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Abstract: Sensors in the built environment ensure safety and comfort by tracking contaminants in
the occupied space. In the event of contaminant release, it is important to use the limited sensor data
to rapidly and accurately identify the release location of the contaminant. Identification of the release
location will enable subsequent remediation as well as evacuation decision-making. In previous
work, we used an operator theoretic approach—based on the Perron–Frobenius (PF) operator—to
estimate the contaminant concentration distribution in the domain given a finite amount of streaming
sensor data. In the current work, the approach is extended to identify the most probable contaminant
release location. The release location identification is framed as a Bayesian inference problem. The
Bayesian inference approach requires considering multiple release location scenarios, which is done
efficiently using the discrete PF operator. The discrete PF operator provides a fast, effective and
accurate model for contaminant transport modeling. The utility of our PF-based Bayesian inference
methodology is illustrated using single-point release scenarios in both two and three-dimensional
cases. The method provides a fast, accurate, and efficient framework for real-time identification of
contaminant source location.

Keywords: Perron–Frobenius operator; contaminant source identification; IAQ; hazardous release;
sequential Bayesian inference

1. Introduction

The accidental or intentional release of pollutants in the built environment presents a
serious risk factor to occupant health and safety. In addition to common pollutants—like
CO2, volatile organic chemical compounds (VOCs), atmospheric particulate matter (pol-
lens), and microbial contaminants—which affect indoor air quality (IAQ) [1], maliciously
released pollutants in enclosed public spaces can cause human fatalities. Such events
include release of chemical and biological weapons (CBW) or the transmission of infectious
diseases (TID) with examples being the sarin gas attack in the Tokyo subway system in
1995 [2,3], spread of influenza in aircraft [4], spread of SARS and COVID virus [5–7] and
outbreaks of measles and tuberculosis infection in offices and schools [8,9].

In all these release scenarios, an early detection of the location of the release of
the hazardous agent is important for appropriate mitigation to ensure occupant safety.
The sensor network plays a critical role in providing streaming data that can be used to
identify release location and intensity of the contaminant. Additionally, this data can be
used for getting accurate estimates of the spatial distribution of pollutant [10], and for
predicting where the pollutant will spread next. This information can help determine
evacuation pathways, as well as for triaging areas in terms of the extent of contamination,
and prioritizing cleanup locations. The problem of estimating the unknown release location
using the sensor measurements is characterized as an inverse modeling problem.Such
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inverse problems for estimating pollutant release locations occur frequently in the fields of
atmospheric sciences [11] and hydrology [12]. Based on the available solution methods for
the inverse problem in the literature, the methods can be classified into three categories as;
direct methods, optimization-based methods, and probability based methods. The direct
model evolves the contaminant concentration back in time to compute the source location
and intensity at the time of release. This method is particularly suitable in cases where
the source location and release time are known and only source flux is required to be
computed. A detailed discussion of this method is provided in work by Zhang and
Chen [13,14], where they introduce quasi-reversible and pseudo-reversible approaches for
back-propagation. While the approach does not require a lot of prior information, it does
suffer from numerical instabilities.

In optimization-based methods, a set of possible source locations are considered.
The forward airflow and contaminant transport analysis are performed with this set of
possible scenarios. The difference between the monitored observation data and simulated
data is then used to identify the most plausible scenario. This is usually framed as a
minimization (i.e., optimization) of carefully formulated objective functions to identify
the source location. A detailed discussion of this approach is provided in Zhang et al. [15],
where they especially use a regularization term to quantify a continuously releasing source.
In [16], this approach was extended to a unified inverse modeling framework that accounts
for sensor alarming time for source identification. To overcome the computational bur-
den of evaluating the forward airflow and contaminant transport analysis multiple times
during the optimization, the authors used a response factor method to construct a linear
representation which is primarily valid for impulse release scenarios. Following a similar
approach, Wei et al. [17] integrated a regularization framework with a Bayesian method to
identify the source location. They assumed the availability of concentration measurements
at every discrete location in the domain to ensure that the system is invertible for calculat-
ing the release rate. Another optimization method—variational continuous assimilation
(VCA)—widely used by the meteorology community was utilized by Matsuo et al. [18,19].
The method assumes a steady-state concentration field which only holds when the release
is constant. The method utilizes computational fluid dynamics (CFD) computations as the
forward model to generate the data, which complicates real-time application due to the
high computational cost. Closely related to the ’classical’ optimization-based methods,
data-driven approaches based on artificial neural networks (ANN) were also investigated
in [20,21]. The approach elegantly integrated machine learning concepts with a multi-zonal
modeling approach. The multi-zone model, however, is based on the well-mixed assump-
tion which limits the precise identification of contaminant sources in the building. More
recent work tries to relax this assumption by using surrogate models machine learning
concepts (Gaussian models, ANN, deep learning) trained using data from CFD simula-
tions [22,23]. Care has to be chosen to carefully select the dataset to account for all possible
scenarios which is a non-trivial task.

