data points as initial centroids. In the next step, each data 
sample is assigned to the closest centroid based on a certain proximity measure. Once all 
the data points are assigned and the clusters are formed, the centroids are updated with 
the mean of all the data samples belonging to the same cluster. The algorithm iteratively 
repeats these two steps until a convergence criterion is met [26]. One drawback of the 
standard k-means is its sensitivity to the initial placement of centroids. Therefore, our AEP 
implementation uses the k-means++ algorithm [27], which combines the standard k-
means with a smarter initialization of the centroids. k-means++ first chooses a random 
point from the data as the first centroid. Then, for each instance in the dataset, k-means++ 
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computes the distance to the nearest centroid previously selected. Then, it selects the next 
centroid from the remaining data points, such that it has the largest distance to the closest 
centroid previously selected. These steps are repeated until k centroids are chosen. 

As we will see in Section 4.2 (“Development Challenges”), the AEP also exploits the 
soft k-means enhancement, which provides a confidence value when assigning samples 
to clusters, thus allowing an increase in robustness of the system. 

3.2. Supervised Learning 
Supervised learning is the most common branch of ML and is implemented by our 

AEP system to classify the samples based on the pseudo-labels generated through the un-
supervised learning module. Supervised learning is the process of deriving a function that 
maps an input to an output, based on labeled training data. Each training example is a 
pair consisting of an input vector (features) and a desired output (class or value, for clas-
sification and regression, respectively) [28]. 

The AEP system currently features two supervised learning algorithms: 
• k-nearest neighbor (k-NN) [29] is a non-parametric lazy-learner algorithm used for 

classification and regression. k-NN stores all the available dataset and classifies a 
new sample based on the feature similarity between this new case and the available 
data, assigning the most numerous class of the nearest k labeled points. The perfor-
mance of this algorithm depends only on the number of neighbors N to be considered 
in each decision; 

• Decision tree (DT) [30] is a well-established ML technique that belongs to the super-
vised learning family. As the name suggests, it uses a tree-like model of decisions. 
The training phase takes as input a training set and recursively partitions the samples 
into subsets to improve a “label” column purity score in each partition. The purity 
score is a method based on the proportion of each class in a mixture of class labels. 
The higher the proportion of one of the classes, the purer the subset. 
We have selected these three algorithms (one for labelling and two alternative for 

classification), at least as an initial choice, keeping into account the limitations on memory 
and computational resources of the targeted edge devices [31]. The k-means method is 
efficient with guaranteed convergence, and fast when running on small processors with 
low capabilities [26]. k-NN is a simple algorithm with good performance and requires no 
training [29]. Finally, DTs require little to no data preprocessing effort and can effectively 
handle missing values in the data [30]. 

4. Autonomous Edge Pipeline (AEP) 
4.1. Framework Overview 

The self-learning AEP (Figure 1) is an iterative pipeline that alternates between clus-
tering/training and classification. Particularly, k-means clustering is periodically executed 
on the input stream and provides the pseudo-labeled clustered data. The labeling results 
are then evaluated by a confidence algorithm (if enabled by the user), presented in Section 
4.2, which makes a binary decision whether to keep or discard each instance. Once im-
portant samples with their corresponding pseudo-labels are selected, the training process 
is executed (this applies to the DT case only, since k-NN does not involve a training 
phase). The resulting classifier then continuously classifies the incoming samples. Given 
the resource limitations of the target devices, a memory management strategy is imple-
mented to prevent memory overflow, which is explained in the following subsection. 
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Figure 1. Overview of the AEP. 

4.2. Development Challenges 
In the following, we discuss the main challenges we faced in developing the AEP 

system: filtering of samples to be used for the training; dataset management on the edge 
and DT training on the edge. 
• Filtering of samples to be used for the training. k-means is a hard clustering algo-

rithm, as the data points are assigned exclusively to one cluster. However, in some 
situations (e.g., in our case in which clustering is used to define labels to train a clas-
sifier), it is important to find out how confident the algorithm is in each one of its 
decisions. The soft k-means improvement calculates a weight that determines the ex-
tent to which each data sample belongs to each cluster [26]. Higher values indicate a 
certain or strong assignment, and lower weights indicate a weak assignment. The soft 
k-means weights can also be computed a posteriori, using cluster centers obtained 
by a hard k-means, exploiting Equation (1): 𝑤 = ଵ

