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Abstract: Electronic vehicle dynamics systems are expected to evolve in the future as more and
more automobile manufacturers mark fully automated vehicles as their main path of development.
State-of-the-art electronic stability control programs aim to limit the vehicle motion within the stable
region of the vehicle dynamics, thereby preventing drifting. On the contrary, in this paper, the
authors suggest its use as an optimal cornering technique in emergency situations and on certain
road conditions. Achieving the automated initiation and stabilization of vehicle drift motion (also
known as powerslide) on varying road surfaces means a high level of controllability over the vehicle.
This article proposes a novel approach to realize automated vehicle drifting in multiple operation
points on different road surfaces. A three-state nonlinear vehicle and tire model was selected for
control-oriented purposes. Model predictive control (MPC) was chosen with an online updating
strategy to initiate and maintain the drift even in changing conditions. Parameter identification was
conducted on a test vehicle. Equilibrium analysis was a key tool to identify steady-state drift states,
and successive linearization was used as an updating strategy. The authors show that the proposed
controller is capable of initiating and maintaining steady-state drifting. In the first test scenario, the
reaching of a single drifting equilibrium point with −27.5◦ sideslip angle and 10 m/s longitudinal
speed is presented, which resulted in −20◦ roadwheel angle. In the second demonstration, the
setpoints were altered across three different operating points with sideslip angles ranging from
−27.5◦ to −35◦. In the third test case, a wet to dry road transition is presented with 0.8 and 0.95 road
grip values, respectively.

Keywords: autonomous drifting; model predictive control (MPC); successive linearization; adaptive
control; vehicle motion control; varying road surfaces; vehicle dynamics

1. Introduction

To achieve the goal of automated driving, classical electronic vehicle dynamics systems
are essential to prevent the vehicle from going beyond the limit of handling. Systems such
as ABS or ESP can make interventions to keep the vehicle in a safe condition that improves
road safety significantly. As stated in [1–3], road traffic crashes are a considerable concern in
motorized countries because of their impact on society and the economy. As an evolution,
in this paper, the authors introduce a new breed of electronic vehicle dynamics system
which, instead of preventing the drift scenario in the case of an emergency situation, it
uses it as an optimal cornering method to stabilize the vehicle. Moreover, the proposed
method also provides a solution for high-sideslip cornering on varying road surfaces.
The performance of autonomous vehicles should be as good as human drivers or better
to gain social trust and acknowledgement. Controlling drift scenarios on varying road
surfaces proves a high level of controllability even in situations that can be challenging
for professional human drivers. The control and better understanding of these kinds of
motions can support the more widespread usage of fully automated cars of the future.
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In the last decade, the development of fully automated vehicles seems to have been
one of the most primary focuses of development for many automobile manufacturers.
On the other hand, the control of normal driving scenarios such as in [4–7] have been at
the center of their research in most cases. One drawback of these methods is that they
are unable to stabilize the vehicle beyond the limit of handling. To improve road safety,
automated vehicles should also be capable of performing high-sideslip maneuvers such
as drifts.

This manuscript describes drift maneuvers using equilibrium points as stated in [8,9].
It was shown in [10] that a three-state bicycle model with a nonlinear tire model could
be used for steady-state drift control design. The three-state bicycle model describes the
motion of the vehicle by three state variables, which are the longitudinal velocity, the
lateral velocity, and the yaw-rate. Measurements on a real vehicle were taken for adequate
model parametrization.

In [11], the advantages, such as more accurate tracking of the desired operating point
and a better disturbance rejection capability, of MIMO (multiple-input multiple-output)
controllers were stated over SIMO (single-input single-output) approaches. The authors
used optimal control to achieve drift maneuvers. An LQR (linear quadratic regulator)
controller was designed for this purpose.

A study was conducted in [12], where the authors performed path control at the limit
of handling using the state-dependent Riccati equation technique. Their objective was to
minimize lateral path-tracking error while tires operate in limit handling. The proposed
controller showed robust path-tracking performance even when the rear wheels were
operated beyond their friction limits, and large body sideslip prevailed.

