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Abstract: This work investigates the fuel energy and emission reductions possible with the hy-
bridization of a Class 8 tractor-trailer. The truck tractor has two drive axles: one powered by an
internal-combustion-engine-based powertrain (CP) and the other powered by an electric powertrain
(EP) consisting of an electric drive system supplied by a battery pack, resulting in a through-the-road
hybrid. The EP has two modes of operation depending on the direction of power flow: motor-
ing/battery discharging and generating/battery recharging. Switched optimal control is used to
select between the two modes of EP operation, and a recently developed distributed switched optimal
control is applied. The control is distributed between the CP, the EP, and the vehicle motion operation
components. Control-oriented, component-specific power flow models are set forth to describe the
dynamics and algebraic relationships. Four different tractor-trailers are simulated: the original CP
and three hybrids with engine sizes of 15 L, 11 L, and 7 L. Simulations are performed over a short test
cycle and two regulatory driving cycles to compare the fuel use, total energy, and emissions. Results
show that the hybrids have reduced fuel use, total energy, and emissions compared to the original
CP; the reductions and reference velocity tracking error increases as the engine size is decreased.
Particularly, fuel use is reduced by at least 4.1% under a charge sustaining operation and by 9.8%
when the battery energy can be restored with an off-board charger at the end of the cycle.

Keywords: switched optimal control; distributed optimal control; power management; heavy-duty
hybrid vehicle

1. Introduction

A significant amount of greenhouse gas emissions are produced by the transportation
sector. Particularly, internal-combustion-engine-powered heavy-duty vehicles (HDVs)
fuelled with diesel are one of the highest energy-intensive freight modes and major green-
house gas emitters. HDVs produce approximately 16% of the CO2 worldwide [1], and
20% of the transportation sector greenhouse emissions [2] in the United States. HDVs are
separated in the United States into classes defined by weight limits, where higher class
numbers indicate a greater weight limit: Class 2b includes vans and heavy-duty pickup
trucks, Classes 3–5 include city delivery trucks, Class 7 includes city buses, and Class
8 includes long-haul trucks and coach buses [3] (similar to classes N and O in Europe).
The global emissions from Class 8 heavy-duty long-haul trucks (Europe Class O4) will
more than double in the near future in the absence of mitigating emission policies due
to the continuing and strong growth of the on-road transportation sector, especially in
developing countries [4]. Policies and actions to mitigate harmful emissions from trans-
portation include vehicle powertrain hybridization and electrification, reductions in carbon
intensity of fuel, freight modal shifts, design for demand, and overall vehicle efficiency
improvements. Many studies have shown the feasibility of increasing the fuel economy
of HDVs up to 30% by using a variety of drive train technologies as summarized in [4].
The impact of drive train technologies and fuel savings depends on the vehicle operation
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conditions, i.e., whether the vehicle is used for long haul shipments, highly characterized by
long steady-state motion periods, or urban traffic, characterized by transient stop-and-go
operation [4].

The emission and fuel consumption reduction task is considered difficult due to
the diversity and magnitude of the road transportation sector conditions in different
countries [4]. Lately, particular attention has been focused on the design, realization, and
optimal operation of fully electric or hybrid vehicles [5]. Specifically, an online optimal
control strategy for a hybrid power split electric bus based on historical data was proposed
in [6]. Their goal is to fully exploit the fuel saving capability of a power split hybrid electric
bus under a real-time operating cycle to achieve an effective strategy for solving the optimal
calibration problem online. First, they constructed a procedure for synthesizing a real-time
driving cycle based on the Markov method and clustered analysis. Second, an optimal
controller based on dynamic programming (DP) was developed to investigate fuel economy
potential. A rule control method was used as the basis for an online approximation of
the DP controller, since DP is not practical for real-time applications. Lastly, a hardware
in-the-loop test and offline simulation were conducted. Results showed that the proposed
online control gives approximately similar fuel consumption minimization compared to
the DP optimal control and achieves real-world improvements.

Lombardi et al. [7] tested six heavy-duty Class 8 truck powertrain configurations: a
conventional diesel engine, a diesel engine modified to operate on an organic Rankine
cycle (ORC), a diesel-engine-based series hybrid system, an ORC diesel-based series hybrid
system, a diesel-engine-based parallel hybrid system, and an ORC diesel-based parallel
hybrid system. An optimal control strategy derived from Pontryagin’s Minimum Principle
was used to minimize the total fuel consumption of the vehicle during the driving cycle
and to provide power thresholds needed for a rule-based energy management control
strategy. Simulations showed that the parallel hybrids result in the most fuel saving and
CO2 reduction.

Energy management control strategy of a hydraulic electric hybrid medium duty
vehicle was investigated in [8]. Mathematical models of a pure electric vehicle and a
hydraulic electric hybrid vehicle were developed to model the variations of battery charging
states and torque through the United States Environmental Protection Agency’s New York
City Cycle. A rule-based energy management control was proposed. Adjustment of the rule
control strategy was performed using a genetic algorithm to refine the vehicle electricity
economic performance. Results show that the designed hydraulic hybrid vehicle electricity
performance was improved by 36.5% compared to that of a pure electric vehicle. The energy
consumption performance was improved by 43.7% after applying the genetic algorithm
refined strategy.

A nonlinear model predictive control (NMPC) for heavy-duty hybrid electric vehicles
using a random power prediction method was proposed in [9]. They combined Markov
chains and grey models to produce high-accuracy, ultra-short-term power prediction to
account for the lack of navigation information. The predicted power is incorporated into
a multi-objective NMPC optimization of bus voltage, a battery state of charge, and fuel
consumption. The NMPC was validated in a hardware-in-the-loop simulation platform
and compared against other control approaches: rule-based control, fuzzy logic, and
dynamic programming. Results showed that the proposed control strategy gives a better
all around performance compared to the rule-based and fuzzy approaches. However, the
fuel consumption obtained by the online NMPC was approximately 7.7% more than that
achieved by the offline dynamic programming global optimization strategy.

Zhang et al. [10] proposed an adaptive real-time equivalent consumption minimization
strategy (ECMS) for a heavy-duty hybrid electric truck. Three main efforts were presented.
First, different kinds of driving cycles for a hybrid heavy-duty vehicle were obtained
using a neural-network-based driving condition recognition algorithm and a hierarchical
clustering algorithm. A particle swarm optimization was then applied to find the optimum
ECMS control parameters under a specific driving cycle including a penalty function scale
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factor, an equivalence factor, and a vehicle speed threshold for engine start-up. Finally,
the driving condition recognition and optimized ECMS parameters were combined into
an adaptive ECMS. The proposed strategy was validated through a numerical simulation
with fuel consumption lowered up to 14.8%.