∑ ൭ቛೣషೕቛฮೣషೖฮ൱ మషభೖసభ
, 

(1)

where xi is a data point, cj is the coordinates of the jth cluster center, and m is a parameter 
that controls the fuzziness of the algorithm, typically set to 2 [26]. Once the soft k-means 
weights for each sample are computed (using the Euclidean distance), a confidence thresh-
old can be set (e.g., with a value of 0.9), so to remove all samples that cannot be assigned 
to a cluster with a higher weight than the threshold. This approach is beneficial in terms 
of removing outliers or data points in uncertain regions, and can improve clustering re-
sults and overall system performance, particularly robustness; 
• Dataset memory management on the edge. In resource-constrained scenarios, there 

is a need to manage the amount of data to prevent memory overflow caused by con-
tinuous sampling and consequent increase in the training set. Additionally, the k-NN 
algorithm is also very memory hungry as it needs to store the entire training set for 
the inference phase. To tackle these challenges, we implemented three memory man-
agement algorithms: first in, first out (FIFO), which removes the older samples, when 
the memory is full; random memory filtering (RND); and CONF memory filtering, 
which retains in memory samples having higher confidence values. The impact on 



Energies 2021, 14, 6636 7 of 20 
 

 

performance of these memory management strategies is compared in the experi-
mental analysis section. 

• Training the decision tree on the edge. The DT training algorithm used in the AEP is 
implemented from scratch in C language, as we could not find a publicly available 
version for Cortex-M microcontrollers. The implemented training algorithm is clas-
sification and regression trees (CART), which constructs binary trees using the fea-
tures and thresholds that yield the largest information gain at each node [32]. Our 
implementation allows the user to specify two hyper-parameters for tree configura-
tion, maximum depth of the tree, and a minimum number of samples required to 
split an internal node. To simplify the implementation on the target device, we im-
plemented only the “Gini” splitting criterion, which is less computationally intensive 
than the entropy criterion. 

4.3. AEP Workflow and Memory Management 
The workflow supported by the AEP is sketched in Figure 2. In the picture, the term 

AutoDT refers to a decision tree classifier trained on the pseudo-labeled data (obtained by 
the k-means clustering algorithm running on the field device). Similarly, AutoKNN is the 
alternative k-NN classifier, which requires no training but directly exploits the pseudo-
labeled input dataset. 

 
Figure 2. The AEP workflow. 

At start-up, the AEP has no knowledge nor data. The initial phase thus consists of 
filling the memory with data samples up to a user-specified initial threshold (i.e., INI-
TIAL_THR). Once the threshold is reached, the k-means clustering is run on the recorded 
samples and returns their pseudo-labels. If the user sets the AutoDT option, the DT train-
ing algorithm is executed. As anticipated, the user can set the max tree-depth and min 
split-samples hyper-parameters for this algorithm. On the other hand, if AutoKNN is se-
lected, the collected samples together with their corresponding pseudo-labels are ready 
to be used by the k-NN classifier, and the only user-selectable hyper-parameter is the 
number of neighbors, N. 
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After this start-up, the operation loop can begin. The trained model is used to classify 
the subsequent sample stream. In order to improve (or adapt) the classifier performance, 
the new samples can also be stored in a dedicated memory section called “New Samples” 
until an update threshold specified by the user is reached (e.g., UPDATE_THR). Then, k-
means clustering is performed again for all samples in memory, providing the new set of 
pseudo-labels and updating the classifier accordingly. If the memory is full, one of the three 
data filtering algorithms available (i.e., RND, FIFO, or CONF—cfr. Previous sub-section) 
is run in order to prevent memory overflow. We should emphasize that the samples are 
considered independent and identically distributed (iid). In machine learning theory, the 
iid assumption is made for datasets to imply that all their samples have the same proba-
bility distribution and are mutually independent (e.g., the data distribution does not 
change over time or space). 

The AEP is written in platform-independent C language (i.e., it does not use native 
OS libraries), which enables code mobility across different platforms. The proposed pipe-
line is integrated with the edge learning machine (ELM) framework [33,34] and can be 
used also on various types of microcontrollers and resource-constrained devices. 

