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Abstract: A detailed literature analysis depicts that artificial neural networks are rarely used for the
power consumption estimation in the mobile robotics field. Instead, researchers prefer to develop
analytical models of investigated robots. This manuscript presents a comparison of mathematical
models and non-complex artificial neural networks in energy prediction tasks for differential and
skid-steer drive robots which move over various types of surfaces. The results show that both
methods could be used interchangeably but AI methods are more universal, do not depend on the
kinematic structure of a robot and are tolerant for designers not having a complex knowledge about
the system.

Keywords: differential drive mobile robot; skid-steer drive mobile robot; energy prediction
algorithms; artificial neural networks

1. Introduction

The objective of energy prediction algorithms is to answer the question about how
long a device will stay operational when it is supplied by a power source with a limited
amount of energy. Especially in the field of robotics, such knowledge allows to use system
management methods to design robust robots (by assuring uninterrupted access to energy
during execution of the mission) with implemented optimization methods providing
reduction of power consumption [1,2]. As a result, mobile robots can operate longer [3]
and the path planners can significantly increase the energy efficiency in comparison to the
classical ones based on path length minimalization [4].

In the industrial environment, the most popular robots are differential and skid-steer
drive mobile robots; thus, the research introduced in this article focuses on the mentioned
types. It is common in energy prediction algorithm development, that researchers, based
on an analytical description of robot–ground interaction, create mathematical models of
the robots and identify their coefficients as a result of experiments. Creation of models
independent of robot’s kinematic structure requires an experimental identification of
many parameters [5], such as motor’s coefficients which can be unavailable for the main
robot’s computer making the process of automatic calibration almost impossible. Usually,
designers of algorithms create a mathematical description of the power consumed during
robot’s movement only for a specific drive type because the influence of lateral friction
forces acting on skid-steer robots during driving are not negligible [6–8].

Therefore, the differential drive models [1,9,10] cannot be used directly for power
estimation of skid-steer drive. However, robots for low velocities, not higher than human
walking speed [11], can be treated as differential with wheels located in instantaneous
centers of rotation (ICR) of the left and right side of the robot’s body [12]. This method
simplified the description of skid-steer robots and was used in an energy prediction
algorithm [13,14] which is valid for any skid-steer suspension, such as 4-wheels, 6-wheels
or tracks [6,15].
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The main drawback of abovementioned methods is the necessity of finding an analyti-
cal formula describing the system behavior. This can be extremely difficult for complex
robotic constructions. To deal with the problem, the mathematical model could be replaced
by an artificial neural network as a nonlinear approximation. After the literature review, it
seems that the AI techniques are rarely used for power consumption estimation. In [16],
it is shown that the usage of feedforward and recurrent neural networks trained offline
can be used to find the battery remaining state of a charge based on mission parameters.
Another utilization of neural networks is presented in [17] to find out how many mission
steps can be completed before the robot’s battery will be fully discharged. In both articles,
the authors used precisely known battery data, therefore, the methods cannot be directly
used to determine the robot’s energy demand when it is supplied by another power source.
The low popularity of the neural network usage in the described field indicates a gap which
should be filled by a detailed investigation.

The aim of our research is to use energy prediction algorithms which require as few as
possible robotic sensors to provide universality for a wide range of robots. Therefore, there
is no exteroceptive sensor used, the presented methods are based on the robot velocity
and surface parameters. For calibration purposes, only proprioceptive sensors are used,
capable to measure:

• The battery’s power consumption;
• The angular velocity of the wheels;
• The angular velocity of the robot.

The comparative analysis was used to check whether the performance of AI algorithms
is good enough for being used as replacement for more complex analytical approaches and
determine the sense of deeper research.

The paper is organized as follows. Section 2 introduces the theoretical background
explaining the principles of algorithms operation. Section 3 describes the testing setup with
an overview of hardware and software used. Section 4 shows the results of mathematical
model-based energy prediction algorithms for differential and skid-steer drive robots,
the performance of an alternative method of artificial neural network usage, and the
comparative analysis. At the end, Section 5 contains the results discussion and Section 6
includes conclusions and proposes future development directions.

