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Abstract: Anaerobic digestion processes offer the possibility for wastewater treatment while obtain-
ing a benefit through the obtained biogas. This paper aims to continue the effort to adopt data-driven
control methods in the case of anaerobic digestion processes. The paper proposes a data-based Inter-
nal Model Control approach applied to an anaerobic digestion process. The paper deals extensively
with the issue of choosing the reference model and proposing an engineering approach to this issue.
The paper also addresses the issue of verifying robust stability, a very important aspect considering
the uncertainties that characterize bioprocesses in general. The approach proposed in the paper is
validated through a numerical simulation using the Anaerobic Digestion Model No. 1. During the
validation of the proposed control solution, the main operating conditions were analyzed, such as
the setpoint tracking performance, the rejection of disturbance generated by variations in the influent
concentration, and the effect of the measurement noise on the controlled variable.

Keywords: anaerobic digestion process; data-driven control; internal model control

1. Introduction

The problem of treating the wastewater resulting from human and industrial activities
is a key aspect in the sustainable development of society [1,2]. In the case of urban
wastewater, aerobic treatment technologies with activated sludge are preferred [3]. They
also include an anaerobic digestion unit used in processing the activated sludge excess
coming from the aerobic treatment units. However, in this case, the control of the anaerobic
digester is minimal, and only needs to ensure some optimal conditions for the process
(e.g., temperature) [4]. In the case of industries that discharge water with a high biological
load, or of isolated human areas, it is preferable to use anaerobic digestion technologies
that have the advantage of being able to treat wastewater with high biological load, while
benefiting economically from the advantage of producing biogas, which is a renewable
energy source. In this case, the control problem is much more complex, addressing the
issue of modeling, implementation of software estimators and control itself, as evidenced
by the large number of papers in the literature.

Modeling the anaerobic digestion process has been done by two approaches. The first
approach is to obtain as detailed a model as possible, which makes a complex description of
the physical, chemical and biological phenomena that take place. Undoubtedly the model
considered the most evolved in this case is Anaerobic Digestion Model No. 1 (ADM1) [5].
However, the complexity of this model, with 35 state variables, makes it very difficult to use
in control problems. Consequently, there has been a continuous effort to obtain simplified
models that allow the application of methods to obtain software solutions for estimating
the state variables and parameters of interest, and for implementing control solutions. In
the mathematical mode proposed in [6] a model with 6 state variables is proposed. In [7] a
modified variant of the simplified model is proposed with a generic procedure to obtain
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the model from the complex model ADM1. More recent approaches [8] propose inclusion
of hydrogen evolution in a simplified model.

Different control strategies and methodologies were used to increase the efficiency of
the process. Starting from the simplified model, a linearizing feedback control was applied
together with an asymptotic observer and interval observer software estimator solution [9].
In fact, the linearizing control solution has often been used in anaerobic digestion pro-
cessed [10,11]. A robust quantitative feedback theory control solution is implemented in
the context of using an optimal reference in [12], and a modern control solution is based
on the model-free control method in [13]. Another intensely used solution is Extremum
Seeking Control used both in a deterministic context and in a stochastic approach [14],
either using the external dither signal [15] or a solution that takes advantage of the usual
variability of the existing influence in wastewater [16]. An exhaustive presentation of
estimation and control techniques is made in [17]. A newer approach is to use data-driven
methods, such as Virtual Reference Feedback Tuning [18], which allow them to be designed
using the complex ADM1 model. In fact, this is also the context of the present paper in
which the Data-Driven IMC method is used [19].

Internal Model Control (IMC), introduced in 1982 [20], is currently one of the most
widespread control structures used in process engineering [21–23]. IMC has grown due
to its simple mechanism and intuitive design. Consequently, the adoption of the IMC
structure to control the ADP is a solution of real interest. The implementation of the IMC
is a real challenge in calculating the inverse of the transfer function matrix of the ADP,
because its model is complex and has a large dimension. The data-driven controller design
in the IMC structure is a problem in the literature [24–27] in the context of designing control
laws for various processes, such as chemical reactors and activated sludge process.