5. Experimental Analysis and Results 
The experimental analysis was performed using a NUCLEO-H743ZI2 board with an 

Arm Cortex-M7 core running at 480 MHz, with 2 MB flash memory and 1 MB SRAM. The 
STM32 H7 series is a family of high performance microcontrollers offering higher security 
and multimedia features [35]. 

To characterize the performance of the AEP, we selected two binary classification 
datasets representing major IoT domains, such as health and industry. The first one is the 
well-known Pima Indians Diabetes Database (768 samples × 8 features), used for diabetes 
detection and prediction based on diagnostic measurements [36]. The second one is the 
semiconductor manufacturing process data (SECOM) (1567 × 590), which consists of sig-
nals generated from the semiconductor device to detect anomalies [37]. We chose two da-
tasets from very different application domains in order to assess the proposed system in 
a significant range of field data typologies. 

To make the datasets fit into the MCU memory and mimic a field device environ-
ment, we reduced both the datasets to only four features by applying feature selection 
using the scikit-learn library f_classif [38]. f_classif is used only for categorical targets and 
based on the analysis of variance (ANOVA) statistical test. To evaluate the effect of this 
dataset feature reduction (DFR), we tested the performance (accuracy) on the selected da-
tasets of the two classifiers used in this work, namely DT and k-NN, before and after DFR, 
as shown in Table 1. We emphasize that the results in Table 1 are also the comparison 
reference for the various AEP implementations we will analyze later. Scikit-learn exhaus-
tive grid search cross-validation [39] was used to select the best hyper-parameter values. 
In all experiments, the accuracy is measured with the same 20% test set. 

Table 1. Classifiers’ performance (accuracy) before and after DFR. 

Dataset 
DT k-NN 

Original After DFR Original After DFR 
Diabetes 85.0% 81.2% 83.1% 77.9% 
SECOM 94.3% 92.2% 95.8% 92.2% 

The results show a 3% and 5% performance decrease in the diabetes dataset for DT 
and k-NN, respectively, while a 2% and 3% decrease was observed in SECOM. We thus 
argue that the applied DFR does not significantly affect the classifiers’ performance, and 
the resulting datasets can be used to evaluate the proposed AEP. Of course, in the AEP 
experiments, we did not use the actual labels in the training phase, but only as ground 
truth for comparing the classification results. 
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5.1. Learning Curves 
Learning curves (LCs) are a commonly used diagnostic tool in ML for algorithms that 

learn incrementally from a training dataset, such as, in our case, described in Section 4.3. 
Learning curves are used to represent the predictive generalization performance as a func-
tion of the number of training samples. It is a visualization technique that can show how 
much a model benefits from adding more training examples [40]. 

As a first step, for each dataset, Figure 3 plots the learning curves for the two classi-
fiers trained on the pseudo-labels obtained by k-means clustering (namely, AutoDT and 
AutoKNN), as a function of the size of the training set, which varies from 10% to 100% 
(out of the whole 80% training set size). For comparison, we also present the performance 
of the two classifiers trained on actual labels (DT and k-NN), as well as the performance 
of the k-means clustering only (clustering). 

 
(a) (b) 

Figure 3. Learning curves on (a) diabetes and (b) SECOM datasets. 

In Figure 3, we can see that, for the diabetes and SECOM datasets, the AEP (AutoDT 
and AutoKNN) is able to achieve accuracy levels comparable to the models of the same 
type (DT and k-NN) trained on actual labels. Performance of the SECOM dataset quickly 
saturates with a small percentage of training data. The “Clustering” approach almost al-
ways had similar accuracy levels as AEP. This is reasonable, as the latter exploits the labels 
generated by the k-means clustering algorithm to train its classifiers in the field. 

AEP generally achieves fairly similar performance to the original supervised ap-
proach trained with actual labels (DT and KNN on actual labels). However, AEP has lim-
itations, as the data in high-density areas affects the k-means clustering performance. 

In the following subsections, we go more in depth with the analysis of the AEP, con-
sidering the three research questions reported in the introduction, analyzing the various 
steps and alternatives of the workflow described in Section 4.3. 

5.2. Robustness in Sample Selection for Automated Training 
The first research question investigates the possibility of making a self-supervised 

learning system robust in sample selection for automated training in the field. We thus 
explore the effect of not including in the training memory samples having a low confi-
dence value, which is obtainable from the soft k-means algorithm. 