Class 8 trucks with series and parallel hybrid powertrain configurations were simu-
lated in [11] to assess emission and fuel economy controls and component energy losses
over highway and urban driving conditions. In this work, a comprehensive set of com-
ponent models in Autonomie [12] describing emission control, engine fuel consumption,
battery energy management, and accessory power demand interactions were integrated
and developed with the modeled hybrid trucks to investigate and understand technological
barriers to heavy-duty hybrid trucks. Default Autonomie vehicle level hybrid controllers
were utilized to manage powertrain components, such as the electric motor, the engine, and
the transmission, as well as the fuel consumption minimization management. The study
suggests that series hybridization is not practical for the fuel economy improvement of
long-haul trucks because of the efficiency penalty that is associated with the dual step of the
mechanical-to-electric-to-mechanical energy conversion. However, parallel hybrid technol-
ogy, in combination with a 50% auxiliary load reduction, can reduce the fuel consumption
by 5-7% in long-haul trucks. Their study also indicates that hybrid trucks produce fewer
emissions, i.e., less hydrocarbons (HC) and carbon monoxides (CO), compared to that
produced by the conventional trucks.

Fuel economy and emissions for hybrid and conventional Class 8 heavy-duty diesel
trucks operating over multiple highway and urban driving cycles were simulated and
compared in [13]. Heavy and light freight loads were considered in this work, and all
simulations included an aftertreatment system for particulate matter and NOx emission
controls. The hybrid powertrain simulation was configured with a single electric motor
between the gearbox and the clutch, and a pre-transmission parallel drive. For comparison,
a conventional heavy-duty truck was simulated with a diesel engine and an aftertreat-
ment system. Results showed that the hybridization can improve fuel consumption and
emissions significantly in urban driving. The research indicates that there is less potential
benefit of hybridization during highway driving due to fewer opportunities to utilize
regenerative braking.

Alternative truck powertrains that incorporate a fuel cell have also been investigated
in [14–16]. In [14], city buses with diesel, fuel-cell-only, fuel-cell-and-battery hybrid, and
fuel-cell-and-battery-plug-in hybrid powertrains were investigated. Single objective op-
timizations (powertrain cost, life cycle CO2 emissions, and fuel use) and multi-objective
optimizations (cost and emissions, emissions and fuel use, and cost and fuel use) were per-
formed over the European Transient Driving Cycle and a bus route using genetic algorithm
solution methods. The hybrid powertrains were selected from four different fuel cells,
four different electric motors, and eight different batteries. Results of the optimizations
showed that the fuel cell powertrains under rule-based control reduced energy use by 58%
and emissions by 67% with specific recommendations for the powertrain dependent upon
vehicle usage and hydrogen and component costs. Di Ilio et al. [15] considered a fuel cell
and battery hybrid heavy-duty truck for roll-on/roll-off operation in ports. The proposed
powertrain was operated according to a rule-based control and demonstrated the capabil-
ity of meeting the operation profile while maintaining low hydrogen fuel consumption.
Ferrara et al. [16] explored fuel-cell-powered heavy-duty freight transport trucks using
operation cycles based on extensive real-world data. Performance was evaluated with
respect to the total hydrogen use and the fuel cell power rate of change (since high values
result in a greater degradation over time). Six different energy management strategies
were implemented including rule-based, model-predictive control, nonlinear program-
ming, equivalent consumption minimization, and Pontryagin’s Minimum Principle to (i)
minimize fuel use and (ii) maximize lifetime and minimize fuel use. Each control strategy
resulted in different acceptable outcomes, with the model predictive control showing both
low fuel use and a high lifetime. Additionally, Samsum et al. [17] investigated the use
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of a fuel-cell-based auxiliary power unit to supply truck electrical loads during layovers,
finding that practical system efficiency improved by 28%.

The novelty and contributions of this work are (1) the development of new, control-
oriented, operating-mode-specific power flow models for a heavy-duty hybrid vehicle
powertrain, (2) the definition of a complete set of Class 8 heavy-duty hybrid truck tractor
parameters compatible with the power flow models, (3) the application of a recently
developed distributed switched optimal control solution method to the power management
of both a conventional and a hybrid truck tractor, and (4) the comparison of a conventional
internal combustion engine (ICE) truck tractor and three different heavy-duty truck tractor
configurations, delineated by their ICE engine displacements, with respect to fuel, total
energy, and CO2 emissions over government regulatory driving cycles while moving a fully
loaded trailer. These actions support the testing of the hypothesis that a through-the-road
hybrid with a reduced engine displacement will result in reduced fuel use, total energy,
and CO2 emissions compared to the original vehicle.

In the following, Section 2 develops the needed control models for the combustion
powertrain, electrical powertrain, and vehicle motion dynamics. Next, Section 3 reviews
the distributed switched optimal control with respect to hybrid truck tractor power man-
agement. Section 4 gives control simulation results for an ICE-only truck tractor and three
different hybrid truck tractor configurations over a short, severe-duty trapezoidal driving
cycle and several government regulatory driving cycles. Comparisons are made between
the performance of the ICE-only truck and the hybrid trucks with respect to fuel use, total
energy use, and CO2 emissions using regulatory profile results. Conclusions and future
work directions are set forth in Section 5.

2. Powertrain Models and Controls

The heavy-duty hybrid vehicle studied is a Class 8 6x4 (three axles with two drive
axles) truck tractor with a high roof sleeper cab and a long dry van trailer with a maximum
payload of 19× 103 kg. The original combustion engine powertrain (CP) is taken from
the United States Environmental Protection Agency’s Greenhouse Gas Emissions Model
(GEM), version 3.8 [18], with a 339 kW 15 L diesel engine and a transmission with gear
ratios from 12.80 to 0.73. To create a hybrid vehicle, the combustion engine and transmission
are connected to only one drive axle, while the other drive axle is connected to an electrical
powertrain (EP). Figure 1 displays the potential power flows of the combined combustion-
based and electrical-based propulsion systems. The vehicle is a through-the-road hybrid
that can transfer mechanical power from the combustion engine to the battery through
the road, as illustrated with the horizontal mechanical power (blue) lines from the left
set of wheels (driven by the combustion engine) to the right set (connected to the electric
powertrain); there is no driving-independent power transfer connection between the
CP and EP. The electrical powertrain consists of a 225 kW induction motor, an AC-DC
inverter electric drive system (EDS), and a 59.6 kWh lithium-Ion battery, common sizes
already commercially available for light vehicles [19]; the EP alone cannot provide for
all driving duties. The hybrid truck tractor is modeled with the original 15 L engine as
well as downsized diesel engines of 11 L (261 kW maximum power) and 7 L (149 kW
maximum power).