2. Background
2.1. Division of Power Consumed by Robots

In mobile robots, the battery energy consumption can be divided into three factors [1]:

• Motion system—the power depends on motion dynamics and robot-ground interactions;
• Sensing system—the power depends on frequency of used sensors;
• Control system—the power consumed by computers and microcontrollers is approxi-

mately constant.

When sensors work with an invariant frequency, the power of the sensing system can
also be treated as a constant [9], and the total robot power Pd can be formulated as:

Pd = PL + Pm (1)

where Pm is the motion power and PL is the logical power (sum of sensing and control powers).
The Pm factor is a complex function of the robot’s motion and is described in details in

the following sections.

2.2. Mathematical Model of Differential Drive Robot

The scheme of a differential drive mobile robot is shown in Figure 1.
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The following description refers to the energy model from the chapter related to
modeling in [9].

The power Pm can be written as a sum of kinetic power Pk and friction power Pf :

Pk(t) = mv(t)a(t) + Iωz(t)β(t) (2)

where m denotes the robot mass, I the robot moment of inertia, v and ωz denote the linear
and angular velocities, while a and β denote the linear and angular accelerations, respectively.

Pf (t) =
2 fµ

r
v(t) + T (3)

where fµ (Nm) denotes the friction coefficient between wheels and the surface, r denotes
the wheel radius, and T (W) denotes the power necessary to overcome the static friction.

The total power Pd of the differential drive robot is equal to:

Pd(t) = PL + mv(t)a(t) + Iωz(t)β(t) +
2 fµ

r
v(t) + T (4)

When the robot stays motionless, Equation (4) can be written as

Pd(t) = PL (5)

This allows to find experimentally the power consumed by the logical subsystem.
For a robot moving with the constant, non-zero linear velocity and zero angular

velocity, Equation (4) can be written as

Pd(t)− PL =
2 fµ

r
v(t) + T (6)

Using the linear approximation algorithms, the other parameters, i.e., fµ and T could
be found.

2.3. Mathematical Model of Skid-Steer Drive Robot

The 4-wheel skid-steer drive mobile robot is shown in Figure 2.
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Assume the skid-steer robot is moving with velocity v around the point marked as ICR,
the curved path radius is equal to R. On the line parallel to the YR axis lie instantaneous
centers of rotation of the left (ICRL) and right (ICRR) robot trunk side [18]. The points
have following coordinates

ICR = (xG, yG) (7)

ICRL = (xL, yL) (8)

ICRR = (xR, yR) (9)

The robot’s angular velocity related to these points is equal to ωz, so the positions can
be determined as

xG = xL = xR = −
vy

ωz
(10)

yG =
vx

ωz
(11)

yL =
vx − vl
ωz

(12)

yR =
vx − vr

ωz
(13)

The kinematic dependencies can be established as follows vx
vy
ωz

 = A
[

vl
vr

]
(14)

where A is a parameter matrix [12]. Assuming that the wheels have a point contact with a
ground, the model is symmetrical, i.e., the distance between robot’s center of gravity (COG)
and both ICRL and ICRR are equal, and the COG lies directly in the geometric center point,
then, the matrix A can be formulated as

A =
1

2y0

 y0 y0
0 0
−1 1

 (15)

where y0 = yL= −yR.
Then, Equation (14) describes forward kinematics for the differential drive robot where

the wheel separation distance is equal to 2y0 as shown in Figure 3.
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Let us define the steering efficiency coefficient χ as the inverse of the normalized
distance between left and right sides [12]:

χ =
D

2y0
, χ ∈ (0, 1] (16)

The maximum value of χ is equal to 1 what means that no slippage during movement occurs.
Basing on chapter III “Motor power consumption modeling and identification” in [13],

the total motion power Pm of the skid-steer robot can be formulated as a sum of slippage
power loss Ps and the power loss PR which is caused by an influence of soil and wheel
deformations, the rolling friction and the resistance of mechanical parts of a drive.

Pm = Ps + PR (17)

The approximation of Ps can be written as

Ps = µ|ωz|
4

∑
n=1

pR, L(n)
∣∣aR, L − CR, L

∣∣ (18)

where µ denotes the friction coefficient, p(n) denotes the normal force acting on the n-th
wheel, |a− C| denotes the distance between the ICR point and a specific robot wheel as per
Figure 4. The R, L subscripts relate to the right and left side of the robot body, respectively.
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The approximation of PR can be formulated as:

PR = G(|vl |+ |vr|) (19)
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where G denotes the proportionality factor, vl and vr denote linear velocity of left and right
robot side, respectively.