5.2.1. AEP: AutoDT on the NUCLEO-H743ZI2 
We evaluated the AEP with and without the confidence feature of the soft k-means 

algorithm (Section 4.2), with a confidence threshold of 0.9. We empirically identified this 
value as a good trade-off after several tests. A lower threshold means that more samples 
are retained, increasing the likelihood that points are in an uncertain (or dense) region, 
thus reducing the label robustness, while higher values may cause some representative 
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data points to be discarded. In order to keep into account the memory limitations, we use 
the RND filtering strategy. For the performance analysis on the target device, we set the 
memory threshold values (MEMORY_SIZE, INITIAL_THR, and UPDATE_THR) to 200, 
50, and 100 data samples, respectively. The best hyper-parameters for the AutoDT classi-
fier are reported in Table 2, after multiple tests on the AEP. The learning curves for Au-
toDT are shown in Figure 4. 

Table 2. Decision tree training hyper-parameters for the AutoDT. 

Dataset Max Depth Min Samples 
Diabetes 3 10 
SECOM 2 10 

 
(a) (b) 

Figure 4. Learning Curves of AutoDT on (a) Diabetes and (b) SECOM datasets. 

As described in the workflow in Section 4.3, the AEP starts learning incrementally 
until it reaches the MEMORY_SIZE threshold (200). At this point, the filtering strategy 
starts executing and the AEP is then only trained on MEMORY_SIZE samples. 

Overall, the learning curves in Figure 4 show that the Confidence algorithm leads to a 
certain accuracy increase in both the datasets (+1.9% for diabetes, +1.0% for SECOM). For 
better result presentation, the bar graphs in Figure 5 show the average accuracy and stand-
ard deviation of AutoDT on both the datasets in the MEMORY_SIZE occupation level 
case. 

 
Figure 5. Mean accuracy with standard deviation bars of AutoDT on Diabetes and SECOM datasets. 
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When we compare the above results with the DT classifier from Table 1 (after DFR), 
we can observe the following: 
1. Diabetes: the AutoDT model with confidence enabled achieves a 76.6% average accu-

racy, compared to 81.2% of the baseline DT model. 
2. SECOM: the AutoDT model with confidence achieves a 91.2% average accuracy com-

pared to 92.2% of the baseline DT model. 

5.2.2. AEP: AutoKNN on the NUCLEO-H743ZI2 
For the memory part, the procedure for the AutoKNN case is the same as for AutoDT, 

which is described in the previous sub-section. The best hyper-parameter values for the 
AutoKNN classifier are reported in Table 3, after multiple tests on the AEP. The learning 
curves for AutoKNN are reported in Figure 6. 

Table 3. Number of neighbors for the AutoKNN. 

Dataset N Neighbors 
Diabetes 5 
SECOM 5 

 
(a) (b) 

Figure 6. Learning Curves of AutoKNN on (a) Diabetes and (b) SECOM datasets. 

Overall, the AutoKNN learning curves for the diabetes and SECOM datasets show a 
limited improvement introduced by enabling the soft k-means confidence algorithm (+0.8% 
for diabetes, +0.7% for SECOM), but it should be noted that embedded performance is 
close to the reference desktop implementation (Table 1). To better illustrate the results, 
Figure 7 shows the mean accuracy and standard deviation of AutoKNN on the test da-
tasets in the MEMORY_SIZE occupation level case. 
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Figure 7. Mean accuracy with standard deviation bars of AutoKNN on Diabetes and SECOM da-
tasets. 

Comparing the bar charts result with the baseline k-NN classifier from Table 1 (after 
DFR), we can observe the following: 
1. Diabetes: AutoKNN with confidence achieves a 76.07% average accuracy compared to 

78.0% of the baseline k-NN model. 
2. SECOM: AutoKNN with confidence achieves a 90.7% average accuracy compared to 

92.2% of baseline k-NN model. 

5.3. Effect of Memory Management 
In this section, we address the second research question, by comparing performance 

of the three implemented memory filtering strategies, namely RAND, FIFO, and CONF. 
Given the iid nature of our test dataset samples, we expect that the results of the RND and 
FIFO strategies should be very similar. An improvement is expected with the CONF strat-
egy, since it should incrementally improve the dataset by retaining the samples with 
higher confidence values. 