The main contribution of this paper is the analysis of the context for the application of
the data-driven IMC method in the case of anaerobic digestion processes. Thus, an impor-
tant aspect is the choice of the reference model. This model must be chosen considering the
following aspects: essential information on the desired dynamics for the closed-loop pro-
cess; the level of dynamic errors resulting in a closed loop for the adopted reference model,
and the maximum amplitude of the disturbance that would cause a major deterioration of
control quality. Based on the results obtained, the issue of design of the control structure
and the verification of robust stability is treated taking into account the uncertainties that
characterize bioprocesses in general. Finally, the underlined practical aspects are validated
considering a “virtual plant” constituted by the complex model ADM1 in which the es-
sential problems were considered, i.e., the setpoint tracking performance, the rejection of
disturbance represented by the influent concentration, and the effect of measurement noise
on the controlled variable.

2. Materials and Methods
2.1. The Anaerobic Digestion Process

The anaerobic digester (AD) used in the case study presented in this paper has a
volume of liquid Vl = 3400 m3 and a volume of gas Vg = 300 m3. The digester is
considered well-mixed and the temperature in the digester is controlled at an optimal
value. The ADM1 model, which has 35 state variables, was implemented in accordance
with [28]. The objective of the control problem is to track the chemical oxygen demand
(COD) concentration at a setpoint compatible with environmental norms. This is defined
by the relation COD = S1 + S2, where S1 is the sum of the concentrations of the organic
substrate components, and S2 is the sum of the volatile fatty acid concentrations [7]. The
command variable is the dilution rate D (or the influent flow rate in AD, Qinf = Vl ·D),
and the disturbance variables are the concentration variations in the influent, S1in and S2in.

2.2. The Principle of the Data-Driven IMC Approach

A graphical representation of the IMC structure is shown in Figure 1 together with
the corresponding notations. The nonlinear ADP model of the ADM1 type is not explicitly
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used in the design of the controller, but only through the input-output data it provides. The
objective is to achieve a setpoint-output transfer ( r→ y) in accordance with the required
reference model, M(z), and also to achieve reduced effect of the disturbance, d, on the
output, y. We consider P(z) as the transfer function of the linearized model at the current
operating point, obtained by ideal linearization, with the remark that P(z) is not known.

Figure 1. ADP control using the IMC structure: M(z) reference model, P(z) —process linear model
included in the IMC controller, Q(z) —controller.

The control structure contains the controller itself, with the ideal transfer function
Q(z), as well as the internal linear model of the process, P(z). If P(z) = P(z) then the
setpoint r is ideally transmitted at the output, in open loop, if Q(z) = P−1(z). One can see
that such a controller is not causal.

If a reference model, M(z), is adopted so that the transfer function:

Q(z) = M(z)P−1(z), (1)

is invertible (i.e., to represent a system at the casual limit), then:

y(t) = M(z) · r(t) + (1−M(z)) · d(t), (2)

where t is the discrete time, and notation of the form y(t) = H(z) ·u(t) signifies the transfer
u→ y through the H(z) system.

The control structure uses P(z) 6= P(z), as P(z) is unknown and, moreover, does not
ideally reflect the properties of the nonlinear process. However, from the analysis of the
idealized model of the system (see Equation (1)) it results that the controller Q(z) has
the function of compensating the dynamics of the process, so that the transfer r→ y is
determined by the reference model M(z).

Let Q(z) be a controller that performs this function at a level of performance imposed
by the design procedure. In this case, by analogy with Equation (1), valid in the hypothesis
of idealized models, an approximation of P(z) is deduced. Let P(z) be this approximation,
which is a component of the IMC control structure:

P(z) = M(z)Q−1
(z), (3)

Therefore, if the reference model M(z) is chosen and there is a computation procedure
for the transfer function Q−1

(z), then the Equation (3) allows the computation of the second
block in the IMC structure. In order to obtain the transfer function Q−1

(z), first the r(t)
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reference is determined as a result of the transfer of y(t) through the inverted reference
model:

r(t) = M−1(z) · y(t), (4)

and this reference is applied to the input of the controller. If, for the controller, a linear
structure in the θ parameters are adopted, meaning an FIR system with the transfer function
Q(z, θ), then computation of the parameter vector is achieved by minimizing the criterion:

J(θ) =
N

∑
t=1

(
u(t)−Q(z, θ) · r(t)

)2, (5)

using the least squares method.
In conclusion, the data-based design of the Q(z) controller uses the data u(t) and the

y(t) collected in open loop operation of the ADP at a given operating point, as well as the
r(t) “reference” computed with Equation (4), after choosing a reference model. Therefore,
the optimal parameters θ∗ obtained by minimizing the criterion given by Equation (5) are
not affected by the colored noise y(t)− y(t). This noise is transmitted on the feedback
pathway in closed loop operation when the controller input is uc(t) = r(t)− (y(t)− y(t)),
where r(t) is the setpoint of the IMC system.