Finally, the probability-based methods can be further classified into traditional prob-
ability methods and adjoint probability methods. The traditional methods run multiple
forward simulations sampled from a distribution of all possible source release locations.
Bayesian inference (or variants) is used to compute the likelihood of pollutant source using
conditional probability estimates. Sohn et al. [24,25] proposed the Bayesian formulation
and extended it for various applications including optimal sensor system design [26–28].
Most of these results were showcased by utilizing multi-zonal models, which traditionally
make a well-mixed air flow assumption. These assumptions limit how precisely one can
localize the contaminant locations as the spatial resolution is limited to zones. This is, how-
ever, not a serious limitation since increasing the number of zones (i.e., reducing the size
of individual zones) can potentially improve the resolution of these methods. The second
kind of probabilistic approach, adjoint probability framework [12,29] was first used for
groundwater/hydrology research problems. The method was adopted for indoor pollutant
source problem by Lui and Zhai [30] for a multizone office building with known source
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release time. As an extension, Lui and Zhai [31] derived the adjoint equations for CFD and
demonstrated its ability for two-dimensional office space and a three-dimensional aircraft
cabin. A similar approach was also used by Zhai et al. [32] for the case of a continuous
release scenario, where the total release mass of the contaminant is known a priori. In a
recent work by Wang et al. [33] the approach is also extended for a dynamic airflow field.

One of the common limitations of the above-discussed methods categorized under
probabilistic/optimization/inverse approaches that preclude them from the widespread
usage is that they use computationally intensive forward models which rely on solving
PDE using numerical modeling. These PDE solves are time-intensive and costly. One way
to circumvent this constraint is by using multi-zonal models and CFD-multizone coupled
models. However, the well-mixed assumption associated with zonal models precludes
fine resolution of the spatial contaminant distribution. Therefore, they are limited to
locating the contaminant source up to a zonal resolution of the building. Estimating release
location more precisely requires the contaminant transport analysis model to provide more
resolved contaminant distribution in the domain, these distributions also serve the inverse
modeling framework.

In this context, there have been recent developments in data-driven approaches as well
as Perron–Frobenius (PF) operator-based approaches [34–37] which open up the possibility
of a fast, robust and data-driven methodology for performing contaminant transport
analysis. This work particularly focuses on a PF approach which has shown utility in
designing an optimal sensor network for monitoring indoor air quality [34,35]. The PF
approach essentially transforms the problem of contaminant transport into a problem of
simple matrix-vector products. The objective of this paper is to use the fast PF operator as a
forward model for identifying indoor contaminant source release location. The robustness
and accuracy of the PF approach for quickly computing the contaminant evolution for
any arbitrary release in the space allow deploying a probabilistic framework, specifically
Bayesian inference (Bayes Monte Carlo) technique with sequential updating to solve for
the release location. The Bayesian inference approach has been successfully deployed for
various applications such as risk assessment and water quality application [38,39]. It was
applied to indoor source identification problems by Sohn et al. [24], where the authors
utilize a two-stage approach to effectively and easily implement the method for real-time
risk assessment. With the increase of edge computing devices (IoT), Bayesian inference can
be done efficiently. In addition the approach provides the uncertainty estimates associated
with the predictions. The estimates of uncertainty plays an important role in real-time to
narrow the search space, which describes the versatility of the approach. The PF operator-
based contaminant transport can further simplify this two-stage strategy to a single-stage as
the contaminant distribution for any arbitrary release can be simulated instantly, once the
PF operator is constructed. Another important property of the PF operator is the linearity.
We, however, do not explicitly exploit this property in this paper. Additionally, the PF
operator can also provide a systematic approach for sensor layout design as well as for risk
assessment, thus providing a unified approach for tackling risk assessment, identification,
and mitigation for IAQ, CBW, and TID applications.