The vehicle power management chooses the power flows of the CP and EP to both
move the vehicle and consume kinetic energy to recharge the battery. The management
control problem is a switched control problem since both the electric drive system and
battery have unique dynamics based on the direction of the power flow. Switched control
problems have been widely studied for a range of applications, cf. [20,21]. The EP has
two modes of operation: EDS motoring/battery discharging and EDS generating/battery
charging. The combined CP and EP power management is performed using a distributed
switched system control introduced in [19]. Accessory power loads are not considered,
since they are often taken as constant values [18], and our focus is on the dynamic power
delivered to drive the vehicle. The component models and control cost functions are
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presented next. The different components are connected together using complicating
variables, where the vector of complicating variables is ψ = [Pp

cp, ω
p
cp, Pp

d,m, ω
p
e ]
>: Pp

cp is the
power at the CP transmission output, ω

p
cp is the CP transmission output angular velocity,

Pp
d,m is the EP motor electrical power, and ω

p
e is the EP motor angular velocity.
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Figure 1. Class 8 truck tractor through-the-road hybrid powertrain potential power flows: (�)
electrical power produced; (�) electrical power consumed; (�) mechanical power produced; (�)
mechanical power consumed. Pcp,e: engine power, Pcp,t: engine power on transmission side; Pcp,t,c:
transmission output power; Pb: battery power; Pd,e: electrical drive system electrical power; Pd,m:
electric drive system mechanical power; Pw,c: combustion-based wheel power; Pw,e: electrical-based
wheel power; Pf : wheel frictional braking power.

2.1. Combustion Engine Powertrain

The CP includes the diesel engine, transmission, and power coupler that joins them.
The 15 L, 11 L, and 7 L diesel engine output power and fuel consumption models are derived
from the data provided in GEM [18]. The power and fuel consumption are algebraic models
since the dynamics of the engine are much faster than that of vehicle motion:

Pmax
cp,e =βe,0 + βe,1ωcp,e + βe,2ω2

cp,e + βe,3ω3
cp,e (1)

Pcp,e =Pmax
cp,e ucp (2)

dωcp,e

dt
=

1
τωcp,e

[
−ωcp,e + (ωmax

cp,e −ωmin
cp,e)ucp,ω

]
(3)

Wcp, f =β f ,0 + β f ,1ωcp,e + β f ,2Pcp,e (4)

where Pmax
cp,e is the maximum engine power regulated by ucp ∈ [0, 1] to obtain the output

power Pcp,e, Wcp, f is the fuel mass flow rate, ωcp,e is the engine angular velocity regu-
lated by ucp,ω ∈ [0, 1], ωmin

cp,e and ωmax
cp,e are the lower and upper limits of ωcp,e, τωcp,e is the

time constant of engine speed response, and βe,i and β f ,i are fit coefficients. The forms
of Equations (1) and (4) were determined empirically from the fitting of experimental en-
gine data given in [18]. Equation (2) is a typical regularization to define control inputs
over the unit interval to ease eventual numerical optimization. Equation (3) prevents
sudden changes in engine speed when it is decoupled from the transmission. The mod-
eling parameters for Equations (1)–(4) for each engine are listed in Tables A1 and A2 in
Appendix A; Figure 2 shows the resulting maximum power curve and fuel flow contours
for the 15 L engine.
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Figure 2. 15 L diesel engine fuel consumption (g/s) contour map obtained from experimental data
in [18]: ( ) maximum power.

The power coupler between the engine and transmission is an idealized device that
transitions between the open and closed states in a nonzero finite time. In the open state,
Pcp,e is not transferred to the drive wheels, and the engine speed and transmission speed
are independent. The open-to-closed transition is initiated when the time derivative of
the vehicle longitudinal velocity reference (described in Section 4) is increasing more than
0.02 m/s2 over time, resulting in power transfer across the coupler:

Pcp,e(ωcp,t + ε) = Pcp,tωcp,e (5)

where Pcp,t is the power at the transmission input, ωcp,t is the angular velocity at the
transmission input, and ε << 1 provides for starting the vehicle from zero velocity. The
power coupler is considered closed when the transmission speed satisfies ωcp,t ≥ ωcp,e.
Upon closure, Pcp,e = Pcp,t and ωcp,e = ωcp,t (the latter constraint removes the choice of
ucp,ω). Conversely, the power coupler transitions from closed to open when the velocity
reference is decreasing by at least −0.02 m/s2 or more or the vehicle is stopped. The logic
was sufficient to operate the original truck in simulation and is applied to the hybrid trucks
as well. The forthcoming control regulates the engine power and speed such that Pcp,t is
sufficient to begin motion given rolling resistance, slopes, etc.

The transmission is a CVT with a gear ratio, γcp ∈ [0.73, 12.8], the same span as the
stepped transmission in [18]. The output speed of the transmission is ωcp,t,c = ωcp,t/γcp,
and the output power is idealized as Pcp,t,c = Pcp,t. The transmission is connected to the
remainder of the vehicle with the complicating variables, Pp

cp and ω
p
cp, which represent the

power provided by the CP and the angular velocity at the transmission output, respectively:

Acpzcp − Bcpψ =

[
η f dPcp,t,c − Pp

cp
ωcp,t,c −ω

p
cp

]
= 0 (6)

where zcp = [Pcp,e, Pcp,t, Pcp,t,c, Wcp, f , ωcp,e, ωcp,t, ωcp,t,c, ucp, ucp,ω ]>, ψ is the vector of all
complicating variables listed previously, η f d is the final drive gear efficiency between the
transmission output and axle, and Acp and Bcp are appropriate constant matrices needed
for the control formulation in Section 3.

The CP power management optimal control problem is

min
ucp ,ucp,ω ,γcp

∫ tp, f

tp,0

qcp,W f

(
Wcp, f (t)

)2
dt (7)

subject to Equations (1)–(6) and convex and compact variable bounds, where [tp,0, tp, f ] is
the power management prediction horizon, tp,0 is the current time, and qcp,W f weighs the
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fuel use penalty. We note that penalizing fuel use is equivalent to penalizing CO2 emissions
as in [18].