A key issue in the data-driven design of the IMC structure is to ensure robust sta-
bility. This requirement is due to uncertainties in the adoption of the P(z) model in the
control structure. It is considered that, when choosing the model, the upper limit of the
multiplicative uncertainties expressed in the frequency domain, is lm(ω):∣∣∣∣P(ejω)− P(ejω)

P(ejω)

∣∣∣∣ ≤ lm(ω), (6)

If, in a closed loop system, the adopted P(z) model deviates from the real P(z) model
without exceeding the limit given by Equation (6), then the system is robustly stable. The
condition for the closed loop system to be robustly stable, given in [29] and also in [26,30] is:∣∣∣M(ejω)

∣∣∣ < ∣∣∣∣ 1
P(ejω)Q(ejω)lm(ω)

∣∣∣∣; ∀ω, (7)

3. Results and Discussion
3.1. The Choice of the Reference Model

The choice of the reference model M(z) was made based only on the input-output data
available for the synthesis of the controller. Through this model the desired performances of
the closed loop were imposed. The choice of M(z) is a key issue in the design of the control
structure, as it determines the specifical expressions of the Q(z) and P(z) transfer functions,
as well as ensuring the robust stability. Checking the loop performances by simulation
and particularly the robust stability analysis may lead to iterations in the synthesis of the
control structure which would also lead to the correction of the reference model chosen
initially.

The reference model must lay between two limits:

(1) An invertible broadband model, the highest frequency of which is limited by the
Shannon frequency required for data sampling. In this case, determining the r(t)
”reference” by the transfer function M−1(z) (see Equation (4)) leads to the use of a
broadband derivative system, eventually multiple derivatives. By minimizing the
criterion given in Equation (5), a controller, Q−1

(z), with derivative components is
obtained, defined in an excessive frequency band, which is inadequate since: (a)
there are limitations to the variations of the command variable Qinf (derivations lead
to large amplitude variations which are not physically achievable); (b) the noise is
excessively amplified and (c) robust stability may be compromised;
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(2) An invertible low frequency model, at the limit, can be a static amplification theoret-
ically equal to the inverse of the static amplification of the process: Q(z) = 1/P(1).
In this case it is expected that the dynamic performance of the closed loop system is
very modest.

The reference model must be between the two limits mentioned above. In an engi-
neering approach, it is necessary to search for the M(z) starting from the modest dynamic
performances imposed to the closed loop system (i.e., starting from an invertible low
frequency model) then successively increasing the dynamic performance imposed by M(z)
until obtaining a controller, Q(z), with a moderate dynamic component of the PD type.
The specification “moderate dynamic component of PD type” applied to the Q(z) block
means the lack of higher order derivative components and the existence of a frequency
band of about 1–1.5 decades in which the derivative component manifests. However,
when physically implementing the IMC control, adjustment iterations of the controller are
possible by adjusting the M(z), in order to decrease/increase this frequency bandwidth.
Within these iterations, the Q(z) is determined for the current reference model and then
the frequency properties of the obtained controller are analyzed.

Consideration was given to a process operating regime around the static operat-
ing point given by COD = 1.5 [g/m3] and Qinf = 0.4 [m3/d]. The input-output data
{u(t), y(t)}t=1,N are depicted in Figure 2.

Figure 2. Input (blue) and output (red) data collected by process simulation using the ADM1 model.

The transfer function of the used reference model is [31]:

HRM(z−1) =
z−(nr+1)(1− α)nr

(1− αz−1)
nr

, α = exp(−Tsω̃), (8)

where nr is the order of the model, ω̃ is the parameter that determines the width of its
frequency band, and Ts is the sampling period. As the parameter ω̃ increases, the duration
of the dynamic regime of the reference model decreases.
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The inverse model is:

H−1
RM(z−1) =

(1− αz−1)
nr

z−nr(1− α)nr
, (9)

The design of the IMC controller is based on the input-output data from the open loop
operation of the process. To comment on some results of the command synthesis procedure,
a linearized model of the process is used. This model is obtained by identification using
the available input-output data without involving this model in the synthesis procedure.
Figure 3 shows the variations from the average values of the output variables of the process
and of the identified model. The identification was done using the least squares method
and considering a fourth order linear model. The modest quality of the identification
by least squares method is due to important nonlinearities of the process model, but the
identified model allows the formulation of qualitative comments on the procedure for
choosing the reference model.

Figure 3. Variations from the average values of the process output sizes (blue) and the identified
pattern (red).