A robust, state-feedback control approach was introduced in [13] with uncertain
disturbances to maintain drift maneuvers. A 4-DOF nonlinear vehicle dynamics model
was established with the so-called UniTire model (for more information, see [14]). The
authors performed drift both in steady and in transient states with this approach. It was
also concluded that vehicles, which can drive in drift conditions, are considerably safer.

The model predictive control (MPC) scheme is an optimizing control theory that
is becoming popular owing to abilities such as handling constraints directly or future
prediction in the design process. Nonetheless, MPC is not a common choice in the field of
autonomous drifting but more favored in path tracking, as shown in [15]. In that paper,
a so-called multilayer MPC was designed. Three path-tracking controllers were used
with fixed velocities and with a velocity decision controller. The author pointed out the
outstanding performance of the multilayer MPC as an appropriate choice for real-time
application in the field of vehicle motion control.

Adaptive cruise control for cut-in scenarios based on MPC was introduced in [16].
The author defined a finite state machine to manage vehicle control in different scenar-
ios. In addition, MPC was used to realize coordinate control of the host vehicle and the
cut-in vehicle.

Since the number of actuators that directly control the motion of a vehicle is expected
to multiply [17–19], this will open up new possibilities for controlling maneuvers such
as drift more precisely. Having proper control of these actuators will allow performing
maneuvers that are impossible even for a professional human driver.

The aim of the current article is to perform steady-state drifting in multiple equilibria
on varying road surfaces conditions, using the adaptive MPC topology. Whilst multilayer
MPC is a cluster of predefined linear controllers with a decision controller, the adaptive
MPC proposed by the authors is a more general approach of one controller with a pre-
defined model with an updating strategy, for which successive linearization was chosen.

Controller performance was investigated in a simulation environment in different test
cases for which a three-state, one-track model was defined with a nonlinear tire model. It
is shown that the developed adaptive MPC is a practical solution for motion control and
automated drifting that can handle changing road conditions, model nonlinearities, and
actuator constraints. The computational requirement of a nonlinear MPC is high, and the
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nonlinear optimization problem might not be solved in real time. In this article, the authors
use a linear MPC coupled with a quadratic cost function, of which the computational needs
can be handled by currently available hardware. The contribution of this paper is twofold.
The first contribution is the application of a multilayer MPC for vehicle drift control, as
there was previously no research in which MPC was applied. The second contribution
is the ability of the proposed controller to handle the change in friction during vehicle
drifting. In the other research presented above, the authors applied a fixed constant friction
coefficient during vehicle drift in both simulation and measurement. In this paper, the
proposed controller can handle the changes in friction without aborting the drift motion,
which results in excellent adaptability of the proposed method, and which is also crucial
for real-life driving scenarios.

2. Vehicle Modeling and Simulation Setup

In this section, the vehicle model which served as a basis for the controller design
and implementation, as well as for software-in-the-loop (SIL) evaluation of the proposed
MPC framework, is presented. For model identification purposes, measurements with a
series production coupé sports car were used. A single-track model was built up for both
simulations and controller design with a nonlinear tire model.

2.1. Vehicle Modeling

First and foremost, a vehicle model must be defined for the appropriate controller
design and SIL testing. Considering the desired application, high fidelity is required to
capture the dynamical behavior of the vehicle; moreover, low computational demand is
also necessary to allow embedded application. In this paper, a three-state, two-wheel
bicycle model with a nonlinear tire model was chosen for this purpose. It was shown
in [10,11,20] that a two-wheel bicycle model can be sufficient for optimal control methods
to achieve steady-state self-drifting.

2.1.1. Two-Wheel Planar Vehicle Dynamics

The equations of motion in longitudinal and lateral directions, and the yaw dynamics
of the vehicle are presented in differential Equations (1)–(3) based on the Newtonian laws,
as described in detail in [21]. Please refer to Appendix A for a better understanding of the
applied nomenclature.

.
Vx =

1
m
(Fx − FA) + rVy. (1)

.
Vy =

1
m

Fy − rVx. (2)

.
r =

1
Iz

Mz. (3)

The longitudinal (Equation (4)) and lateral (Equation (5)) forces, and the yaw torque
(Equation (7)) can be derived from the tire forces as described below, along with the
air drag (Equation (6)). The yaw torque (7) is applied at the center of gravity (CoG) of
the vehicle.