5.3.1. AEP: AutoDT on the NUCLEO-H743ZI2 
The procedure for this analysis step is the same as for the first research question. As 

an additional comparison term, we compare the memory filtering strategies with a “one-
shot” implementation of the AEP, where clustering and training are performed only the 
first time the threshold MEMORY_SIZE samples (200 samples in this case) is reached, 
without any further update of the classifier. Given its added value, soft k-means confidence 
thresholding is enabled in all the reported test cases, except for the one-shot scenario (as 
samples are never removed in this case). Results are shown in the bar graphs in Figure 8. 
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(a) (b) 

Figure 8. Mean accuracy with standard deviation bars of AutoDT on (a) Diabetes and (b) SECOM datasets with different 
memory approaches. 

Observing the bar chart results, we can see that the three filtering strategies have a 
similar accuracy for the diabetes dataset, with the CONF approach being slightly superior. 
However, the “one-shot” implementation had the lowest accuracy, because the confidence 
algorithm is disabled, and only the first MEMORY_SIZE samples are used. Additionally, 
for the SECOM dataset, the CONF memory filtering had the highest accuracy level, and 
the “one-shot” approach had the lowest one. 

Comparing the above results with the baseline DT classifiers from Table 1 (after 
DFR), we can observe the following: 
1. Diabetes: the AutoDT model with CONF memory filtering and confidence enabled 

achieves a 76.7% average accuracy, compared to 81.2% of the baseline DT model. 
2. SECOM: the AutoDT model with CONF memory filtering and confidence enabled with 

91.8% average accuracy, compared to 92.2% of the baseline decision tree model. 

5.3.2. AEP: AutoKNN on the NUCLEO-H743ZI2 
The same procedures as for AutoDT were applied for performance assessment of the 

AutoKNN module as well. The resulting bar charts are shown in Figure 9: 

 
(a) (b) 

Figure 9. Mean accuracy with standard deviation bars of AutoKNN on (a) diabetes and (b) SECOM datasets with different 
memory approaches. 

For the diabetes dataset, the three filtering strategies had an approximately equal ac-
curacy levels with a slight superiority of the CONF strategy. Again, the “one-shot” imple-
mentation showed the lowest accuracy due to confidence disabling. The effect of the CONF 
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filtering strategy is more pronounced in the SECOM dataset, with about 2% higher accu-
racy. 

Comparing the bar chart result with the baseline k-NN classifiers from Table 1 (after 
DFR), we can observe the following: 
1. Diabetes: the AutoKNN model with CONF memory filtering and confidence enabled 

reaches a 76.2% average accuracy, compared to 77.9% of the baseline k-NN model. 
2. SECOM: the AutoKNN model with CONF memory filtering and confidence enabled 

reaches an 92.1% average accuracy, compared to 92.2% of the baseline k-NN model. 
Similar to AutoDT results, the CONF strategy had the highest accuracy levels for both 

datasets. 

5.4. Timing Performance Analysis 
In the following subsections, we address the third research question by analyzing the 

timing performance of each AEP component (e.g., clustering, filtering, training, and clas-
sification) on the NUCLEO-H743ZI2 MCU running at 480 MHz (max). 

5.4.1. k-Means Clustering Time 
Tables 4 and 5 show the timing performance for the k-means clustering module of 

the AEP on the datasets with and without confidence algorithm enabled, respectively. This 
latency is important because it periodically affects the inference process, which is stopped 
(assuming a single-thread system) in order for the classifier to get the updated pseudo-
labels. 

Table 4. k-means clustering time performance on the edge device with confidence algorithm enabled. 

Dataset 

Clustering Time (ms) 
Number of Samples 

50 150 200 
Min Mean Max Stdev Min Mean Max Stdev Min Mean Max Stdev 

Diabetes 52 52.6 53 0.6 156 156.6 157 0.6 261 300.5 315 26.1 
SECOM 52 53.0 54 1 158 159.3 161 1.5 262 314.8 327 16.7 

Table 5. k-means clustering time performance on the edge device with confidence algorithm disa-
bled. 