2.2. Electrical Powertrain

The electrical powertrain consists of the battery and EDS operating together. The
EDS is a 225 kW maximum power induction motor coupled with a bidirectional AC-DC
inverter. The EDS can either operate in motoring mode to propel the vehicle or battery
regenerative mode to consume excess vehicle kinetic energy. The mode is controlled by a
switched variable, αd, that is 0 when motoring and 1 when generating. The EDS electrical
dynamics are much faster than the vehicle motion dynamics and are modeled algebraically
with motoring electrical power P0

d,e, P0
d,m ≥ 0:

P0
d,m =Pmax

d,m (ωd)u0
d (8)

P0
d,e =

ηd,m(P0
d,m, ωd)

ηd,inv
P0

d,m (9)

Generating is modeled similarly with P1
d,e, P1

d,m < 0:

P1
d,m =− Pmax

d,m (ωd)u1
d (10)

P1
d,e =ηd,m(P1

d,m, ωd)ηd,invP1
d,m, (11)

ηd,m is the propelling/generating motor power transfer efficiency, shown in Figure 3,
developed from induction motor modeling, field-oriented control, and field-weakening
control methods in [22,23] using data in [24]:

ηd,m(Pαd
d,m, ωd) =cd,1

Pαd
d,m

β(ωd + εd)2 + cd,2
β

Pαd
d,m + εd

+ 1 (12a)

β =

1, 0 ≤ ωd ≤ ωd,r(
ωd,r
ωd

)2
, ωd,r < ωd ≤ 16000π/30 rad/s

(12b)

where ωd is the motor shaft angular speed, ηd,inv = 0.95 is the inverter efficiency, β captures
the field weakening above the rated speed ωd,r = 5000π/30 rad/s, cd,1 = 5.08× 10−2

and cd,2 = 26.9 are motor-parameter-derived constants, εd � 1 is a regularization term to
prevent division by zero at zero speed and/or zero mechanical power, and u0

d, u1
d ∈ [0, 1]

regulates the maximum mechanical power, given in Equation (A1) in Appendix A, in
motoring and generating, respectively. The rated speed denotes the separation point in
motor control: below the rated speed, the motor operates under field-oriented control with
the maximum power set by the stator current limit and above the rated speed, the motor
operates under field-weakening control where the maximum power begins to decrease
linearly after 8000π/30 rad/s due to a maximum voltage limit.

Since there is not a single mechanical power value to use to connect with other
components, a mode-weighted mechanical power value, Pd,m,c, is formed:

Pd,m,c = (1− αd)η f dP0
d,m + αd

P1
d,m

η f d
(13)
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Figure 3. Electric drive system motor propelling electrical to mechanical power conversion efficiency
contours (upper) and generating mechanical to electrical power conversion efficiency contours (lower)
without the inclusion of inverter efficiency: ( ) mechanical power limit.

The lithium-ion battery that is connected to the EDS inverter to supply and absorb
energy stores 59.6 kWh. The battery has two modes of operation, discharging and charg-
ing, which correspond to the EDS motoring and propelling modes. The mode switched
dynamics are

dWb
dt

= (1− αd)

(
−

P0
b

η0
bWmax

b

)
+ αd

(
−η1

b
P1

b
Wmax

b

)
(14)

kαd ln
(

Wb + cαd
b,1

)
+ cαd

b,2Pαd
b + cαd

b,3 + cαd
b,4(Pαd

b )2 =

{
1/η0

b , αd = 0
η1

b , αd = 1
(15)

where Wb is the state of charge (SOC), Wmax
b is the battery’s maximum energy, αd is the

battery mode switch variable with αd = 0 for discharge and αd = 1 for charge, Pαd
b is the

mode-specific battery power with P0
b ∈ [0, 420] kW for discharge and P1

b ∈ [−420, 0)kW
for charge, η

αd
b is the discharge/charge efficiency, and k0/k1 and c0

b,i/c1
b,i, i = 1, . . . , 4, are

discharge/charge fit coefficients. Figure 4 displays the discharge/charge efficiencies from
values in Table A3 in Appendix A, which was sourced from data in [24].
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The battery power is rate-limited to prevent battery damage from high frequency
operation: ∣∣∣∣∣dPαd

b
dt

∣∣∣∣∣ ≤ ∆Pb
(16)

where ∆Pb
= 15 kW/s is the power rate limit magnitude determined from previous electric

vehicle work [24].
The battery and EDS are joined together by mode-specific connections

P0
b = P0

d,e (17)

P1
b = P1

d,e (18)

and the overall EP is connected to the complicating variables, Pp
d,m and ω

p
e , with

Adzd − Bdψ =

[
Pd,m,c − Pp

d,m
ωd −ω

p
e

]
= 0 (19)

where zd = [P0
d,e, P1

d,e, P0
d,m, P1

d,m, Pd,m,c, ωd, u0
d, u1

d, αd, Wb, Pb,c, P0
b , P1

b ]
> and Ad and Bd are

appropriate constant matrices needed for the control formulation in Section 3.
The EP can operate in either motoring/discharging or generating/charging modes,

which results in a switched optimal control problem:

min
αd ,u0

d ,u1
d

∫ tp, f

tp,0

qb,Wb

(
Wb,re f (t)−Wb(t)

)2
dt (20)

subject to Equations (8)–(19) and convex and compact variable bounds where qb,Wb
is the

penalty weight on the deviation of the SOC from the desired value.