The objective of this work is to use the real-time data coming from a limited number of
sensors for estimating the source location. We consider scenarios where a single stationary
contaminant source is released for a finite time. The linearity property of the PF operator
can be exploited to construct an algorithm for source localization with multiple release
locations without the associated combinatorial explosion in simulations needed for the
multiple release scenario. However, in this paper we restrict the study to the case of a single
contaminant release source and leave the case of multiple release scenarios for subsequent
work. The sensors are placed optimally based on the PF operator-based sensor placement
algorithm developed in Fontanini et al. [34]. The implementation of the approach is shown
for both two and three-dimensional problems, with the two-dimensional results shown for
a typical office space with a manikin, and the approach illustrated for three-dimensional
problems using a typical furnished room space. The outline for the paper is as follows. We
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discuss the method for constructing the transfer PF operator for the contaminant transport
in Section 2.2, the approach for source identification based on the Bayesian approach is
discussed in Section 2.3. The results for the problem in 2D and 3D are presented in Section 3.
Discussions and conclusions are detailed in Sections 4 and 5.

2. Methodology
2.1. Problem Definition

The objective is to solve the inverse problem of identifying the contaminant source
release location in the domain Ω ⊂ Rd using the contaminant monitoring sensor network
measurements. The problem can be posed in different ways such as (a) identifying release
duration, intensity, and location, (b) identifying release duration and location (c) identifying
only release location. Out of the three cases, identifying a location is of major importance,
as it helps in the containment of the hazardous compound release. Therefore, the current
approach focuses on estimating the contaminant release location for a contaminant release
occurring constantly from an unknown release location. We assume that this domain is
outfitted with a sensor network that provides observations every time-step τobs. We next
briefly review the construction of a discrete form of Perron Frobenius operator which is
used as a forward model for evaluating the concentration distribution for an arbitrary
release in the domain.

2.2. Construction of Transfer PF Operator for Contaminant Transport

The PF operator is a linear albeit infinite-dimensional operator which captures the
non-linearity of a dynamical system [40–42]. Once constructed it can be used for evolving
the state of the system from a given initial condition to another time step. The operator can
be constructed using a set-based [43] or a data-driven approach [44,45]. The discrete form
of the PF operator is called the Markov matrix. We next discuss how this Markov matrix is
constructed using the contaminant transport equation.

The modeling of the contaminant transport is done by a transient advection-diffusion
partial differential equation given as

∂Φ
∂t

+∇(UΦ) +∇2(DΦ) = SΦ (1)

The contaminant density, Φ(X, t) is the contaminant at spatial location (X) and time
(t), is propagated by the air flow field, U in a domain Ω ⊂ Rd. The flow field can be
generated either experimentally, or computationally using computational fluid dynamics
(CFD). Here D is the diffusion constant and SΦ is the source term. The velocity flow field,
U, can be (un)steady. To model the sensor measurements we define Equation (2) with
χAk (x) for k = 1, . . . , p̃ denoting the indicator function for a set Ak ⊂ X that corresponds
to the location of p number of sensors in the domain as;

y = χAk (x)Φ, k = 1, . . . , p̃ (2)

The contaminant evolution Equation (1) is numerically solved by typically discretizing
the domain spatially and temporally. In the operator setting the numerical scheme used for
solving Equation (1) can be seen as a discrete-time equivalent operator given as

Φt+δt = L(Φt) (3)

Therefore, the continuous space-time evolution of the contaminant transport can be
replaced by a discrete-time counterpart using linear transfer PF operator. Equation (1),
in the absence of source term in the PF operator setting can be described by following

[Pµ](A) =
∫

X
p(x, A)dµ(x). (4)
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where µ ∈ M(X) the space of real-valued measure and p(x, A) is the stochastic transition
function and describes the transition probability from point x to set A ⊂ X. To construct
this finite-dimensional approximation of the PF operator (Markov matrix), the nonlinear
flow field U and the diffusion coefficient D are required. The example of this is shown
in Figure 1, where the velocity field is shown by vectors and the color contours as the
initial concentration.

Advection Di usion PDE

Discrete Perron-Frobenius Operator

Scalar Transport

Markov Matrix

(a)

(c)

(b)

(d)

Figure 1. For the given velocity field (a,b) Shows the contaminant transport using the scalar transport
Equation (1) (c,d) Shows the discrete PF-operator based scalar transport.