Dataset 

Clustering Time (ms) 
Number of Samples 

50 150 200 
Min Mean Max Stdev Min Mean Max Stdev Min Mean Max Stdev 

Diabetes 52 52.0 52 0.0 143 148.0 152 4.6 220 288.9 319 43.5 
SECOM 50 52.0 54 2.0 157 158.3 160 1.5 262 312.2 324 15.8 

The AEP first performs clustering on 50 samples and then, repeatedly, on 200 filtered 
samples (see Section 4.3). We thus report minimum, maximum, average, and standard 
deviation (three different runs under the same operating conditions) in the cases of: 50 
samples (INITIAL_THR), 150 samples (INITIAL_THR + UPDATE_THR), and 200 sam-
ples, which represents the steady state condition and the most critical case (also because 
clustering and training with fewer samples happens only at the beginning of the opera-
tion). The minimum time for clustering given in Tables 4 and 5 is achieved in the case of 
50 samples, and the maximum time is achieved in the case of 200 samples. The comparison 
between Tables 4 and 5 shows that enabling confidence results in slower clustering, which 
is due to the computational overhead (running the confidence algorithm on the clustering 
results). 
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Moreover, slight variations in the clustering time occurred due to the stopping crite-
rion of the k-means clustering adopted in the AEP, which stops the algorithm once the 
centroids of the newly formed clusters stop changing. This criterion depends on the choice 
of the initial centroids, which affects the convergence speed. In all AEP tests, the maxi-
mum number of iterations of the k-means algorithm is set to 50 (the stopping criterion is 
met before this number in all tests). 

5.4.2. Filtering Time 
This latency is important, because filtering is performed at regular intervals and af-

fects the inference process. Table 6 shows the timing performance for the three filtering 
strategies used in the AEP: FIFO, RND, and CONF. 

Table 6. Filtering time performance on the edge device with different strategies. 

Datasets 
Filtering Time (ms) 

FIFO w/o Con-
fidence 

FIFO w Confi-
dence 

RND w/o Con-
fidence 

RND w Confi-
dence 

CONF 

Diabetes 1 <1 1 <1 9 
SECOM 1 <1 1 <1 10 

The filtering is performed repeatedly to keep only MEMORY_SIZE samples (200 
samples in this case). From the above results, for both datasets, we can see that FIFO and 
RND have the same timing performance, with a slightly faster filtering time when confi-
dence is enabled. This is because the confidence algorithm removes some uncertain samples 
after clustering, resulting in a smaller number of samples that need to be filtered (e.g., 
instead of 200 out of 300 samples, 200 out of 280 samples would be filtered). The CONF 
strategy takes more time due to the execution of the sorting algorithm needed to identify 
the MEMORY_SIZE samples having higher confidence. 

5.4.3. Decision Tree Training Time 
Another significant AEP system latency factor is given by the DT training time, which 

is summed with the clustering time and filtering time discussed in the previous sub-sec-
tions. The results in Table 7 illustrate the minimum, maximum, and average training la-
tency on the datasets using the hyper-parameter configuration reported in Table 2. 

Table 7. Decision tree training time on the edge device. 

Dataset 

DT Training Time (ms) 
Number of Samples 

50 150 200 
Min Mean Max Stdev Min Mean Max Stdev Min Mean Max Stdev 

Diabetes 5 6.0 7 1.0 37 43.3 50 6.5 104 127.5 139 11.2 
SECOM 10 10.6 11 0.6 86 90.6 94 4.2 71 133.3 198 36.5 

While starting from an empty dataset, which is continuously updated, the training 
time varies with the number of samples, so three cases were considered: the case with 50 
samples (INITIAL_THR samples), the case with 150 samples (INITIAL_THR + UP-
DATE_THR), and the case with 200 samples (steady state condition). Confidence is enabled 
in all cases, and the CONF filtering method is used for the 200 sample case (the temporal 
effects of the filtering strategies are analyzed in the previous section). 

The minimum training time, reported in Table 7, is achieved in the 50 sample case, 
and the maximum time is achieved in the 200 sample case. The average AutoDT training 
time and standard deviation analysis are also shown in Table 7 after three different runs 
in the same operational conditions. 
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5.4.4. Inference Time: 
The time for inference with the DT and the k-NN classifiers in the AEP is shown in 

Table 8. We always consider the 200 samples case, which is the steady-state condition. 

Table 8. Inference time performance on the edge device for the two supported classifiers. 