2.3. Vehicle Operation Motion

The total vehicle includes the 6x4 truck tractor and trailer. The vehicle dynamics are
modeled using energy conservation applied to point-mass, linear motion:

dΥ
dt

=
2

mv

[
Pd(v) + Prr(v, θr) + Pg(θr) +

(
Pw,c + Pw,e − Pf

)]
(21a)

Pd(v) =v ·
(
−0.5ρair ACdv2sgn(v)

)
(21b)

Prr(v, θr) =v · (−Crrmvg cos(θr)sgn(v)) (21c)

Pg(θr) =v · (−mvg sin(θr)) (21d)

where Υ = v2 (v is velocity), Pd is the drag force power, Prr is the rolling resistance, Pg is
the power due to the body gravity force, Pw,c is the wheel power from the CP, Pw,e is the
wheel power from the EP, Pf is the total frictional braking power, mv is the vehicle mass
including load, ACd is the product of the vehicle frontal area and drag coefficient, Crr is the
tire rolling resistance, ρair is the ambient air density, and θr is the road grade angle. The
total truck tractor and trailer braking is proportional to the velocity:

Pf = Pmax
f

(
0.99

v
vmax + 0.01

)
u f (22)

where Pmax
f is the maximum braking power, vmax is the maximum velocity, and u f ∈ [0, 1]

controls the applied braking power; note that a braking force is applicable at zero velocity.
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The vehicle is joined to the CP and EP with complicating variables, Pp
cp, Pp

d,m, ω
p
cp,

and ω
p
e :

Avzv − Bvψ =


Pw,c − Pp

cp
Pw,e − Pp

d,m
ωvγv,c −ω

p
cp

ωvγv,e −ω
p
e

 = 0 (23)

where ωv = v/rwhl is the angular velocity of the axle shafts, rwhl is the wheel radius, γv,c is
the final drive ratio between the CP and axle, γv,e is the final drive ratio between the EP
and axle, zv = [Υ, Pf , Pw,c, Pw,e, u f , ωv]>, and Av and Bv are appropriate matrices needed
for the control formulation in Section 3. All vehicle parameters are listed in Table A4 in
Appendix A.

The vehicle motion optimal control is to perform velocity reference tracking and
frictional braking management. The control problem is

min
Pw,c ,Pw,e ,u f

∫ tp, f

tp,0

qv,Υ

(
Υre f (t)− Υ(t)

)2
+ qv,brk

(
Pf (t)

)2
dt (24)

subject to Equations (21)–(23) and convex and compact variable bounds where qv,Υ weighs
the deviation of the tracking from the reference Υre f , and qv,brk weighs the use of friction
braking to make regenerative braking preferred.

3. Distributed Control

The total vehicle power management must coordinate the combustion powertrain and
electrical powertrain composed of the battery and EDS to meet the vehicle driving demands.
The continuous-time component level control problems are approximated in discrete-time
with a time step of h using forward-Euler and trapezoidal numerical integration. The
discrete-time control problems are solved in a receding horizon and distributed manner
using the method presented in [19] that is based on the popular alternating direction
method of multipliers. To apply the method in [19], the discrete-time component level cost
functions are expanded to include the complicating variable connection constraints and a
penalty on the connection constraint violation, resulting in the optimal control problem:

min
Zi,k

N

∑
n=1

Ji(zi,k+n) + 〈λi,k+n, Aizi,k+n − Biψk+n〉+
ρ

2
‖Aizi,k+n − Biψk+n‖2

2 (25)

subject to
Zi,k ∈ Zi(xi,k)) (26)

where k is the time index; N is the prediction horizon; i indicates the component; Ji is the trape-
zoidal numerical integration representation of the cost function; Zi,k = [z>i,k+1, . . . , z>i,k+N ]

>

with zi,k+n = [x>i,k+n, y>i,k+n−1, u>i,k+n−1, α>i,k+n−1]
>, where xi is the state vector, yi is the alge-

braic variables vector, ui is the continuous control inputs vector, and αi are the mode switches;
Ψk = [ψ>k+1, . . . , ψ>k+N ]

>, with ψk+n denoting the complicating variables at k + n; Zi is the
feasible region that is dependent on xi,k = xi(tp,0), the initial state, and includes the dynamic
and algebraic constraints and convex and compact variable bounds. With respect to the
distributed control formulation, λi is the dual variable, and ρ is a penalty parameter. The
distributed solution method in [19] iterates until the convergence conditions are met:

r =


[A1]Zl+1

1,k − [B1]Ψl+1
k

...
[Anc Zl+1

nc ,k − [Bnc ]Ψ
l+1
k

, ‖r‖2 ≤ εr (27)
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s =


ρl [A1]

>[B1]
(

Ψl+1
k −Ψl

k

)
...

ρl [Anc ]
>[Bnc ]

(
Ψl+1

k −Ψl
k

)
, ‖s‖2 ≤ εs (28)

where [Ai] = IN ⊗ Ai is the Kronecker product that results in an nAi ,r N × nAi ,cN matrix
with a diagonal arrangement of Ai ∈ RnAi ,r×nAi ,c blocks repeated N times, [Bi] = IN ⊗ Bi
is a similar Kronecker product to [Ai], l is a solution algorithm index, nc is the number of
connected components, and εr and εs are tolerances.

The EDS and battery are both switched components and have control problems
that include discrete-valued mode switches. To avoid the computational complexity
associated with discrete-valued mode switches [20], the embedding method is applied,
where αd ∈ {0, 1} are relaxed to [0, 1], i.e., replaced with α̃d ∈ [0, 1]. The resulting problems
with all continuous-valued variables are embedded optimal control problems (EOCPs).
If an EOCP solution results in any α̃d ∈ (0, 1), then the embedded solution must be
projected back to {0, 1}, and the projected optimal control problem (POCP) must be solved
to obtain the control inputs to be applied. Here the projection utilizes the connection
power values. For the EDS when α̃d ∈ (0, 1), if Pd,m,c ≥ 0, then the mode is propelling and
generating otherwise. If projection is necessary, the distributed control is solved a second
time with the projected mode values enforced. The optimal control problems formulated
for the distributed solution meet the conditions for the existence of an EOCP solution and
convergence of the distributed solution as outlined in [19,20].

4. Control Simulation

The Class 8 heavy-duty tractor truck with a trailer is simulated over three different
driving cycles while transporting the maximum load of 19, 000 kg: a trapezoidal driving
cycle, the California Air Resources Board Highway’s Heavy-Duty Diesel Transient driving
cycle with varying road angles, and the new European driving cycle. The latter two driving
cycles are used to evaluate the hypothesis. The maximum load is chosen since it puts the
most stress on the powertrain and control as well. The simulation time step is h = 0.5 s, and
the prediction horizon is N = 2. The distributed control is applied with εr, εs = 0.2. We do
not assume that the control has perfect knowledge of either the driving cycle velocity or
road angle over the prediction horizon. The driving cycle velocity is linearly extrapolated
from velocity at the current time and the requested velocity. These velocities are squared to
create the reference kinetic energy:

Υre f ,k+n =
[
vk + n

(
vre f ,k+1 − vk

)]2
, n = 0, . . . , N (29)

where vk is the current velocity at tp,0, and vre f ,k+1 is the desired velocity that is delayed
to one step ahead (the velocity is delayed since the velocity cannot instantly change). The
road angle is not linearly extrapolated over the prediction horizon like the velocity; rather,
the angle value at tp,0, the driving cycle time associated with the start time of the current
control calculation, is held constant over the prediction horizon.