The PF operator (P) is defined on the discrete representation of the space X. The space,
X, is discretized into a finite number of ωk cells/states for k = 1, . . . , N. The time evolution
in this finite dimension discrete setting is given by the dynamical linear system model form
in Equation (5).

M(µ0, Ŝ, P, C)

{
µti+1 = Pµti + Ŝti ,ti+1 i ∈ {0, . . . , m}
y = Cµti

(5)

where µti ∈ RN as the discrete form of the scalar field at given time ti and C ∈ RN× p̃

is the observation matrix mapping that maps the state vector to the observation space.
The source term, Ŝti ,ti+1 ∈ RN , is vector representation which includes volumetric and inlet
sources in the domain Ω ⊂ Rd [34,43]. The µti is defined as the cell volumetric average of
Φ at a given time ti, with Vωk as the volume of the kth state and is given by
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µti (ωk) =
1

Vωk

∫ ∫ ∫
ωk

Φ(x, y, z, ti)dV, ωk = 1, · · · , N (6)

For a transition matrix P, each row k represents the transition probability of state ωk
into other states in the next time step. These transition values are obtained by releasing a
normalized concentration of 1.0 from state ωk and then computing the spread of this initial
concentration to the rest of the states in the next time step. The time evolved concentrations
are used to populate each row of the Markov matrix as Equation (7).

P(Dk ,Dk+1)(i, j) = µti(Dk+1)(j) i = 1 : N (7)

Additional details on the construction of this matrix for large Courant numbers
and unsteady flow fields are provided in Fontanini et al. [34,43]. Once the P matrix is
constructed, it can be used for propagating any initial contaminant distribution in time
very efficiently simply by matrix-vector multiplication.

2.3. Bayesian Formulation

The Bayesian inference framework poses the source identification problem in a proba-
bilistic setup. The release location is considered as a random variable rather than a constant.
As a result, Bayesian inference not only produces the most likely point estimate of the
source location but provides a probability distribution of the release location. This feature
provides a rigorous framework for quantifying the uncertainties associated with the prior
information of the random variable. The method is based on using available information
to provide updated estimates of the source release location. This is called the posterior
distribution which is computed using the Bayes rule as

p(Xs|y) =
p(y|Xs)p(Xs)

p(y)
∝ p(y|Xs)p(Xs) (8)

The factor p(y|Xs), is called the likelihood function. The likelihood represents a
relative agreement of the observation y, given some known parameter value, or hypothesis,
Xs. For the source release estimation application, p(y|Xs) represents the likelihood of
observing a set of measurements based on the modeled release scenarios Xs. Bayes’ rule
provides a means to estimate the inverse probability, p(Xs|y), which is the probablity of
hypothesis, Xs given data, y. Another factor in Bayes rule is p(Xs), called as the prior
probability. For the current application, p(Xs) provide an assessment of release occurring
at particular location, before the release actually occurs. This probability is estimated
before actual observations are available. The denominator of Bayes rule is the probability
of observing a particular outcome, also called as normalizing term. For a discrete case
this is calculated as follows: p(y) = ∑Xs p(Xs)p(y|Xs). In continuous case it is defines as
p(y) =

∫
p(Xs)p(y|Xs)dXs. Because p(y) is a constant with fixed Xs that normalizes the

numerator, a proportionality is often used.
Bayesian inference depends on the data to make an improved posterior estimate.

With the sensor measurements becoming available at every observation time-step the prior
belief can be updated using the current posterior. This is also called Bayesian sequential
updating. Consider data arriving sequentially y1, . . . , ym, . . . , and we seek to update
our inference for an unknown Xs online. In the Bayesian framework we have a prior
distribution p(Xs) and at time m we have a density for data conditional on Xs as

p(y1, . . . , ym|Xs) = p(y1|Xs)p(y2|y1, Xs) . . . p(ym|ym−1, Xs) (9)

where we do not assume y1, . . . , ym, . . . to be independently conditioned on Xs. At time m
we can update estimate of Xs as the posterior

pm(Xs) = p(Xs|ym) ∝ p(ym|Xs)p(Xs) (10)
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With the next observation ym+1, we can either start afresh as

pm+1(Xs) = p(Xs|ym+1) ∝ p(ym+1|Xs)p(Xs) (11)

or since we know our prior belief of Xs, before m + 1 is assimilated into pm+1(Xs), we
just use this as our prior distribution for the new piece of information. This is shown in
Equation (12a) and is equivalent to Equation (11) as shown below.