In the reference model given by Equation (6) nr = 2 is adopted, which ensures a
dynamic without an overshoot. The choice of the parameter ω̃, which determines the
settling time, is made based on prior information on the process dynamics. “Candidate”
values are adopted: ω̃k, k = i, L, which are tested in the following procedure.

(1) A qualitative analysis of the step responses of the model M(z) is performed in relation
to the dynamics reflected by the process data, but also with respect to the information
from engineering practice regarding the response time of the closed-loop process. It is
also useful to examinate the Bode plot of the inverse model to assess the bandwidth
available to compensate the process dynamics. The candidate values adopted for ω̃ in
what follows are: {1.5, 2.5, 5.0}. Figure 4 shows the step responses of the considered
reference models and of the identified process model. The latter’s response illustrates
the complexity of the process: the initial rapid variation is determined by hydraulic
and biochemical processes, while the slow variation lasting up to days is determined
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by microbiological processes. A Bode plot of the inverted reference models, shown
in Figure 5, highlights large frequency domains, with a double derivative character,
which would create insurmountable difficulties for the problem of transfer through
the M−1(z) of a noisy signal from the physical process. In the case of the control
design procedure based on the data from the simulated process, there is practically
no noise and the data transfer through the inverted model is done without problems.

(2) Determine the fictitious r(t) reference by transferring the y(t) signal through M−1(z).
(3) Based on the data {y(t), r(t)}t=1,N the linear model is identified:

Q(z, θ) =
m

∑
i=0
θiz−i, (10)

Figure 4. The process response for a step of amplitude 0.1 (P) and the unit step responses of reference
models with ω̃ = 1.5, 2.5, 5.0.

For example, for ω̃ = 2.5 [rad/d] and m = 5, the identified parameters are represented
in Figure 6.

(4) The graphical representation of the frequency characteristics of Q(z,θ) is made, for all
“candidate” values of the parameter ω̃ of the reference model, considering in each case
m = 2, . . . , 8 for the order of the controller. Thus, the representations given in Figures 7–9
are obtained, which are made on the same scale to facilitate their comparative analysis.
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Figure 5. Bode plot of reference models with ω̃ = 1.5, 2.5, 5.0.

Figure 6. Controller parameters for ω̃ = 2.5 [rad/d] and m = 5.
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Figure 7. The Bode characteristics of the Q(z, θ) for ω̃ = 1.5 [rad/d] and m = 2, . . . , 8.

Figure 8. The Bode characteristics of the Q(z, θ) for ω̃ = 2.5 [rad/d] and m = 2, . . . , 8.
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Figure 9. The Bode characteristics of the Q(z, θ) for ω̃ = 5 [rad/d] and m = 2, . . . , 8.

The resulting findings, presented below, are important not only for the selection of the
reference model, but also for the choice of the preliminary form of the Q(z, θ) controller.
Regarding the choice of the reference model, it is useful to correlate the obtained Bode
characteristics of the controller with the responses of the M(z) given in Figure 4. The main
findings are:

1. For ω̃ = 1.5, the resulting Bode characteristics indicate a negligible dynamic, which
manifests itself only in an area adjacent to the Shannon frequency. In this case, the con-
troller is practically a constant, equal to the inverse of the process gain. The controller
does not effectively perform a compensation function of the process dynamics and
we can conclude that the choice of the reference model is not a satisfactory solution.

2. If the order of Q(z, θ) is m = 2, the controller is basically a static gain equal to the
inverse of the process gain, regardless of the value of the ω̃ parameter.

3. The excessive increase of the m order of the controller is not appropriate, as it leads
to a reduction of the frequency bandwidth with derivative effect. For ω̃ ≥ 2.5 and
m > 3, the Bode characteristics are practically overlaid until near to the Shannon
frequency.

4. For ω̃ = 5, the Bode characteristics of the controller manage to compensate the
dynamic characteristic of the process starting from a frequency that can be considered
excessively low and are able to ensure a derivative behavior of the controller in a
frequency band of more than two decades. Even if a filter is introduced in the final
design phase of the controller in the area adjacent to the Shannon frequency, the
solution ω̃ = 5 seems debatable from the point of view of feasibility. This finding
correlates with the response depicted in Figure 4, which indicates a closed loop system
response time of about one day, which is an overly optimistic performance.