The steering efficiency coefficient χ can be found by measuring the total robot rotation
angle ϕ when linear velocities of the left and right robot sides had been opposite [19].

χ = Dϕ/
(∫

vrdt−
∫

vldt
)

(20)

where D is the distance between the left and right side wheels.
Using Equation (16), the y0-coordinate can be calculated using the following formula

y0 =
D
2χ

(21)

The knowledge of y0 determinates the position of CL and CR :

CL = (0, y0) (22)

CR = (0,−y0) (23)

To define the parameters µ and G, the minimum value of the cost function J(µ, G)
should be found.

J(µ, G) = ∑
∀t

(
Pm(t)− P̂m(t, µ, G)

)2 (24)

where Pm(t) denotes the real power consumption and P̂m(t, µ, G) denotes the estimated
power consumption calculated using Equation (17).

2.4. Artificial Neural Network

As an alternative method, the feedforward neural networks were used to approximate
the model of the robot. For learning, validating and testing, a Matlab extension named
Deep Learning Toolbox was used. As a performance function during learning, we chose the
Mean Squared Error defined as the average squared error between network and target
outputs, for the performance function optimalization, we used the Levenberg–Marquardt
algorithm, which is one of the fastest methods for small neural networks. Additionally,
the learning rate was set to 10−4 and the learning process was terminated if one of the
following assumptions were true:

• The number of epochs exceeded 2000;
• The gradient was lower than 10−15;
• The number of consecutive iterations when the validation error continuously increases

exceeded 50;
• The damping factor used in the Levenberg–Marquardt algorithm exceeded 1010.

The number of inputs depends on the type of robot; for differential drive, the following
five inputs were used:

• The linear velocity v;
• The angular velocity ωz;
• The fµ and T coefficients;
• The additional mass.

For the skid-steer drive, there were six inputs:

• The linear velocity v;
• The angular velocity ωz;
• The y0, µ and G coefficients;
• The additional mass.

Note that for an approximation of the power consumption of the robot moving on a
specific type of surface, the coefficients are not necessary but using them allows to create a
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more versatile neural network which can be used to estimate power during the mission on
different types of surfaces.

For both networks, only one hidden layer with 10 neurons was used. As an activation
function for the hidden layer, we used radbas and for the output layer—poslin.

The training input data were randomly divided into three subsets as per Deep Learn-
ing Toolbox default settings:

• The data used for learning contained 70% of training input data;
• The data used for validation contained 15% of training input data;
• The data used for testing contained 15% of training input data.

Three subsets are required by some of Matlab’s learning termination conditions.
Considering a random division of input data for testing purpose, we used a separate test
dataset which helps better visualize the quality of the network after offline learning.

3. Test Setup
3.1. The Hardware

In this research, we used a modified TurtleBot3 robot with a different number of wheels
and the distances between them. One of the skid-steer robot configurations is shown in
Figure 5. A total of four robots have been used and each of them includes the following
parts: power supply, microcontroller, drives and main computer.
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3.1.1. The Power Supply

The robots were supplied by a lithium-polymer battery with 7 Ah capacity and
812 g weight in a 6SP1 configuration. The total battery voltage range was between
19.2 and 25.2 V.

The battery was connected to the hot swap device LM5066I which has overcurrent and
overvoltage protection mechanisms. The maximum operational power is equal to 239 W.
The device measures the input current and voltage with an accuracy of 1.75% and 1.25%,
respectively, using 12-bit ADC sampling with 1 kHz frequency. To reduce the measurement
noise, the measured data are averaged using 16 consecutive samples; thus, the acquisition
frequency is about 50 Hz. For communication purposes, the PMBus interface was used.
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The output of the LM5066I was connected to the buck–boost converter PI3740 whose
maximum power is equal to 140 W. The converter output was configured to deliver 12 V to
the system and the efficiency of power transfer was 94%.