p̂m+1(Xs) ∝ p(ym+1|ym, Xs)pm(Xs) (12a)

∝ p(yn|ym, Xs)p(ym+1|ym, Xs)p(Xs) (12b)

= p(ym+1|ym, Xs)p(Xs) ∝ pm+1(Xs) (12c)

To compute the posterior depending on the prior distribution and the likelihood
distribution the solutions can be calculated analytically [46]. However, in the absence of an
analytical solution, numerical modeling approaches are used. We use the "Bayes Monte
Carlo updating" approach in this work. In this approach, samples are drawn from the
assumed prior distribution for the model input, which is then used to compute the model
outputs. A finite set of samples are chosen and are exhaustive enough to compute the
denominator accurately. In the discrete representation of the PF operator, each state can act
as a release scenario. To avoid an explosion in the number of samples, we choose to sample
the release location by uniformly covering the complete domain. For these samples, we
generate an epsilon ball radius of r to define release regions with more than one state in
them. The release concentration is normalized in the region.

To generate n sample region in the domain Ω ⊂ Rd as release regionR = {Ŝ1, . . . , Ŝn}
with epsilon ball of radius ε = r, the Halton quasi-random sample are generated in Rd.
Each release scenario is equally probable and therefore we define a uniform distribution
for setR. For these samples, the model sensor measurements can be pre-computed or can
be computed online using the PF operator contaminant transport model M Equation (5).
This measurements for individual realization can be written as ŷn

m = M(µ0, Ŝn, P, C).
Considering these n samples the Bayes Equation (8) can be modified as

pm(Ŝn|ym) =
pm(ym|ŷn

m)pm(Ŝn)

∑n
i=1 pm(ym|ŷi

m)pm(Ŝi)
(13)

where pm(Ŝn|ym) is the posterior probability of the nth realization condition on the measure-
ment ym, pm(ym|ŷn

m) is the likelihood of observing ym given the nth model measurements,
pm(Ŝn) prior probability of release in the nth region. For each realization Equation (13)
can be used as an update equation as discussed in Equation (12) whenever new sensor
measurements become available.

In Equation (13), the likelihood function pm(ym|ŷn
m) quantifies the model to measure-

ment error. For an unbiased measurements with a normally distributed error the likelihood
of observing sensor measurements y given the model prediction of the measurements as
ŷn

m can be written as

p(ym|ŷn
m) =

1
σ
√

2π
exp
(
− 1

2

[
ym − ŷn

m
σ

]2)
(14)

where σ2 is the error variance of the measurements. The error variance σ2, incorporates
error in the measurement instrument and also the error associated with comparing the
model predictions with sensor measurement with a different spatial and temporal average.
The Gaussian likelihood function is inappropriate when the error in the data is correlated.
In real time operation of the sensor network, the sensors might have a bias of underestimat-
ing or overestimating the concentration. Methods for tackling such situations are discussed
in the literature [47]. For our illustration of the approach, we assume the measurement
errors are uncorrelated and can be described by the Gaussian function. The calculation for
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the function parameter σ can be done in two ways, first, the standard deviation may be
known a priori based upon previous statistical analysis of field sampling and/or laboratory
measurement error. Second, the standard deviation of the data error can be estimated using
maximum likelihood theory [39]. Here, σ is assigned by the standard deviation of synthetic
measurement at the corresponding sensor. σ both influential and difficult to be determined
for the estimation. A sensitivity study can be performed for analyzing the influence of σ
for the problem setup. The real-time application of the full approach is shown as a flow
diagram in Figure 2.

Bayesian Inference 

Framework

New Real Time Sensor 

Measurement

Figure 2. Flow chart of complete real-time Bayesian inference based on PF operator approach.

3. Results
3.1. Validation of Contaminant Transport from PF Operator

The method used for the construction of the PF operator (Markov matrix) described
in Section 2.2 is validated for an IEA-Annex building geometry [48] with a manikin.
The geometry, boundary conditions, and the obtained flow field from the CFD simulation
are shown in Figure 3a,b. The CFD computations are carried using the open-source CFD
tool OpenFOAM [49] We use parallel computing to overcome the burden of numerically
solving PDE for constructing the PF operator. The PF operator constructed from the flow
field is then used to transport the contaminant Φ. The comparison of this approach is
made against the numerical solution of the PDE transport Equation (1a). The passive
scalar is normalized between (0,1) and initialized as one covering half of the domain.
The comparison after evolving the system to the final time of 50 s is shown in Figure 4b,c.
It can be observed that the contaminant evolution contours computed by simple matrix-
vector product (where the matrix is the PF operator acting on the contaminant vector in
Equation 5) are indistinguishable from the numerical solution.