5. The choice ω̃ = 2.5, for m = 4, seems to be an appropriate solution, because a compen-
sation of the process dynamics is performed without performing this compensation
in an excessive frequency bandwidth. Correlating the time response of the closed
loop system of about 2–3 days reinforces this conclusion.
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3.2. Design of the Control Structure

For better transparency of the correlation between the controller parameters with the
parameters of the reference model, the digital-analog conversion of the transfer functions
involved in the analysis of the control structure was performed.

The transfer function of the M(s) reference model for ω̃ = 2.5 is:

M(s) ' 1

(0.4s + 1)2 , (11)

After the identification of the Q(z, θ) model for m = 4, and reducing the order of the
equivalent analog model, we obtain:

Q(s) =
0.1046(0.3978s + 1)

(0.005s + 1)
, (12)

Figure 10 shows the Bode plot of the analog controller given in Equation (9) compared
to that of the identified Q(z, θ) controller. In the same picture there is depicted the Bode
characteristic obtained for the discretized controller given in Equation (9). Here, the
frequency band with derivative effect extends over approximatively two decades, which
leads to excessive noise amplification. In order to impose an extended derivative effect in a
frequency band of approximatively one decade, the time constant 0.04 [d] is adopted at
the denominator of the transfer function given in Equation (9), instead of 0.005 [d]. Under
these conditions, the P(z) transfer function, obtained with Equation (3) and implemented
in the control structure is:

P(s) = 9.56
(0.04s + 1)

(0.4s + 1)2(0.3978s + 1)
, (13)

It is known that the IMC structure implements a control law corresponding to a
classical regulator with the transfer function:

C(s) =
Q(s)

1− P(z)Q(s)
, (14)

3.3. Checking Robust Stability

Checking the condition given by Equation (7) requires the assessment of the upper
boundary of the lm(ω) multiplier uncertainties. Since the only available information on the
controlled process are the input-output data {u(t), y(t)}t=1,N, obtaining the lm(ω) transfer
function based on these data and on the transfer functions from the control structure is
done using the Empirical Transfer Function Estimate (ETFE) method, introduced in [32]
and also used in [25,30]. Let us consider the general case of a system with H(s) transfer
function, in which the discrete values of the input-output variables are known: uN(t), and,
respectively, yN(t). In the above-mentioned papers, the estimate of the frequency response
of the system is defined by:

ĤN(ejω) =
YN(ω)

UN(ω)
, (15)

where:

UN(ω) =
1√
N

N

∑
t=1

u(t)e−jωt, (16)

YN(ω) =
1√
N

N

∑
t=1

y(t)e−jωt, (17)
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Figure 10. The Bode plot for: Q(z, θ) identified (red), low order analog (brown), low order digital
(blue) and limited frequency digital (green).

The Bode characteristic of type PID of this controller is shown in Figure 11.

Figure 11. The Bode characteristics of the controller achieved through the IMC control structure.
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The discrete frequency values in the frequency response are: ω = 2πk/N, k =
0, 1, 2, . . . , N− 1.

In [32], it is shown that such a computation procedure leads to an ETFE asymptotically
unbiased with the increase of N, but the ETFE variance does not decrease with the increase
of N. So, the presented procedure leads to a result affected by strong numerical noise, so
that the use of a smoothing operation, adapted to the concrete application, is required.

Imposing in Equation (7) the
∣∣M(ejω)

∣∣ ≤ 1 condition, the closed loop system is
robustly stable if: ∣∣∣P(ejω, θ∗)Q(ejω, θ∗)lm(ω)

∣∣∣ ≤ 1, (18)

In practice a security parameter is adopted, which is necessary given that lm(ω) is
calculated as an estimate, so the existence of uncertainties justifies this approach. Let α be
this security parameter. In this case, the robust stability condition is:∣∣∣P(ejω, θ)

∗
Q(ejω, θ∗)

∣∣∣ ≤ 1− α
lm(ω)

, (19)

The operations required for the effective verification of robust stability are included in
the following algorithm, proposed in [25,30]:

Initial data: {u(t), y(t)}t=1,N, α ≥ 0, Q(ejω, θ∗), P(ejω, θ∗), ωk = 2πk/N, k =
0, 1, 2, . . . , N− 1.

1. Compute: ydiff(t) = y(t)− P(ejω, θ∗) · u(t);
2. Compute: ymodel(t) = P(ejω, θ∗) · u(t);
3. Compute ĤdiffN(ejω) defined by ydiff(t) as output and u(t) as input, using ETFE;
4. Compute P̂N(ejω) defined by ymodel(t) as output and u(t) as input, using ETFE;

5. Compute: lm(ω) =
|ĤdiffN(ejω)|
|P̂N(ejω)| ;

6. For each ωk, k = 0, N− 1 the condition
∣∣∣P(ejω, θ∗)Q(ejω, θ∗)lm(ω)

∣∣∣ ≤ 1 − α is
checked.