3.1.2. The Microcontroller

The OpenCR1.0 board was used as a low-level computer of the robot. It contained
the STM32 microcontroller with ARM Cortex-M7 core and IMU ICM-20648 with a 3-axis
gyroscope, accelerometer and magnetometer.

The IMU was communicated through SPI with STM32 with 0.8 MHz frequency, the
gyroscope worked in the 2000 dps range and the accelerometer’s measurement were in
±2 g range.

The STM32 controlled the drive subsystem using a TTL interface and communicated
with the main robot computer through UART.

3.1.3. The Drive

For the differential drive robot, two DC motors XL430-W250 were used with a
gear ration equal to 258.5:1, a stall torque 1.4 Nm and a no-load speed of 57 rev/min.
Additionally, the motors had integrated encoders with a resolution 4096 pulse/rev, and the
microcontroller with an ARM Cortex-M3 core which was responsible for communication
with the OpenCR1.0 board and implementing the PID regulators for the wheel angular
velocity control.

The drive wheels had a diameter equal to 66 mm, and their linear and angular veloci-
ties were limited to 0.22 m/s and 2.84 rad/s, respectively, to provide the torque margin.

3.1.4. The Main Computer

As the main computer of the robot, we used a Raspberry Pi 3 Model B+ with Ubuntu
18.04 OS. The core of the microcomputer based on 64-bit ARM Cortex-A53 working with
1.4 GHz clock frequency. The computer communicates through SSH with the remote PC,
controls hot swap device and the OpenCR1.0 board.

3.2. The Software

The software was divided into two parts: the control software responsible for robot
steering and data acquisition, and the testing software responsible for collected data
postprocessing and energy prediction algorithm usage.

3.2.1. The Control Software

The control software was based on Robot Operating System (ROS) structure which
enabled to communicate in a distributed environment. The remote PC created the main
core node and was sending the control commands to the robot drive. The Raspberry PI
was reading the data from hot swap, encoders and IMU, and was publishing the dataset as
ROS topic subscribed by the remote PC.

3.2.2. The Testing Software

The testing software was written as python scripts for preprocessing raw data deliv-
ered from ROS environment and the algorithms were implemented in Matlab as described
in the previous section.

3.3. The Testing Environment

The energy prediction algorithms were tested on four robots defined by their configu-
ration as per Table 1.
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Table 1. The dimension of tested robots.

Drive Type Differential Skid-Steer 1 Skid-Steer 2 Skid-Steer 3

Robot length (mm) 160 160 160 160
Wheel separation
(x-axis) L (mm) - 115 185 245

Wheel separation
(y-axis) D (mm) 160

Robot width (mm) 180
Wheel width (mm) 18
Wheel radius (mm) 33

Robot mass (kg) 1.86 2.05 2.08 2.11

The robots were moving on five surfaces:

• Gypsum block;
• Linoleum;
• Foam mat;
• Floor panels;
• Rubber door mat.

Each of the surfaces had a dimension of 1.5 × 1.5 m, and they had different hardness
and roughness.

4. Results
4.1. The Logic System Power

The logic system power for differential and skid-steer drive robots was calculated
basing on the data measured during 5-min intervals for a stationary robot. The output was
averaged and the standard deviation of the signal was calculated as an indicator of the
signal invariability. The results are shown in Table 2.

Table 2. The logical power experimental results.

Drive Type Differential Skid-Steer

Average power PL (W) 6.03 6.92
Standard deviation (W) 0.16 0.14

The acquired data confirm that PL is approximately constant, the higher value for Skid-
steer is related to the demand of supplying logical parts of two more motors in comparison
to Differential.

4.2. The Parameters of Differential Drive Robot

To find the fµ and T parameters, the robot was driving along an approximately 35-cm
long straight line, with 9 different constant linear velocities. Each drive delivered an
average power value, the coefficients were found by using the linear regression technique.
The data collected in the calibration and the parameters calculation process on the Floor
panels are shown in Figures 6 and 7 respectively.

The results for all of surfaces are summarized in Table 3.

Table 3. The calculated coefficients for the differential drive mobile robot.