Further, a comparison of the concentration profile along the midplane axes of the
building is shown in Figure 4d. The dots in the figure show the Markov results, which
closely match and overlap the PDE-based predictions. Similar validation has been carried
for the 3D case as well. The validations show the accuracy of the Markov approach and
effectiveness of the matrix-vector product-based approach for transporting the contam-
inant concentrations. Throughout the study, we have not used any actual contaminant
concentration measurements. The contaminant concentrations are simulated using CFD
normalized between 0 to 1.
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X-Axis

(b)(a)

70 [W/m2] 1
0

0
 [

W
/m

2
]

Re = 5000

T = 293 K

Figure 3. (a) Geometry and boundary conditions are used for computing the velocity flow field. (b) The velocity magnitude
computed and used for computing the transfer operator.

Figure 4. (a) Initial condition for the concentration. (b) Numerically solved PDE transport for contaminant evolution at
time 50 s. (c) Contaminant evolution using the transfer operator at time 50 s. (d) Contaminant concentration comparison
between PDE and Markov model along center X and Y axis of the computational domain.

3.2. Contaminant Source Identification in 2D Office Space

We first illustrate the approach for a 2D office building as shown in Figure 5a for
identifying an unknown source release location. The room is of 9 m × 3 m and is a steadily
vented room. It has an occupant producing an average flux of 70 W, a computer producing 200
W, an adiabatic desk, and a window with the incoming heat flux of 100 W. With these as the
boundary condition we compute the flow field using the bouyantSimpleFoam OpenFOAM
CFD solver (validation of the solver shown in Appendix A). The converged mesh used
in the study is shown in Figure 5b, and the flow field in Figure 5c. The transfer operator
P ∈ R9400×9400 is constructed using the flow field. The constructed operator is used to obtain
the optimal locations of eight sensors using the algorithm shown in [34], with no placement
constraints. The transfer operator associated time-step is τmod = 10 s. The observation by the
sensor are made every τobs = 50 s, with measurement error variance σ = 0.03. The final time
for the Bayesian inference is set to t f = 500 s. This is decided based on the room air change
rate, as it is important to detect the release location before the air is changed. In the domain
we sample 50 quasi-random samples shown in Figure 5d these are used to generate model
measurements for placed twelve sensors. These measurements are used in the likelihood in
the Bayesian inference. To test the implementation we randomly pick three unsampled release
locations to generate real-time measurement data with an added white noise with mean zero
and variance 0.01. For these three random releases, we show plot the posteriors contours in
the domain shown in Figure 6. It can be seen that the probability of release rapidly converges
to the actual release region within one or two time-steps.
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U [m/s]

(a)

X-Axis

Y
-A

x
is

70 [W/m2] 100 [W/m2]

1
0

0
 [

W
/m

2
]Re = 5000

T = 293 K

(b)

(c) (d)
X-Axis

X-Axis

Figure 5. (a) The 2D computational domain with the boundary conditions is used for calculating the flow field in the
domain. (b) The CFD computational mesh is used for computing the flow field and the transfer operator. (c) The computed
velocity magnitude inside the room. (d) Sampled 50 release locations with radius 0.25 m, used in the likelihood calculation
during Bayesian inference.

Time = 50 sec

Time = 100 sec

Time = 150 sec

Time = 200 sec

Time = 250 sec

Time = 300 sec

Release Location - 1

Release Location - 2

Time = 50 sec

Time = 100 sec

Time = 150 sec

Time = 200 sec

Time = 250 sec

Time = 300 sec

Time = 50 sec

Time = 100 sec

Time = 150 sec

Time = 200 sec

Time = 250 sec

Time = 300 sec

Release Location - 3

Figure 6. Bayesian inference is posterior for three random releases at every observation time step.
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3.3. Contaminant Source Identification in 3D Furnished Room