The control of the different truck tractor powertrains utilizes the same component
cost function penalty weights that were chosen after experimentation: qcp,W f = 10,
qv,Υ = 6.5× 104, qv,brk = 4× 106/Pmax

f , and

qb,Wb
=


1× 108

(
Wb(tp,0)−Wmin

b

)2

(
Wb,re f−Wmin

b

)2 , Wb(tp,0) < Wb,re f

0, otherwise

(30)

where Wmin
b = 0.2 is the minimum SOC, and Wb,re f = 0.8; qb,Wb

penalizes the decrease of
the SOC more as it falls further below the reference value but does not penalize lowering
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the SOC, i.e., the use of the battery, when the SOC is above the reference. The starting
SOC in all simulations is 0.8. Further, the simulations are performed in units of m, kg, W,
radians, and seconds. The 15 L original ICE powertrain is referred to as 15L-ICE, and the
hybrid vehicles are referred to by engine displacement as 15L-H, 11L-H, and 7L-H.

4.1. Trapezoidal Drive Cycle

The trapezoidal driving cycle consists of a 35 s constant acceleration to 11.176 m/s
(25 mph), a 5 s constant velocity portion, and then a constant deceleration to zero over the
final 35 s. The short time profile is meant to demonstrate the operating behavior of the pow-
ertrain compared to much longer regulatory profiles with many acceleration/deceleration
events. Figure 5 shows the performance of the 15L-H over the velocity profile, and Table 1
shows the mean absolute percentage error (MAPE), the 2-norm normalized error N2NE
(the 2-norm normalized error is equal to 100%× ‖x − xre f ‖2/‖xre f ‖2), the final battery
SOC, and the total fuel use. All of the powertrains result in acceptable velocity tracking
with the greatest MAPE of 0.78% and an N2NE of 0.34%. The hybrids have effectively
the same SOC at the end of the profile and a lower fuel use than the 15L-ICE, with 15L-H
87.3% less, 11L-H 87.7% less, and 7L-H 83.1% less. Even over the short trapezoidal profile,
the ability to use the battery and regeneratively brake provides a benefit compared to the
15L-ICE.

0 10 20 30 40 50 60 70

0

5

10

0 10 20 30 40 50 60 70

0

50

100

Figure 5. 15L-H truck tractor velocity (upper) and frictional braking power (lower) over the trape-
zoidal driving cycle: ( ) POCP value, (•) EOCP value, ( ) superimposed driving cycle.

To better understand the hybrid operation, the 15L-H CP and EP performance is
examined. Figure 6 shows the engine power, cumulative fuel use, and engine speed of the
15L-H. The power rises with velocity, stays relatively unchanged over the constant velocity
portion while providing motoring power, and then the engine is idle during deceleration.
The 15L-ICE shows a much larger, nearly linearly increase in power with velocity during
the acceleration portion since there is no EP to provide support. The maximum 15L-H
engine power is 36.0 kW, while the 15L-ICE is 225.3 kW, an increase of 525.8%. Further,
the maximum 11L-H ICE power is similar to the 15L-H value, but the 7L-H value is lower
at 31.9 kW.
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Figure 6. 15L-H truck tractor engine power (upper), fuel consumption mass (middle), and engine
speed (lower) over the trapezoidal driving cycle: ( ) POCP value, (•) EOCP value, ( ) superim-
posed driving cycle.

Figures 7 and 8 show the EP mode selection and EDS electrical power and mechanical
power over time. In the mode over the acceleration, the first 35 s is motoring/discharging,
meaning the CP and EP are working together to propel the truck. At 35 s, the embedded
mode value is closer to generating/charging, but the projected value is motor/disgcharging,
since the EP power connected to the vehicle is positive, indicating propulsive force. Over
35.5 to 36.5 s, the generating/charging mode is active in capturing vehicle kinetic energy;
similarly, the mode is active during the entire deceleration portion, corresponding with
the preference for regenerative braking and charging the battery. An additional numer-
ical experiment with an enforcement of generating/recharging over [35, 35.5] s showed
that the initial transition from acceleration to constant velocity at 35 s is kept at motor-
ing/discharging by the controller to save fuel, with a reduction of engine use; the use of
the electric motor is constrained by the battery power rate limitation, resulting in the small
use of frictional braking. EP mode projection was required 36% of the time (38.7% for
11L-H and 30.0% for 7L-H), thus bang-bang or switched solutions were obtained from the
EOCP the majority of the time. The mechanical power in Figure 8 rises with the overall
powertrain demand over the constant acceleration portion of the cycle and turns negative
during the regenerative braking over 35.5 to 36.5 s and 40 s onward. Frictional braking,
shown in Figure 5, is used at 35 s and during the first 7.5 s of the deceleration. Frictional
braking is applied at 35–36 s to maintain the velocity tracking, given that the braking power
rate limit and mode selection does not allow for sufficient regenerative braking otherwise.
During the first 7.5 s of the deceleration, the frictional braking is active again because of
the battery power rate limit. After 47.5 s, the battery charging power has reached a high
enough value that the braking can be entirely regenerative. Similar EP trends are observed
in the 11L-H and 7L-H results.
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Figure 7. 15L-H truck tractor wheel electric powertrain mode selection over the trapezoidal driving
cycle: ( ) POCP value, (•) EOCP value, ( ) superimposed drive cycle.
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Figure 8. 15L-H truck tractor electric drive system electrical power (upper) and mechanical power
(lower) over the trapezoidal driving cycle: ( ) POCP value, (•) EOCP value, ( ) superimposed
drive cycle.

Table 1. Comparison of powertrain performances over the trapezoidal driving cycle.