Surface Type fµ (Nm) T (W)

Gypsum block 0.21 1.14
Linoleum 0.17 1.21
Foam mat 0.16 1.35

Floor panels 0.16 1.32
Rubber door mat 0.22 1.13
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4.3. The Differential Drive Mathematical Model Validation

The mathematical model was tested using data collected by manual robot control on
each of the surfaces. To compare the real power consumption and the output of the model,
two quality factors were calculated:

• The mean square error (MSE) determining the divergence of signals;
• The relative error δ between the estimated energy and the real energy calculated as an

integer of power signals.

The real and the estimated power signals are shown in Figure 8.
The calculated outcomes are shown in Table 4.

Table 4. The calculated values of quality factors for the mathematical model of the differential drive robot.

Surface Type MSE (W) δ (%)

Gypsum block 0.12 1.98
Linoleum 0.13 1.21
Foam mat 0.24 2.11

Floor panels 0.08 0.58
Rubber door mat 0.32 2.43
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The results confirm that the used algorithm works correctly, the maximum relative
error equals to 2.43% for the Rubber door mat surface. Note that this particular surface
is characterized by a high roughness and the small passive castor wheel, used in differ-
ential drive to provide the static stability, had limited ability to rolling without slippage.
The algorithm has the highest quality for hard and smooth surfaces, such as Linoleum and
Floor panels.

4.4. The Neural Network Usage for Differential Drive Robot

To assess the quality of neural networks, we used the same data collected for calcula-
tions in the previous section. We divided the signals into two subsets: first 60 s as training
data and the rest as testing data.

The comparison of the real and estimated power calculated by mathematical model
and neural network on the Floor Panels is shown in Figure 9.

The quality of the neural network was validated in the same way as output power
signals from the previous section. The results are presented in Table 5.

The trained neural network estimates the power as accurate as the mathematical
model, the quality depends on a non-deterministic learning process (real training set is cho-
sen randomly from the input data) which can cause a different outcome for each iteration.

Table 5. The calculated values of quality factors for the neural network of the differential drive robot.

Surface Type MSE (W) δ (%)

Gypsum block 0.55 4.27
Linoleum 0.17 0.83
Foam mat 0.25 1.20

Floor panels 0.07 0.69
Rubber door mat 0.19 0.56
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4.5. The Parameters of Skid-Steer Drive Robot

The χ parameter was calculated as per Equation (20), using data collected for different
angular velocities. As assumed, the values depended on the surface type but were similar
for different velocities (Figure 10). The results are shown in Table 6 and are equal to the
average values for a specific surface type.
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Table 6. The calculated steering efficiency coefficient χ for different robot and surface types.

Surface/Drive Type Skid-Steer 1 Skid-Steer 2 Skid-Steer 3

Gypsum block 0.648 0.423 0.290
Linoleum 0.636 0.431 0.294
Foam mat 0.651 0.424 0.273

Floor panels 0.639 0.430 0.294
Rubber door mat 0.637 0.425 0.260

Substituting the values from Table 6 into Equation (21), the y0 coefficient can be found.
Based on Table 7, the following conclusions can be drawn:

• Increasing the distance between the front and rear wheels deteriorates steering effi-
ciency what causes the increasing y0 value;

• The y0 coefficient is similar for each of tested types of surfaces, maximum standard
deviation is approximately equal to 1 cm for the Skid-steer 3 robot. It indicates that
the slippage is not significantly different.

Table 7. The calculated y0 coefficient (m) for different robot and surface types.

Surface/Drive Type Skid-Steer 1 Skid-Steer 2 Skid-Steer 3

Gypsum block 0.123 0.189 0.276
Linoleum 0.126 0.186 0.273
Foam mat 0.123 0.189 0.294

Floor panels 0.125 0.186 0.272
Rubber door mat 0.126 0.188 0.308

To find the µ and G parameters, i.e., to minimize the cost function (24), the fminsearch
method of Maltab was used. The input data were collected in the calibration process which
included the following robot paths:

• Three squares (~40 cm each side) driven with different velocities in the positive direction;
• Repeated the above combination driven backwards.

To calculate the angular velocities of the wheels, the robot’s open-loop controller used
inverse kinematics for the differential drive mobile robot, the classical distance between the
left and right wheel was replaced with the previously calculated 2y0 values. Because there
was no feedback signal, the position of the robot was estimated by integrating the linear
velocity of the wheels.

The coefficients found in the experiment are presented in Table 8.