Dataset 
Inference Time (ms) 

DT KNN 
Diabetes <1 1 
SECOM <1 1 

The inference time with the DT classifier is relatively low (less than 1 ms) for both 
datasets. This is because the DT algorithm produces a simple model despite the size of the 
training set. For the k-NN classifier, the inference time is slightly higher (1 ms for both 
datasets), because the k-NN inference algorithm requires the exploration of the entire 
training set, and thus its size plays an important role in the timing performance. 

5.5. AEP vs. Full Supervised Scenario on the Edge 
As a final experiment, we compared the performance of the baseline models from 

Table 1 in a fully supervised scenario (i.e., training on the cloud then deploy the model) 
with the performance of AEP (accuracy and latency), and the results are shown in Table 
9. The base models are deployed with the Micro-LM module of the ELM framework [33]. 

Table 9. Performance evaluation between base models and AEP on the NUCLEO-H743ZI2 board. 

Dataset 
DT AutoDT k-NN AutoKNN 

Accuracy Inference 
Time Accuracy Inference 

Time Accuracy Inference 
Time Accuracy Inference 

Time 

Diabetes 81.16% <1 ms 76.67% 
(−5.53%) <1 ms 77.90% 4 ms 76.17% 

(−0.22%) 1 ms 

SECOM 92.22% <1 ms 91.83% 
(−0.42%) 

<1 ms 92.22% 7 ms 92.07% 
(−0.16%) 

1 ms 

From the results, we can see that the AEP accuracy drop wrt the baseline models is 
up to 5.5% and 0.4% for diabetes and SECOM, respectively. The inference time is relatively 
short in all cases, with partially better performance on the AEP (since fewer samples are 
processed, MEMORY_SIZE = 200 samples). 

However, it is important to emphasize that the inference time performance reported 
in Table 8 does not take into account the specific case of the samples coming every UP-
DATE_THR samples (100 new samples in this case study), when a new clustering and 
training run is performed by the AEP. For such samples, the latency is thus given by Equa-
tions (2) and (3), for AutoDT and AutoKNN, respectively. Table 10 shows the computed 
inference time for this sample for both datasets: 𝐴𝑢𝑡𝑜𝐷𝑇௧௬@் =  𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑡𝑖𝑚𝑒்_்_଼ +  𝑎𝑒𝑝௨௦௧_௧ + 𝑎𝑒𝑝௧_௧+ 𝑎𝑒𝑝்_௧_௧ (2)

𝐴𝑢𝑡𝑜𝐾𝑁𝑁𝑙𝑎𝑡𝑒𝑛𝑐𝑦@𝑈𝑇 =  𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒𝐾𝑁𝑁_𝑇𝑎𝑏𝑙𝑒_8 +  𝑎𝑒𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 +  𝑎𝑒𝑝𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (3)

Table 10. Inference time for the first sample after each UPDATE_THR. 

Dataset 
Inference Time (ms) 

AutoDT AutoKNN 
Diabetes 437.2 310.7 
SECOM 458.2 325.9 
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The “one-shot” AEP option avoids the periodical update, at the cost of an accuracy 
drop with respect to the full AEP system reported in Table 9. The comparison is provided 
in Table 11. For the diabetes dataset, a 2% decrease in accuracy is observed when using 
AutoDT, while a marginal loss in accuracy of less than 1% is observed when using Au-
toKNN. For the SECOM dataset, a degradation in accuracy by 1.25% and 2.59% is ob-
served for AutoDT and AutoKNN, respectively. 

Table 11. “One-shot” AEP performance accuracy (and accuracy drop with respect to the full AEP 
system) on the NUCLEO-H743ZI2 board. 

Dataset 
Accuracy Accuracy drop 

AutoDT AutoKNN AutoDT AutoKNN 
Diabetes 74.67% 75.32% 2.00% 0.85% 
SECOM 90.58% 89.48% 1.25% 2.59% 

5.6. Summative Considerations 
As a summary, we can state that the AEP (AutoDT and AutoKNN) provides accuracy 

levels comparable to the models of the same type (DT and KNN) trained on actual labels 
and with the full dataset. This stresses feasibility and effectiveness of the proposed self-
learning pipeline. Our experience has also shown that not including in the training 
memory samples having a soft k-means confidence value under a certain threshold is a 
good option to enhance overall system robustness, especially in the case of overlapping 
clusters, and leads to performance improvement in all cases. Robustness—which is par-
ticularly critical in remote, autonomous systems—can be further increased by implement-
ing a sample filtering strategy (e.g., CONF, which outperforms FIFO and RND), which 
allows us to incrementally improve the dataset (while not increasing its size) by retaining 
the samples with higher confidence values. In our tests, the achieved accuracy improve-
ments are relatively limited (under 3%) but allow us to move closer to the reference values 
of the supervised learning implementation. We also argue that the test datasets are al-
ready optimized, while actual field operation may deal with noisy measurements, in 
which case the robustness enhancing solutions presented in this paper should be more 
relevant. 