Fx = FxF cosδ + FxR − FyF sinδ. (4)

Fy = FyF cosδ + FyR + FxF sinδ. (5)

FA =
1
2

A ρ CA V2
x . (6)

Mz = aFyF cosδ− bFyR + aFxF sinδ. (7)
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The sideslip angle of the front (Equation (8)) and rear (Equation (9)) wheels, and the
sideslip angle of the vehicle, which is applied at the center of gravity (Equation (10)), can
be calculated in the following way:

α f = arctan
(

Vy + ar
Vx

)
− δ, (8)

αr = arctan
(

Vy − br
Vx

)
, (9)

β = arctan
(

Vy

Vx

)
. (10)

The air drag force FA is considered zero in the above equations since the speed of drift
results in neglectable air drag. Due to small values, rolling and pitching dynamics are also
neglected. Since the test vehicle is rear-wheel-driven, and there is no braking during this
specific drift maneuver, FxF is considered zero throughout this paper.

2.1.2. Nonlinear Tire Model

The forces in the above-defined equations awaken in the contact patches of the tires.
Owing to the complex, heterogeneous structure of pneumatic rubber tires [22], tire models
vary in a wide-scaled spectrum regarding their specific application. According to com-
plexity levels, finite element models [23] and empirical models [24] are also widespread
in the literature. For achieving a simple, but meaningful tire model for a control-oriented
approach, the so-called brush tire model was selected for calculating the lateral tire force.

The equations below can be used for describing the lateral force of the tires in both
saturated and unsaturated phases. Saturation refers to the operating range of the tire, where
the change in the lateral slip does not affect the generated force. Physically meaningful
consideration was derived in [25,26].

For the front tire where no longitudinal forces are considered, the lateral tire force can
be calculated on the basis of the following equations, where αsl denotes tire sideslip limit
where the tires become saturated:

FyF =

{
−CαFtan(α) + CαF

2

3µFzF
tan(α)|tan(α)| − CαF

3

27µ2F2
zF

tan(α)3, |α| ≤ αsl

−µFzFsgn(α), |α| > αsl
, (11)

αsl_F = arctan
(

3µFzF
CαF

)
. (12)

In the case of the rear tire, a solution must be found to also add the longitudinal forces
to the model. A similar approach could be applied that was also used for deriving the
lateral forces, although the wheel speeds would appear as additional states in the model.
To overcome this matter, the connection between the longitudinal and lateral forces was
determined with the friction circle and described by a coupling factor, as suggested in [10].
As stated below, ξ determines the amount of lateral force that can be reached directly from
the friction.

Fmax
y = ξµFzR. (13)

ξ =

√
(µFzR)

2 − FxR2

µFzR
. (14)

Accordingly, Equation (11) can be augmented to compute both the lateral and the
longitudinal forces for the rear tire.

FyR =

{
−CαRtan(α) + CαR

2

3ξµFzR
tan(α)|tan(α)| − CαR

3

27ξ2µ2F2
zR

tan(α)3, |α| ≤ αsl

−ξµFzRsgn(α), |α| > αsl
. (15)
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αsl_R = arctan
(

3ξµFzR
CαR

)
. (16)

2.2. Model Parameter Identification Measurements

Model parameter identification was conducted by the authors. The test vehicle, which
was used as a source of model parameter identification measurements, possesses a 3.0 L
twin-turbocharged straight-six engine. As for the characteristics of the engine, it is able
to produce 550 N·m torque between 2350 and 5230 RPM and 411 HP (302 kW) between
5230 and 7000 RPM. The test vehicle has a rear-wheel drive and a seven-speed dual-clutch
automatic transmission.

The position of the center of gravity, depicted in Figure 1, was determined by measur-
ing the axle weights. As a result, 925 kg was measured on the first axle, and 895 kg was
measured on the second axle. Taking the total length of the wheelbase, which is 2.69, the
position of the center of gravity is situated 1.37 m far away in front of the second axle.

Energies 2021, 14, x FOR PEER REVIEW 5 of 18 
 

 

Accordingly, Equation (11) can be augmented to compute both the lateral and the 
longitudinal forces for the rear tire. 