Table 8. The calculated µ and G for different robot and surface types.

Drive Type Skid-Steer 1 Skid-Steer 2 Skid-Steer 3

Surface/Parameters µ (-) G (N) µ (-) G (N) µ (-) G (N)
Gypsum block 1.55 7.60 1.71 7.64 1.68 7.47

Linoleum 0.53 7.43 0.45 7.92 0.46 8.22
Foam mat 1.90 7.17 1.80 7.76 1.70 7.41

Floor panels 0.66 7.38 0.68 7.47 0.73 7.38
Rubber door mat 1.60 7.35 1.52 7.67 1.43 8.28

Based on Table 8, the following conclusions can be drawn:

• The µ and G parameters do not depend on the distance of between front and rear
wheels;

• The G coefficient for all of the surfaces is similar what suggests that power loss PR is
approximately the same for all robots;
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• The µ parameter determinates the surface type, the least power is consumed when
moving on smooth, firm surfaces (Linoleum, Floor panels), more energy is necessary
for rough, firm surfaces (Gypsum block, Rubber door mat), the most power is drained
from the battery when driving on a soft surface (Foam mat).

4.6. The Skid-Steer Drive Mathematical Model Validation

The mathematical model was tested using data collected by a manual robot control
on each of surface. To compare the real power consumption with the output of the model,
two quality factors, as per differential drive, were calculated: MSE and δ. The results are
gathered in Table 9.

Table 9. The calculated values of quality factors for the mathematical model of skid-steer drive robots.

Drive Type Skid-Steer 1 Skid-Steer 2 Skid-Steer 3

Surface/Parameters MSE (W) δ (%) MSE (W) δ (%) MSE (W) δ (%)

Gypsum block 0.29 2.92 0.43 1.79 0.32 0.60
Linoleum 0.29 3.70 0.32 2.65 0.30 2.20
Foam mat 0.32 2.81 0.42 1.04 0.40 0.04

Floor panels 0.36 2.94 0.35 3.07 1.22 3.41
Rubber door mat 0.26 2.75 0.60 1.82 0.40 0.74

The used algorithm allows a good estimation of the consumed power, the rela-
tive error δ oscillates around 3%. This is a satisfactory outcome considering the set of
simplifying assumptions.

4.7. The Neural Network Usage for Skid-Steer Drive Robot

To asses quality of neural networks data collected in Section 4.5, we used the training
set and data collected in the previous section as the testing set. The same quality factor was
computed for the estimated power signal.

Based on Table 10, the trained neural network estimates the power worse than the
mathematical model, the mean average of relative error results of the analytical model
(i.e., the average of all δ values in Table 9 equals 2.17%) is approximately two times
lower than the mean average of relative errors presented in Table 10 (4.79%). The neural
network performance could be increased using a more diverse training dataset (during the
calibration process robot moved in straight lines or rotate in place only).

Table 10. The calculated values of quality factors for neural network of skid-steer drive robots.

Drive Type Skid-Steer 1 Skid-Steer 2 Skid-Steer 3

Surface/Parameters MSE (W) δ (%) MSE (W) δ (%) MSE (W) δ (%)

Gypsum block 1.25 5.83 1.43 4.75 1.50 5.06
Linoleum 0.23 1.62 3.24 6.48 0.84 4.06
Foam mat 1.32 5.21 1.38 4.95 0.88 3.90

Floor panels 0.70 3.18 0.72 4.21 0.45 2.81
Rubber door mat 0.78 5.46 4.46 9.57 0.98 4.75

5. Discussion

Despite the quality factors indicate that mathematical models have a better perfor-
mance, it is to be noted that finding the appropriate description can be an impossible task
to do. Moreover, the introduced models require the robot’s specific parameters, such as
the radius of wheel or relative position of each wheel in reference to the center of gravity.
However, the analytical parameters could not be stable in a long period of time, some of
them depend on surface–suspension interactions which makes it hard to determine them.
The good accuracy of the mathematical models can be difficult to keep in real scenarios
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where environment parameters change dynamically causing the necessity of model cali-
bration. The procedure often interrupts execution of the robot’s task (for example, it can
require to perform a calibration path) and can be forbidden in some applications.