Considering the timing performance, the inference time is relatively low in all cases, 
but the overhead incurred by periodic clustering and training may be unacceptable in 
some real-time application cases due to the interruption of the usual (inference) flow. To 
avoid this temporal overhead, a simple “one-shot” execution implementation is available 
from the AEP at the cost of a slight decrease in accuracy. A better solution could be 
achieved by parallelizing the inference and clustering/training tasks in a real-time embed-
ded operating system, provided that the inference task does not already consume the 
whole CPU time, if the system is not multi-core. 

6. Conclusions and Future Work 
With the rapid development of IoT technologies, end-devices deployed in the field 

are becoming ever more powerful and able to process data before delivery to the cloud, 
thus reducing transmission rates, bandwidth, and energy consumption. Processing data 
through ML models typically requires supervised training, which requires labeled da-
tasets. Manual labelling of datasets is a bottleneck that is addressed in literature through 
development of semi-supervised learning and self-supervised learning techniques. 

The advancement over state-of-the-art advancements aimed by this paper is twofold. 
First, we have proposed the autonomous edge pipeline (AEP), a system that combines 
unsupervised clustering, supervised learning, and inferencing in order to autonomously 
classify binary samples on the edge. The system is implemented in pure C, which makes 
it available for any microcontroller and resource constrained device. The system also fea-
tures training memory management strategies in order to deal with the limited footprint 
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of embedded devices and keep the energy demand low. To support the research activity 
in the field, the AEP is made available open source in the context of the ELM platform [33] 
(https://github.com/Edge-Learning-Machine/AEP (accessed on 16 September 2021)). 

Second, we have explored the performance of the system in order to obtain a quanti-
tative characterization of self-learning in an embedded environment. An experimental 
analysis of two publicly available IoT datasets shows that the AEP achieves similar per-
formance levels as the corresponding models trained on actual labels and with the full 
dataset. Our experience stresses the importance of filtering some samples in order to select 
the most effective samples for building the training set. This can be achieved by setting a 
proper threshold for the confidence value provided by the soft k-means algorithm. Classi-
fication performance can be slightly increased over time by keeping in the training 
memory only the samples with higher confidence values, and periodically executing new 
training sessions. In terms of timing performance, the inference time is very short, but the 
overhead incurred by periodic clustering and training penalizes the timing performance. 
This extra time overhead can be avoided by a “one-shot” implementation, where cluster-
ing and training are performed only once when the threshold MEMORY_SIZE samples is 
reached, resulting in a slight drop in accuracy. 

The AEP system is completely application independent. Potential benefits are ex-
pected to be significant in several application domains, for instance as it would allow in-
troducing checks that are currently not foreseeable because of the need for manual sample 
labeling. For example, it could be possible to extend quality control in industrial plants by 
applying the AEP to detect defects and anomalies in several stages of a manufacturing 
chain. This application scenario is also close to the one represented by the SECOM dataset 
studied in this paper. Of course, the loss in accuracy wrt a supervised-learning-based sys-
tem should be carefully considered in a complete system/product design perspective, par-
ticularly for health/safety-related applications, for which unsupervised learning looks 
critical. More generally, human factor aspects, such as privacy, invasiveness, and dignity, 
must be always taken into account when designing real-world applications. 

In the future, we plan to extend the implementation of the AEP to support other la-
beling methods and classification algorithms, paying particular attention to the computa-
tional cost of the training phase, which could be particularly critical on resource-scarce 
devices and may require some optimizations. We are also interested in exploring an AEP 
extension addressing time-series. Moreover, task parallelism or an escape algorithm is re-
quired to avoid the inference latency overhead caused by the labeling and training phases 
needed at each model update. 
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