The method is next illustrated for a case with a three-dimensional furnished room.
The number of release states is nearly ten times that of the two-dimensional problem.
The illustration shows the application of the methodology in a realistic indoor environment
and the easy extension of the approach to a relatively complex geometry. Figure 7a shows
the three-dimensional furnished room with a bed, TV-set, lamp, lighting, and cabinet
represented in the primitive shapes. The room has dimensions 9 m × 3 m × 3 m size with
an inlet and outflow to produce a steady vented room. A window is positioned on the
right wall with a constant temperature of 302 K. These boundary conditions are used to
solve the flow field using the OpenFOAM CFD solver buoyantBoussinesqSimpleFoam.
The mesh convergence analysis is carried to ensure the grid independence of the results
and 0.6 M cells are used for CFD computation (validation of the used solver and grid
independence shown in Appendixes A and B). As described in Section 2.2 the size of the
transfer operator is equivalent to the number of states/cells used in the computation of
the flow field. We note that the CFD mesh needs to be well resolved to capture the flow
features, but the contaminant transport can be reliably simulated on a coarser mesh. We,
therefore, interpolate the flow field onto a coarser mesh size of around 70 K cells. The use
of CFD mesh would result in a transfer matrix of size 0.6M× 0.6M. This large matrix will
require a lot of memory to store, and subsequent analysis will become infeasible. Therefore,
the transfer operator constructed is of size P ∈ R70K×70K. The optimal sensor algorithm
shown in [34] is used to place twelve sensors in the room.
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Figure 7. (a) The geometry used in the 3D room is used for the construction of the Markov matrix. (b) The computational
mesh is used for performing the CFD for computing the flow field in the room. (c) The computed velocity is shown on the
midplane of the room. (d) The sampled release locations which are going to be used for computing the likelihood in the
Bayesian inference.

The transfer operator has the evolution time step τmod = 10 s. The sensors samples
every τobs = 150 s, the final simulation time t f = 720 s based on the air change rate of
the room. The room is sampled with 50 quasi-random samples in the domain with an
epsilon radius of 0.5 m are shown in, Figure 7d, as release locations. For these samples,
the model measurement data are computed used for likelihood calculation during real-time
Bayesian inference. Three separate random un-sampled release location. We test more than
three unknown random release locations. For presentation purposes, we only show three
out of them. is simulated to demonstrate the real-time implementation of the approach.
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The real-time measurements of the sensors are generated with an additional white noise of
zero mean and variance of 0.03. Figure 8 shows the posterior map of the release location for
the three releases at every sampling time-step. The posteriors are converging to the actual
release since we have sufficiently sampled the space to construct the model measurement
data. In addition, the result is a posterior distribution of the probable release location.
The actual epsilon ball of the release location is not recovered. It can be seen that the
posterior closely represent the actual release location in the domain as probable regions.

Figure 8. Bayesian inference Iso-Contours of the posterior for three random releases at every obser-
vation time step in the three-dimensional room. The region of the release are shown in red color for
each release.



Energies 2021, 14, 6729 13 of 17

4. Discussion

The sequential Bayesian inference method in association with the transfer operator
approach for simulating the contaminant evolution is developed. The contaminant re-
lease locations are identified as a posterior map in the domain. The approach overcomes
the real-time implementation limitation posed by traditional Markov Chain Monte Carlo
(MCMC) sampling by relying on a Bayes Monte Carlo approach with pre-sampling from
the prior distribution of the release locations. The sampling is exhaustive to ensure that the
integration in the Bayes formula is accurate. We simulate contaminant releases from these
sampled locations and store sensor time-series data. These actual measurements are used
for comparing against the real-time streaming data from sensors using the likelihood func-
tion. The actual measurements can be generated concurrently as well by simply evolving
each release location till the real-time measurement step. The approach is illustrated for
both two and three-dimensional building space.

Earlier works in the literature [24,47,50] have reported the use of similar Bayes for-
mulations for source identification but were either based on zonal models or empirical
correlations as the forward models. In addition, some reported works rely on steady-state
assumptions for estimating contaminant distribution. These assumptions are not well
suited for studying the dynamic nature of contaminant evolution in the domain. Therefore,
these approaches are usually sub-optimal for real-time implementation and accurately
locating release locations. In the present approach, we try to overcome the limitation of the
computational complexity of the contaminant transport model via a PF operator approach
that results in a simple matrix-vector multiplication for contaminant evolution. The dy-
namical system setting used here has previously been used for applications including
sensor placement under deterministic or stochastic setting [10,35,51,52]. This PF approach
provides a unified framework for analysis of building systems during the design/planning
phase as well as for risk assessment.