By using the neural networks, the designer does not have to possess detailed knowl-
edge about the system, there is only need to gather the data (which is also necessary for the
parameter identification in mathematical modeling, of course). Additionally, there exists
methods of online training the neural networks what makes the process easy to automatize.
Especially this feature could be helpful in robotic application where the type of ground is
often changing.

The disadvantage of utilization of artificial neural networks is that they require more
computational power, particularly during the training process. Although, today even
simple microcomputers are able to handle complicated calculations, for the most of the
robotics systems, it could not cause any problem. This is true even if the training procedure
can be outsourced and can be done on remote machines.

Considering an insignificant contribution of AI methods usage in the energy pre-
diction task in the mobile robotics field and the fact that such algorithms can be used
interchangeably with more complex analytical modelling, it may be noticed that the topic
constitutes an interesting field for future development.

For the presented research, we used a simple feedforward neural network with only
a one hidden layer and we received satisfactory effects. We believe that it is possible to
improve the outcomes, to achieve that, we will investigate available machine learning
approaches in more detail.

This article states a solid foundation for the prospective works which include testing
the artificial neural network power consumption prediction algorithms in the industrial
and the outdoor environment, and also checking the quality for other types of robots such
unmanned aerial vehicles.

6. Conclusions

The result of current research indicates that both the mathematical model based and
neural network-based algorithms can properly estimate the robot’s power consumption
using the dynamic behavior as an input. Therefore, the artificial neural networks can be
used as replacement for classical, more complex analytical solutions.

In future research, we will investigate the behavior of machine learning-based energy
prediction algorithms using automated guided vehicles in the industrial environment
which realize delivery tasks in factories and warehouses. In addition, we plan to investi-
gate the proposed methods for different drone applications in the outdoor environment,
especially in agriculture during inspection assignments and more complex crop spraying
tasks where the mass of the system is changing dynamically. The extended dataset should
broaden the view and enable to utilize more advanced machine learning methods.

Author Contributions: Conceptualization, K.G., M.K. and D.W.; methodology, K.G.; software, K.G.;
validation, K.G.; formal analysis, K.G.; investigation, K.G.; resources, K.G., D.W.; data curation, K.G.;
writing—original draft preparation, K.G.; writing—review and editing, G.G., M.K.; visualization,
K.G.; supervision, G.G.; project administration, G.G., M.K.; funding acquisition, M.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the National Centre for Research and Development
in Poland, grant number LIDER/38/0210/L-10/18/NCBR/2019.

Data Availability Statement: The data presented in this manuscript are available as GitHub reposi-
tory: https://github.com/KrystianGora/ComparisionOfEnergyPredictionAlgorithms.git (accessed on
14 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/KrystianGora/ComparisionOfEnergyPredictionAlgorithms.git


Energies 2021, 14, 6722 16 of 16

References
1. Mei, Y.; Lu, Y.-H.; Hu, Y.C.; Lee, C.S. Deployment of mobile robots with energy and timing constraints. IEEE Trans. Robot. 2006,

22, 507–522. [CrossRef]
2. Pentzer, J.; Reichard, K.; Brennan, S. Energy-based path planning for skid-steer vehicles operating in areas with mixed surface

types. In Proceedings of the 2016 American Control Conference, Boston, MA, USA, 6–8 July 2016.
3. Plonski, P.A.; Tokekar, P.; Isler, V. Energy-Efficient Path Planning for Solar-Powered Mobile Robots; Springer: Berlin/Heidelberg,

Germany, 2013; Volume 88, pp. 717–731.
4. Mei, Y.; Lu, Y.-H.; Lee, C.; Hu, Y.C. Energy-efficient mobile robot exploration. In Proceedings of the International Conference on

Robotics and Automation, Orlando, FL, USA, 15–19 May 2006.
5. Hou, L.; Zhang, L.; Kim, J. Energy modeling and power measurement for mobile robots. Energies 2018, 12, 27. [CrossRef]
6. Pentzer, J.; Brennan, S.; Reichard, K. On-line estimation of vehicle motion and power model parameters for skid-steer robot

energy use prediction. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014.
7. Shamah, B. Experimental Comparison of Skid Steering Vs. Explicit Steering for a Wheeled Mobile Robot. Master’s Thesis,

Carnegie Mellon University, Pittsburgh, PA, USA, March 1999.
8. Galati, R.; Giannoccaro, N.; Messina, A.; Reina, G. A kinematic approach based on an equivalent track for a skid-steering vehicle.