𝐹௬ோ = ቐ
−𝐶ఈோ𝑡𝑎𝑛(𝛼) +

𝐶ఈோ
ଶ

3𝜉𝜇𝐹௭ோ

𝑡𝑎𝑛(𝛼)|𝑡𝑎𝑛(𝛼)| −
𝐶ఈோ

ଷ

27𝜉ଶ𝜇ଶ𝐹௭ோ
ଶ 𝑡𝑎𝑛(𝛼)ଷ,   |𝛼| ≤ 𝛼௦

−𝜉𝜇𝐹௭ோ𝑠𝑔𝑛(𝛼),                                                                                    |𝛼| > 𝛼௦

. (15)

𝛼௦_ோ = 𝑎𝑟𝑐𝑡𝑎𝑛 ൬
3𝜉𝜇𝐹௭ோ

𝐶ఈோ

൰. (16)

2.2. Model Parameter Identification Measurements 
Model parameter identification was conducted by the authors. The test vehicle, 

which was used as a source of model parameter identification measurements, possesses a 
3.0 L twin-turbocharged straight-six engine. As for the characteristics of the engine, it is 
able to produce 550 N·m torque between 2350 and 5230 RPM and 411 HP (302 kW) be-
tween 5230 and 7000 RPM. The test vehicle has a rear-wheel drive and a seven-speed dual-
clutch automatic transmission.  

The position of the center of gravity, depicted in Figure 1, was determined by meas-
uring the axle weights. As a result, 925 kg was measured on the first axle, and 895 kg was 
measured on the second axle. Taking the total length of the wheelbase, which is 2.69, the 
position of the center of gravity is situated 1.37 m far away in front of the second axle. 

 
Figure 1. Bicycle model notations used in the equations. 

Parameters of the above-defined brush tire model, such as friction coefficients or cor-
nering stiffness, were necessary to identify in advance. For this purpose, the ISO 13674-2 
standard was used with ramp steering maneuvers. The measurement was performed 
from an initial straight line until the vehicle reached a constant velocity of 100 km/h. In 
the next step, the neutral gear was selected, and a slow, constant velocity ramp was given 
as an input to the steering wheel. The ZalaZone Dynamical Platform [27] served as a test-
ing ground for the parameter identification. The friction coefficient of its special, dry as-
phalt was close to 1 in the case of both tires. As a result of the measurements, the cornering 
stiffness turned out to be 300,000 N/rad for the front tires and 500,000 N/rad for the rear 
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Figure 1. Bicycle model notations used in the equations.

Parameters of the above-defined brush tire model, such as friction coefficients or
cornering stiffness, were necessary to identify in advance. For this purpose, the ISO 13674-2
standard was used with ramp steering maneuvers. The measurement was performed from
an initial straight line until the vehicle reached a constant velocity of 100 km/h. In the next
step, the neutral gear was selected, and a slow, constant velocity ramp was given as an
input to the steering wheel. The ZalaZone Dynamical Platform [27] served as a testing
ground for the parameter identification. The friction coefficient of its special, dry asphalt
was close to 1 in the case of both tires. As a result of the measurements, the cornering
stiffness turned out to be 300,000 N/rad for the front tires and 500,000 N/rad for the rear
tires [28]. The measured data points and the characteristics of the tires can be seen in
Figure 2.
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3. Equilibrium Analysis

In this study, steady-state drifting cornering is targeted. It occurs in special locations
of the state space, where all the state derivatives are equal to zero, called equilibrium points.
With this idea in mind, the equilibria of the system must be determined and analyzed for
the desired operation.

According to the three-state bicycle model, the state matrix of the system
(Equations (1)–(3)) can be written in the form of

x =

 Vy
r

Vx

, (17)

where the states were chosen as the lateral vehicle speed, yaw rate, and longitudinal
vehicle speed.