Powertrain v MAPE v N2NE Wb(t f ) m f (kg) ∆m f

15L-ICE 0.78% 0.21% – 0.21 –

15L-H 0.70% 0.34% 0.79 0.03 −87.29%

11L-H 0.70% 0.34% 0.79 0.03 −87.69%

7L-H 0.68% 0.34% 0.79 0.04 −83.07%

4.2. Regulatory Drive Cycles

Table 2 summarizes the results of the performance over the California Air Resources
Board’s Highway Heavy-Duty Diesel Transient driving cycle (HHDDT) and the new
European driving cycle (NEDC). The driving cycles are reported without and with a charge
sustaining (CS) operation. A charge sustaining operation is achieved by enforcing a lower
bound Wb that is dependent upon the remaining drive time and current SOC:

Wb,k+n ≥Wb,k + 2hn
(
0.8−Wb,k

)(
t f − tp,0

) , n = 1, . . . , N (31)
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where t f is the duration of the driving cycle, and the value 2 was tuned to give a suitable
final charge. The charge sustaining inequality is only applied when Wb < 0.8, the power
coupler is closed, the change in reference velocity is less than 0.06 m/s between points over
the prediction horizon, and the vehicle velocity is not more than 0.45 m/s less than the
reference velocity at tp,0. Figure 9 shows the 15L-H performance on the HHDDT (the NEDC
profile is more well known than HHDDT and is not shown due to space considerations).
Very good tracking is demonstrated by the 15L-H, and frictional braking is only used briefly
on the commanded deceleration segments when regenerative braking saturates.

Table 2. Comparison of powertrain performances over the regulatory driving cycles: California Air Resources Board’s
HHDDT and the European NEDC. CS: charge sustaining; ∆: percentage change.

Cycle Powertrain v MAPE v N2NE Wb(t f ) m f (kg) ∆m f E (MJ) ∆E

HHDDT 15L-ICE 1.03% 3.06% – 20.27 – 873.74 –

HHDDT 15L-H 0.28% 0.90% 0.61 18.28 −9.82% 838.91 −3.99%

HHDDT 11L-H 0.49% 1.64% 0.54 17.47 −13.83% 823.80 −5.72%

HHDDT 7L-H 1.41% 3.93% 0.20 13.78 −32.04% 758.29 −13.21%

HHDDT (CS) 15L-ICE 1.03% 3.06% – 20.27 – 873.74 –

HHDDT (CS) 15L-H 0.44% 1.22% 0.80 19.44 −4.09% 838.00 −4.09%

HHDDT (CS) 11L-H 1.14% 3.53% 0.80 18.28 −9.83% 787.82 −9.83%

HHDDT (CS) 7L-H 5.98% 13.26% 0.80 14.56 −28.18% 627.55 −28.18%

NEDC 15L-ICE 0.85% 3.46% – 5.43 – 233.93 –

NEDC 15L-H 0.37% 1.40% 0.67 3.29 −39.32% 177.43 −24.15%

NEDC 11L-H 0.58% 2.52% 0.64 3.15 −42.06% 178.29 −23.78%

NEDC 7L-H 1.34% 4.95% 0.62 2.79 −48.59% 168.64 −27.91%

NEDC (CS) 15L-ICE 0.85% 3.46% – 5.43 – 233.93 –

NEDC (CS) 15L-H 0.29% 1.72% 0.78 3.86 −28.88% 170.67 −27.04%

NEDC (CS) 11L-H 0.58% 2.79% 0.79 3.65 −32.81% 160.27 −31.49%

NEDC (CS) 7L-H 1.65% 6.19% 0.78 3.13 −42.28% 139.80 −40.24%
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Figure 9. 15L-H truck tractor velocity and frictional braking power over the Highway Heavy-Duty
Diesel Transient driving cycle: ( ) POCP value, (•) EOCP value, ( ) superimposed driving cycle.
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Table 2 shows the hybridization results: significantly reduced fuel and a lower total
energy use, where total energy includes the fuel energy plus additional energy from a
1 MW fast charger to charge the battery pack back to the original 0.8 SOC. The hybrid
fuel savings are greater when CS is off, which is expected since the final SOC can be less
than it is with CS. Without CS, the minimum fuel savings compared to the 15L-ICE is
the 15L-H over the HHDDT at 9.82%, and the maximum is the 7L-H at 48.59% over the
NEDC. With CS, the minimum fuel savings are 4.09% over the HHDDT, and the maximum
is 40.24% over the NEDC. However, total energy savings without CS are less compared to
using CS, indicating differences between the two approaches in how the battery is used
and fast charger inefficiencies. Considering the velocity tracking, the 15L-H and 11L-H
demonstrate that the MAPE and N2NE are similar to 15L-ICE. If the 7L-H powertrain is
removed from consideration because of large MAPE and N2NE errors, then the maximum
fuel savings are 32.81% for the NEDC CS and 42.06% for the NEDC without CS. In line
with the CO2 modeling approach adopted by the United States Environmental Protection
Agency’s Greenhouse Gas Emissions Model [18], tractor CO2 emissions are taken to be
directly proportional to fuel use, so the changes in CO2 are the same as the fuel changes.
The simulation data presented can inform and guide the commercial adoption of hybrid
truck tractors as either retrofit or new products. The greater the energy savings, the faster
the recovery of additional costs incurred through hybridization.

The regulatory driving cycle results, with respect to the tested profiles, support the
hypothesis that a through-the-road hybrid with a reduced engine displacement will result
in reduced fuel use, total energy, and CO2 emissions compared to the original vehicle.
The results indicate that the combination of reduced engine displacement from 15 L to
11 L, hybridization, and CS operation results in nearly as good or better velocity reference
tracking while achieving lower total energy, fuel use, and emissions compared to the
15L-ICE and 15L-H. We caution that additional evaluations of different driving cycles are
needed to understand the wider applicability of this conclusion.

4.3. Penalty Weight Study

Table 3 shows the results of changing the velocity reference tracking and fuel
use penalty weights without CS, qv,Υ and qcp,W f , respectively. We observe that in-
creasing/decreasing qv,Υ alone results in better/worse reference velocity tracking.
Similarly, increasing/decreasing qcp,W f alone results in better/worse fuel economy and
worse/better SOC. Combinations of changing qv,Υ and qcp,W f follow similar trends.
These results demonstrate that there are many reasonable options for control tuning,
and the values chosen for the previously presented results are not the only ones that
may produce acceptable results.

Table 3. Comparison of 15L-H performance over the trapezoidal profile with changes in the fuel use
and velocity reference tracking penalty weights: ∆: percentage change.

Weights v MAPE v N2NE Wb(t f ) m f (kg) ∆m f

qv,Υ, qcp,W f 0.70% 0.34% 0.7875 0.03 –

10× qv,Υ, qcp,W f 0.09% 0.13% 0.7877 0.03 15.01%

0.1× qv,Υ, qcp,W f 1.43% 0.42% 0.7876 0.03 −0.48%

qv,Υ, 10× qcp,W f 0.70% 0.34% 0.7853 0.01 −53.29%

qv,Υ, 0.1× qcp,W f 0.70% 0.32% 0.7944 0.08 205.33%

10× qv,Υ, 10× qcp,W f 0.11% 0.13% 0.7854 0.01 −48.17%
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Table 3. Cont.