One of the limitations of the present approach is that a good estimate for σ for the
likelihood function is needed. However, the choice of sigma can be improved using prior
model measurements under hypothetical release cases, to reduce the error in the prediction.
Further, with the use of good computational methods like adaptive sampling, approximate
Bayesian computation using sequential Monte Carlo can be performed.

The accidental or intentional release of hazardous compounds (even in minuscule
quantities for short periods) can result in lethal and catastrophic consequences. Therefore,
a fast, accurate and reliable source identification method is important for containment and
speedy evacuation of the occupants. It is important to resolve the smallest to the largest
time scales of the contaminant evolution which can be accomplished easily using the PF
operator approach. Furthermore, these estimated contaminant locations can easily assist the
rescue team in deciding the efficient evacuation strategy and can also be used to controlling
the HVAC unit for the building. In addition, for complex imperfect dynamical systems
described in [53], the approach could also be leveraged for designing robust control.

5. Conclusions

We present a method for identifying contaminant source location using the PF operator-
based transport model coupled with a sequential Bayesian inference formulation. The ap-
proach PF based contaminant transport model provides a fast, accurate, and robust method
to act as a forward model for contaminant evolution. The approach reduces the com-
putation cost of numerically solving a PDE to simple matrix-vector multiplication. This
makes Bayesian inference computationally easy to implement in real-time. The data re-
quired for computing the likelihood can be pre-computed. This means that if we have
past measurements and some intuition of the release location, pre-computation is possible
or the calculations can be made on the fly for multiple sampled release scenario. In the
current work, we have shown the use of a quasi-random space-filling sampling approach
to sampling the probable release locations in the room and have conducted the likelihood
estimate on the fly . For these locations, the constant contaminant release was simulated.
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The temporal measurements of the concentrations at the placed sensors in the room
the temporal were stored for computing the likelihood in real-time operation. The imple-
mentation results are illustrated both in two-dimensional and three-dimensional building
problems. We show the results of source identification both in 2D and a 3D problem for
three unknown random constant contaminant release scenarios and compute the temporal
updated posterior of release location. The results show that the posterior converges to
a region within two-three time steps. In the future, we plan to extend the approach for
computing various other parameters such as, release rate and implementing the approach
for multiple release identification.
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Appendix A. Validation of CFD Solvers

The buoyantSimpleFoam of OpenFOAM used for the two-dimensional problem is
validated by comparing the solver results with experimental data by Bett et al. [54] for
natural convection in the tall cavity. Figure A1a,b shows the comparison of the vertical
velocity comparison along the channel width and the temperature profile. The results
ensure the solver capability of accurately modeling the heat transfer problem. Therefore
the solver is used for the current two-dimensional office problem with multiple heat source.

We validate our numerical solver for three dimensional under iso-thermal setting for
by comparing with the experiment by Nielsen et al. [48,55]. Figure A1c,d validated the
solver computations for the three dimensional geometry used in the study, by plotting
the velocity profile along the X = 1 × H and X = 2 × H for z = 0.5 ×W, where W is the
width of the room. The profile obtained by the computation matches closely with the
experiment results with a slight overshoot on the top wall boundary for X = 1 × H. The rig-
orous validation of the CFD solver under non-isothermal conditions are already shown
by Fontanini et al. [43]. They showed the solver performance against the experimental
benchmark problem by Nielsen et al. [56]. The results from the work ensured the use of the
solver for the present study.
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Figure A1. (a,b) Vertical velocity profile and temperature profile for the long cavity along X axis as discussed in [54].
(c,d) Normalized velocity profile for the two dimensional model along Y axis for X = 1 × H and X = 2 × H is shown.

Appendix B. Grid Convergence

The grid convergence study is performed using the constant right wall temperature of
267 K and an inlet temperature of 300 K for the 3D geometry. The temperature profiles are
shown in Figure A2 plotted along the x-axis passing through the room center and along
an arbitrary chosen y-axis close to cabinet ((7.5,0,0.5),(7.5,3.0,0.5)) for the 3D geometry
(Figure 7). It can be seen that for all the meshes the X-centerline profile closely overlaps
each other. While in case of Y-line the difference is mere ±0.2 K between the fine 4.0 M
mesh and the chosen 0.6 M mesh. Therefore, all the CFD computations to compute the
flow field were carried using 0.6 M mesh.

(a) (b)

Figure A2. Grid independence study for 3D numerical computation: (a) Temperature profile compar-
ison of various grids on x-centerline; (b) temperature profile comparison of various grid along y-axis
close to the cabinet in the 3D geometry.
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