The control inputs were defined as the roadwheel angle and the rear traction force.

u =

[
δ

FxR

]
. (18)

To locate the equilibria of the system, the following algebraic equation system must
be satisfied:

.
x = F(xeq, ueq) = 0. (19)

It can be deduced that our system is an underactuated system since we have one more
state than control input. This yields that not all the state derivatives can be driven to zero
from an arbitrary point of the state space. Furthermore, considering all the equations, one
can see that we have fewer equations than variables; therefore, we need to choose some
variables to be fixed in advance. This observation indicates that only specific locations of
the state space are solutions of the equation system. To solve this problem, the velocity is
set to 10 m

s as a known variable, and the steering angle ranged between −35◦ and +35◦ rad
with a step size of 2.86◦. Figures 3–5 show the calculated results of Equation (19) with the
described parameters.
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For controller performance evaluation, three equilibrium points were chosen to be
used in the subsequent sections. Parameter values for the test cases are summarized in
Table 1.

Table 1. Equilibrium points used in the controller evaluation simulations.

Case No. δ (◦) FxR (N) Vy (m/s) r (rad/s) Vx (m/s)

1 −20.05 4753 −5.21 0.776 10
2 −28.65 5500 −6.99 0.713 10
3 −22.92 5254 −6.36 0.735 10
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4. Controller Design

In this section, the formulation of the control problem is stated. As previously dis-
cussed in Section 1, a MIMO controller is necessary to achieve the desired performance.
In this manuscript, an adaptive MPC was designed for this purpose. The state matrices
are updated for solving the quadratic problem (QP) at every time step. Updating the
state matrices can provide a better control performance during varying environmental
conditions due to the utilization of actual model parameter estimates such as the road grip.
Moreover, it allows using our controller in multiple equilibria with only one controller.

Below, a system with Nx states and Nu inputs is considered. The system can be
described by ordinary differential equations as presented in Section 2.1 and written in the
form of Equation (20).

.
x = F(x, u), y = z(x, u). (20)

4.1. MPC Formulation

Model predictive control is an optimizing control theory that uses the discrete model
of the system to predict its behavior in the future. MPC calculates a series of inputs to
minimize the predefined cost function at every time step (Ts). When the cost function is
minimized, the first element of the calculated control inputs is applied. Crucial parameters
are the prediction horizon Np and the control horizon Nc. Np defines the capability of
the system in terms of how far it can see into the future. The time horizon Np,t, which
corresponds to the prediction horizon Np can be written in the following form:

Np,t = NpTs, (21)

where m is a positive integer, and Ts = 10 ms throughout this paper. Nc defines the number
of control inputs that can be optimized in one time step. One should carefully set these
parameters to see the transient of the system in advance, thereby avoiding unnecessarily
high computational needs. The MPC uses full state feedback that minimizes the cost
function below.

J(k) =
1
2

(
x̂T

=
Qx x̂ + uT

=
R u + ẑT

=
Qz ẑ

)
, (22)

where x̂ is the stacked vector of the predicted states, ẑ denotes the performance, and u
is the control inputs at every time step k. Qx = Qx

T ≥ 0 ∈ R3×3, Qx = Qx
T ≥

0 ∈ R3×3, and R = RT > 0 ∈ R1 are weight matrices. Based on this,
=

Qx =
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diag(Qx, Qx, . . . Qx) ∈ RNx Np×Nx Np ,
=

Qx = diag(Qz, Qz, . . . Qz) ∈ RNx Np×Nx Np , and
=
R = diag(R, R, . . . R) ∈ RNu Np×Nu Np .

A further advantage of MPC, for instance, over LQ control, is that it handles the
constraints of the system directly. Constraints were set in case of the control inputs.

− umin < u < umax. (23)

During the simulation, the physical constraints of the test vehicle were taken into
consideration. This means that the steering angle δ could range between −35◦ and +35◦,
and the driving force FxR at the rear wheel was between 0 N and 7000 N.

The evolution matrices in Equation (24) can be determined according to [29]. The D
selection matrix was zero throughout in this paper. The system state x(k) is measured at
the time step k.

x̂︷ ︸︸ ︷
x(k + 1)
x(k + 2)

...
x(k + Np)

 =

=
A︷ ︸︸ ︷
A
A2

...
ANp

x(k) +

=
B︷ ︸︸ ︷

B 0 · · · 0
AB B · · · 0

... · · · . . .
...