Weights v MAPE v N2NE Wb(t f ) m f (kg) ∆m f

10× qv,Υ, 0.1× qcp,W f 0.11% 0.14% 0.7917 0.08 192.64%

0.1× qv,Υ, 10× qcp,W f 1.11% 0.41% 0.7854 0.01 −60.36%

0.1× qv,Υ, 0.1× qcp,W f 1.63% 0.40% 0.7948 0.08 210.12%

5. Conclusions

The application of hybrid power to a Class 8 6x4 truck tractor with a high roof sleeper
cab and a long dry van trailer was investigated under distributed switched optimal control
and different engine sizings. The heavy-duty hybrid truck is a through-the-road hybrid
with one axle driven by a combustion powertrain and the other axle driven by an electrical
powertrain composed of an electric drive system and a battery with two modes of operation:
motoring/battery discharging and generating/battery charging. Control-oriented power
flow models were created for the combustion powertrain and given for the electrical
powertrain. A recently developed distributed switched system control algorithm was used
to manage the interactions between the combustion powertrain, the electric powertrain,
and the vehicle operation. The algorithm is based upon the embedding method for solving
switched optimal control problems with discrete-valued mode switches, such as the power
flow direction of the electrical powertrain. A conventional 15 L displacement ICE-only
truck and hybrid trucks with 15 L, 11 L, and 7 L engine displacements were simulated
over test and regulatory driving cycles. The control tuning was kept consistent between
all powertrains and tests to form a consistent basis of comparison. Hybridization results
showed less fuel consumption, fewer CO2 emissions, and less total energy use, even
accounting for the charge sustaining operation and energy needed to return the battery’s
state-of-charge to the initial value, and the savings increase as the engine displacement is
reduced. The drawback to the engine downsizing is that velocity reference tracking suffers
over the regulatory cycles. The reasons are that the peak powers of the combustion and
electrical powertrains do not align, resulting in less total deliverable power at certain engine
speeds than is possible from the original 15 L ICE alone. However, the results indicate that
the combination of a reduced engine displacement from 15 L to 11 L, hybridization, and CS
operation results in nearly as good or better velocity reference tracking while achieving
lower total energy, fuel use, and CO2 emissions compared to the 15L-ICE and 15L-H,
supporting the hypothesis that improvements with hybridization and engine downsizing
are achievable. We caution that additional different driving cycle evaluations are needed to
understand the wider applicability of this conclusion.

Future work will include the incorporation of different electrical powertrains with
peak power near that of the tested ICEs to produce a power curve similar to that of the 15 L
ICE in an effort to reduce velocity reference tracking error while keeping significant energy
savings; this will include the addition of a transmission between the axle and the current
electrical powertrain. Different driving cycles will be evaluated as well to understand
the broader applicability of the approach and potential benefits. Moreover, additional
vehicle classes will be considered for hybridization to better understand the specific needs
of commercial vehicle hybridization and how to best lower total operating costs. Further,
additional optimization algorithm tunings are of interest to better understand the penalty
weight effects on performance given that the control problem is nonlinear.
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ology, R.T.M. and A.M.; software, R.T.M. and M.A.; visualization, A.M. and R.T.M.; writing—original
draft preparation, A.M. and R.T.M.; writing–review and editing, A.M. and R.T.M. All authors have
read and agreed to the published version of the manuscript.



Energies 2021, 14, 6736 18 of 20

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Simulation data upon request from contact author.

Conflicts of Interest: The authors declares no conflict of interest.

Appendix A. Modeling Parameters

The combustion engine powertrain model fit coefficients, along with the engine speed
range, are given in Tables A1 and A2 for each engine. The engine speed time constant
τωcp,e = 0.25 s, which is estimated from [18]. The final drive gear efficiency for the CP and
EP is η f d = 0.98.

Table A1. Diesel engine maximum power (W) model parameter coefficients.

Engine βe,3 βe,2 βe,1 βe,0

15 L −2.18× 10−4 6.80× 10−2 −3.81 94.7

11 L −2.94× 10−4 0.102 −8.99 303

7 L −1.16× 10−4 4.85× 10−2 −5.42 227

Table A2. Diesel engine fuel mass flow rate (g/s) model parameter coefficients.

Engine β f ,0 β f ,1 β f ,2 ωmin
cp,e, ωmax

cp,e (rad/s)

15 L −0.841 0.01.31 4.94× 10−5 [62.8, 219.9]

11 L −0.982 0.0146 4.86× 10−5 [62.8, 230.4]

7 L −0.339 7.05× 10−3 4.93× 10−5 [78.5, 272.3]

The EDS maximum mechanical power is expressed in Equation (A1) as [24]

Pmax
d,m (ωd) = 1000×



0.428ωd + 1, 0 ≤ ωd ≤ 522 rad/s
−3.46× 10−3ω3

d + 5.36ω2
d

−2.77× 103ωd + 4.77× 105, 522 < ωd ≤ 525 rad/s
225, 526 < ωd ≤ 836 rad/s
−3.04× 10−3ω3

d + 7.62ω2
d

−6.36× 103 + 1.77× 106, 836 < ωd ≤ 839 rad/s
−ωd/(2π) + 3.58× 102, 839 < ωd ≤ 1675.5 rad/s.

(A1)

The battery maximum capacity and discharging and fit coefficients are given in
Table A3. The vehicle physical parameters are shown in Table A4. The EP driven axle ratio,
γv,e, was selected to match the maximum speed of the EP with the expected maximum
axle speed.
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Table A3. Battery discharge and charge parameters [24].

Parameter Discharge, αd = 0 Charge, αd = 1

Wmax
b 214.57× 106 J 214.57× 106 J

kαd −1 1

cαd
b,1 4.76 55.0

cαd
b,2 −5.10× 10−7 1.27× 10−7

cαd
b,3 2.78 −3.015

cαd
b,4 2.70× 10−12 −5.50× 10−14

Table A4. Vehicle parameters.

Parameter Value

mv (includes payload) 3.30× 104 kg [18]

ACd 5.4 m2 [18]

Crr 6.5× 10−3 [18]

ρair 1.23 kg/m3 [18]

rwhl 0.5 m [18]

vmax 35.8 m/s

Pmax
f 7.5 MW

γv,c 3.7 [18]

γv,e 23.4
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