PAMM 2015, 15, 631–632. [CrossRef]
9. Liu, S.; Sun, D. Modeling and experimental study for minimization of energy consumption of a mobile robot. In Proceedings of

the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan, 11–14 July 2012.
[CrossRef]

10. Mei, Y.; Lu, Y.-H.; Hu, Y.; Lee, C. A case study of mobile robot’s energy consumption and conservation techniques. In Proceedings
of the ICAR ’05, 12th International Conference on Advanced Robotics, Kaohsiung, Taiwan, 11–14 July 2012.

11. Morales, J.; Martínez, J.L.; Mandow, A.; Garcia-Cerezo, A.; Pedraza, S. Power consumption modeling of skid-steer tracked mobile
robots on rigid terrain. IEEE Trans. Robot. 2009, 25, 1098–1108. [CrossRef]

12. Mandow, A.; Martinez, J.L.; Morales, J.; Blanco, J.L.; Garcia-Cerezo, A.; Gonzalez, J. Experimental kinematics for wheeled
skid-steer mobile robots. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, USA, 29 October–2 November 2007.

13. Morales, J.; Martínez, J.L.; Mandow, A.; Pequeño-Boter, A.; García-Cerezo, A. Simplified power consumption modeling and
identification for wheeled skid-steer robotic vehicles on hard horizontal ground. In Proceedings of the 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010.

14. Anousaki, G.; Kyriakopoulos, K. A dead-reckoning scheme for skid-steered vehicles in outdoor environments. In Proceedings of
the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004.

15. Pentzer, J.; Brennan, S.; Reichard, K. Model-based Prediction of Skid-steer Robot Kinematics Using Online Estimation of Track
Instantaneous Centers of Rotation. J. Field Robot. 2014, 31, 455–476. [CrossRef]

16. Hamza, A. Predicting Mission Power Requirement for Mobile Robots. Master’s Thesis, University of Southern California,
Los Angeles, CA, USA, 2015.

17. Caballero, L.; Perafan, Á.; Rinaldy, M.; Percybrooks, W. Predicting the energy consumption of a robot in an exploration task using
optimized neural networks. Electronics 2021, 10, 920. [CrossRef]

18. Wong, J.Y.; Chiang, C.F. A general theory for skid steering of tracked vehicles on firm ground. Proc. Inst. Mech. Eng. Part D J.
Automob. Eng. 2001, 215, 343–355. [CrossRef]

19. Martínez, J.L.; Mandow, A.; Morales, J.; Pedraza, S.; García-Cerezo, A. Approximating Kinematics for Tracked Mobile Robots.
Int. J. Robot. Res. 2005, 24, 867–878. [CrossRef]

http://doi.org/10.1109/tro.2006.875494
http://doi.org/10.3390/en12010027
http://doi.org/10.1002/pamm.201510305
http://doi.org/10.1109/AIM.2012.6265887
http://doi.org/10.1109/TRO.2009.2026499
http://doi.org/10.1002/rob.21509
http://doi.org/10.3390/electronics10080920
http://doi.org/10.1243/0954407011525683
http://doi.org/10.1177/0278364905058239

	Introduction 
	Background 
	Division of Power Consumed by Robots 
	Mathematical Model of Differential Drive Robot 
	Mathematical Model of Skid-Steer Drive Robot 
	Artificial Neural Network 

	Test Setup 
	The Hardware 
	The Power Supply 
	The Microcontroller 
	The Drive 
	The Main Computer 

	The Software 
	The Control Software 
	The Testing Software 

	The Testing Environment 

	Results 
	The Logic System Power 
	The Parameters of Differential Drive Robot 
	The Differential Drive Mathematical Model Validation 
	The Neural Network Usage for Differential Drive Robot 
	The Parameters of Skid-Steer Drive Robot 
	The Skid-Steer Drive Mathematical Model Validation 
	The Neural Network Usage for Skid-Steer Drive Robot 

	Discussion 
	Conclusions 
	References