ANp−1B · · · . . . B



u︷ ︸︸ ︷
u(k)

u(k + 1)
...

u
(
k + Np − 1

)
 (24)

The cost function must penalize both the magnitude of the applied control inputs,
steering angle, traction force, and deviation of the states from the reference trajectory in
order to formulate the optimization problem, the solution of which is the optimal control
inputs. The error vector z is the following:

ẑ︷ ︸︸ ︷
z(k + 1)
z(k + 2)

...
z(k + Np)

 =

=
C︷ ︸︸ ︷

C 0 · · · 0
0 C · · · 0
... · · · C

...
0 · · · . . . C



x̂︷ ︸︸ ︷
x(k + 1)
x(k + 2)

...
x(k + Np)

. (25)

The cost function is calculated by substituting Equations (24) and (25) into Equation (22).

J =
1
2

uT H u + f Tu. (26)

For a more detailed derivation, see [28]. The QP problem is formed in the following equation:

min
u

[
1
2

uT H u + f Tu
]

, (27)

subject to
− 0.6 < u1 < 0.6, (28)

0 < u2 < 7000. (29)

4.2. Successive Linearization

Traditional MPC works on linear and discrete models. Nonetheless, the vast majority
of dynamical systems are nonlinear, which is the case of the presented vehicle model
introduced in Section 2.1. To be able to create an MPC control scheme, it is reasonable to
linearize the nonlinear system and discretize the continuous system afterward. Successive
linearization was selected according to [30]. Successive linearization is a key tool to make
our model adaptive to environmental and conditional changes in real time. Successive
linearization is a linearization method followed by discretization. The idea is to create
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a linear MPC for every time step and make it adaptive to the changing conditions by
updating the model that the MPC uses to formulate the QP problem, instead of using a
more complex control scheme like nonlinear MPC in [31].

The system described in Equation (20) can be linearized in specific operating points
by knowing its gradient. One can interpret it as Jacobian linearization. According to the
aforementioned specifications, the state matrices of the linearized system can be derived
as follows:

Ac(i, j) =
∂Fi
∂xj

, Bc(i, j) =
∂Fi
∂uj

, (30)

Cc(i, j) =
∂zi
∂xj

, Dc(i, j) =
∂zi
∂uj

. (31)

By knowing the operating points at every time step, the matrices in Equations (30)
and (31) can be determined in numerical form. Since MPC works on discrete systems,
discretization is required.

The linear continuous system of Equations (30) and (31) can be discretized as defined
in Equations (32)–(34).

Ad = eAcTs . (32)

Bd = A−1
c

(
eAcTs − I

)
Bc. (33)

Cd = Cc, Dd = Dc. (34)

Equations (32)–(34) can be substituted into Equations (24) and (25) at every time step.
A MATLAB and Simulink environment was used for model and controller implemen-

tation (the implemented MPC controller and the nonlinear vehicle model are marked in
blue in Figure 6), as well as for software-in-loop testing. In order to appropriately tune the
weight matrices of Equation (22), a simple linear MPC was created for one equilibrium.
Since the aim is to control a nonlinear system with a linear controller around an equilibrium,
one should take coordinate system transformation into consideration as a result of Jacobian
linearization. Coordinate system transformation was applied according to [32]. The control
scheme is depicted in Figure 6. Blocks responsible for coordinate transformation between
the controller and the vehicle model are marked in yellow.

Energies 2021, 14, x FOR PEER REVIEW 11 of 18 
 

 

  
Figure 6. The control scheme. 

5. Simulation Results 
In this section, the simulation results are revealed. The first test case was created to 

tune the parameters of the controller and test its performance. In the second test case, the 
vehicle was driven through multiple equilibria. Lastly, the alteration of the road surface 
was considered while driving through multiple equilibria. 

5.1. Steady-State Drift in a Single Equilibrium 
Firstly, the control scheme was tested only using Case No. 1 of Table 1 (Equation (1)). 

This was an important step in order to tune the weight matrices. A PI (proportional–inte-
gral) cruise controller was used to accelerate the vehicle from 0 to 8 m/s, after which the 
control was given to the MPC drift controller. The controller was able to drive the car into 
a drift state and keep it there simultaneously. Figure 7 shows the simulation results after 
8 m/s was reached. The controller needed to cope with the task of accelerating the vehicle 
by 2 m/s to reach the desired drifting speed. It can be deduced from the results that the 
designed linear controller was capable of controlling the defined nonlinear system around 
the desired equilibrium after the proper tuning. This was proven by the simulations where 
the vehicle performed a high-sideslip cornering motion, as depicted in Figure 8. The 
movement of the vehicle can also be tracked in this figure. Firstly, the drift controller took 
over the control at (0,0), after which there was an acceleration period. When all the states 
were driven to the operating points, the steady-state drift was maintained. 
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5. Simulation Results

In this section, the simulation results are revealed. The first test case was created to
tune the parameters of the controller and test its performance. In the second test case, the
vehicle was driven through multiple equilibria. Lastly, the alteration of the road surface
was considered while driving through multiple equilibria.
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5.1. Steady-State Drift in a Single Equilibrium

Firstly, the control scheme was tested only using Case No. 1 of Table 1 (Equation (1)). This
was an important step in order to tune the weight matrices. A PI (proportional–integral)
cruise controller was used to accelerate the vehicle from 0 to 8 m/s, after which the control
was given to the MPC drift controller. The controller was able to drive the car into a drift
state and keep it there simultaneously. Figure 7 shows the simulation results after 8 m/s
was reached. The controller needed to cope with the task of accelerating the vehicle by
2 m/s to reach the desired drifting speed. It can be deduced from the results that the
designed linear controller was capable of controlling the defined nonlinear system around
the desired equilibrium after the proper tuning. This was proven by the simulations where
the vehicle performed a high-sideslip cornering motion, as depicted in Figure 8. The
movement of the vehicle can also be tracked in this figure. Firstly, the drift controller took
over the control at (0,0), after which there was an acceleration period. When all the states
were driven to the operating points, the steady-state drift was maintained.
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5.2. Steady-State Drift in Multiple Equilibria

The controller introduced in Section 5.1 was able to maintain the system at the desired
operating point. However, it performed poorly in other segments of the state space. The
adaptive MPC structure can be a solution for this limitation. This section points out the
advantages of adaptive MPC over linear MPC for multi-operating point purposes.

The second step after Section 5.1 was to drift around three different equilibria. In this
case, the system was updated, and a new MPC was formed online at every time step. The
MPC could not only keep the vehicle at the limit of handling, but it was also able to drive
the system from one equilibrium to another. The order of the steady points was based
on the idea to test the robustness of the controller. First of all, the controller needed to
accelerate the system from 8 m/s to 10 m/s while driving it into a drift state. Furthermore,
after drifting in the first circle, the controller needed to drive the vehicle into a circle with a
smaller radius and into a considerably bigger one after that. The transition in the first case
from Equation (3) to Equation (1) was relatively smaller (these were closer operating points)
than that from Equation (1) to Equation (2), as can be seen in Figure 9 by examining the
overshoots. The controller was able to cope with both acceleration and deceleration tasks.
Figure 10 depicts the control inputs during steady-state drift at the operating points. As
can be seen, the control inputs were the same in the steady-state cases as the precalculated
values in Table 1.
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5.3. Drifting on Varying Road Surfaces

In real-life scenarios, changing road surfaces is a common occurrence. Moreover,
during drifting, the vehicle can also go off-road or across wet asphalt areas. The varying
friction of road surfaces raises many challenges for autonomous vehicles. Road surface
estimation is an active topic in the field of autonomous vehicle development. Machine
learning is a promising methodology for road surface estimation, as shown in [33–35].
A new idea was proposed in [35] based on a machine-learning approach to estimate road
surface. The authors introduced a methodology that relies on large datasets that can be
collected using onboard sensors or dynamic simulations. Online road surface estimation is
an essential extension of the proposed method introduced in Section 5.2. Nevertheless, it
is beyond the scope of the present work. Hence, preset friction coefficients were used for
testing the adaptability of the software.

Simulations confirmed the fact that the tolerance of the linear controller was limited
toward road changes. Setting the friction coefficient of the road surface to 0.8 from 0.95, for
instance, resulted in poor performance or even instability. Adaptive topology can also be
used to eliminate this problem. By having an estimation of the road surface, the friction
coefficient can be updated along with the other parameters to provide a more accurate
model for the MPC to work on. Road friction is considered a variable in the state matrices
updated at every time step before passing them to the MPC for prediction.

The friction coefficient was changed as a step, assuming a sudden alteration of the
road surface. The change was made at the same time when the controller attempted to
drive the system into a new equilibrium. The grip suddenly changed from 0.8 to 0.95,
which is roughly equivalent to a wet to dry road transition. Overall, the alteration of
the road friction could be interpreted as a special type of transition between equilibria.
Figure 11 shows the evolution of the states during the test case, while Figure 12 depicts the
trajectory traveled. Despite the sudden change in the operating conditions, the proposed
adaptive MPC controller was able to precisely stabilize both targeted drift equilibria by
utilizing the available information of the road grip.
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6. Conclusions

In this article, the authors highlighted the importance of vehicle motion control at han-
dling limits and automated drifting as one of the critical developments of fully autonomous
vehicles of the future, aiming at improved road safety. Vehicle automated drifting capabili-
ties were demonstrated during different operating conditions with a systematic controller
development process, as outlined below. The handling of changing road conditions and
vehicle model nonlinearities is among the key advantages of the proposed adaptive MPC
control framework. In Section 2, a nonlinear dynamic vehicle model and a nonlinear tire
model were introduced for control-oriented purposes, and the parameter identification
was carried out. In Sections 3 and 4, the control scheme and the updating strategy were
explained in detail.

In Section 5.1, the weight matrices were determined using a single equilibrium for
testing. It was shown that a linear MPC is capable of driving the nonlinear system into the
desired drifting equilibrium, keeping it there with the appropriate tuning.

Linear MPC is a simpler control methodology compared to nonlinear MPC, but it
performs poorly if the change in vehicle dynamic behavior is far from the design point due
to nonlinearities or when it faces parameter variations (road surface changes). According
to the proposed idea, these drawbacks can be eliminated by updating the discrete model
of the vehicle, reformulating the MPC in an adaptive way, and utilizing measured or
estimated model parameter values. This allows using the same MPC structure by updating
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it instead of using a more different linear MPC and a decision controller for drifting in
multiple equilibria as a gain scheduling.

Another advantage of this method in vehicle motion control is directly handling
changes in the road surface. A slight or abrupt variation in friction is a common occurrence
in real-life driving scenarios. This paper showed that the controller could handle not only
various transitions between multiple equilibria but also a simultaneous change in the
road grip.

A reasonable next step of the work is to extend the proposed framework with
trajectory-planning and -tracking capabilities and possibly online road surface estima-
tion to demonstrate advantages in critical road safety scenarios.
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Appendix A

Table A1. Nomenclature: list of variables.

Name Sign Dimension

mass of the vehicle m kg

vehicle moment of inertia around z-axis Iz kg·m2

lateral force Fy N

lateral force at front wheel FyF N

lateral force at rear wheel FyR N

normal load on the front wheels FzF N

normal load on the rear wheels FzR N

drive force at the rear wheel FxR N

drive force at the front wheel FxF N

air drag FA N

applied torque at the center of gravity Mz Nm

yaw-rate r rad/s
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Table A1. Cont.

Name Sign Dimension

longitudinal velocity Vx m/s

lateral velocity Vy m/s

distance between center of gravity and front axle a m

distance between center of gravity and rear axle b m

derating factor ξ -

cornering stiffness of the front tire CαF N/rad

cornering stiffness of the rear tire CαR N/rad

air drag coefficient CA -

frontal cross-section surface of the vehicle A m2

air density ρ kg/m3

front tire sideslip angle αF rad

rear tire sideslip angle αR rad

sideslip boundary angle of the front tire αsl_F rad

sideslip boundary angle of the front rear αsl_R rad

friction coefficient µ -

vehicle sideslip angle at center of gravity β rad

steering angle δ rad

state vector x -

input vector u -

continuous time state matrices Ac, Bc, Cc, Dc -

discrete time state matrices Ad, Bd, Cd, Dd -
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