The initial data, used to check the robust stability, came from the {u(t), y(t)}t=1,N
set, represented in Figure 1, which served to synthesize the command law. These data
were extracted using the sampling period Ts = 0.01 [d], resulting in N = 80,000 samples.
Obviously, this number is prohibitive in the ETFE calculation procedure. Consequently, a
new data set with N1 = 1000 samples was extracted from the initial data, with the sampling
period Ts1 = 0.8 [d]. Figure 12 shows a zoom of the data set which includes the signals
u(t) and ydiff(t) with the sampling period Ts, represented in blue and red dashed line,
respectively, as well as the impulses from those signals extracted with the Ts1 sampling
period.

Adopting α = 0.2, the robust stability condition given by Equation (19) is checked
based on the representation in Figure 13 of the functions 1−α

lm(ω)
and

∣∣∣P(ejω, θ)∗Q(ejω, θ∗)
∣∣∣.
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Figure 12. The u(t) and ydiff(t) signals with the Ts sampling period (blue and red dashed line,
respectively) and the impulses from these signals extracted with the Ts1 sampling period.

Figure 13. Checking the robust stability of the system.
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3.4. Validation by Simulation of the Designed Control Structure

Analysis by numerical simulation of the performances of the synthesized control
law follows three aspects: (1) following the setpoint CODref(t); (2) the rejection of the
disturbance CODin(t) and (3) the effect of the measurement noise on the controlled variable.

(1) The setpoint tracking performances are illustrated in Figure 14a,b. The delay of the
controlled variable with respect to the setpoint, when it has a variation close to a
ramp, is less than one day, and the maximum error during the dynamic regime is
εCOD,max = 0.014;

(2) The rejection of disturbance was examined in relation to the variation of the influent
COD concentration (CODin(t)) presented in Figure 15. The evolution of the controlled
variable, COD, and of the setpoint, CODref, are shown in Figure 16. A performance
evaluation must also be made considering the evolution of the command variable,
Qinf, shown in Figure 17. Its variations around the stationary value related to the
current operating regime, Qinf(t) = 0.4 [m3/d], are small enough, so that it can be
appreciated that the hypothesis of linearizing the mathematical model of the process
is valid. We can test and determine the maximum amplitude of the CODin disturbance
that would cause a major deterioration of the control quality. Thus, if the amplitude
of the CODin disturbance is doubled, then the results presented in Figures 16 and 17
become those in Figure 18a,b, respectively. This shows that the quality of the control is
not significantly affected, and the variation of the operating point in dynamic regime
covers the interval [0.3, . . . , 0.5] where the nonlinearities are already significant.

Figure 14. Setpoint tracking: setpoint CODref (red), controlled variable (COD —blue) (a); zoom (b).
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Figure 15. Evolution of the influent CODin.

Figure 16. Evolution of the setpoint (red) and the controlled variable (blue).
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Figure 17. Command variable evolution.

Figure 18. (a) The set point (red) and the controlled variable (blue); the command variable (b).

The presented results may suggest the testing of the designed command law around a
more efficient reference model. If ω̃ = 3.5 [rad/d] is adopted in Equation (8), the following
transfer functions are obtained:

Q(s) =
0.1046(0.7022s + 1)

(0.04s + 1)
, (20)

and

P(s) = 9.56
(0.04s + 1)

(0.2857s + 1)2(0.7022s + 1)
, (21)
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In this case the delay of the controlled variable in relation to the reference is reduced
(see Figure 19). If the amplitude of the CODin disturbance amplitude increases four-fold in
relation to the regime illustrated in Figure 15, then the evolution of the controlled variable
and the command variable are presented in Figure 20a,b, respectively, together with the
evolution of the same variables (see Figures 16 and 17) from the situation considered as
reference. It is found that the dynamic errors are important, and the variations of the
command variable in dynamic regime extend in the region of nonlinear variation from the
static characteristics COD = COD(Qinf), without the system losing its stability.

Figure 19. Evolution of the controlled variable for ω̃ = 3.5 [rad/d] (green) in relation to the set point
(red). For ω̃ = 2.5 [rad/d] the controlled variable is represented with dashed blue line.

Figure 20. (a) Evolution of the controlled variable, and (b) the command variable for ω̃ = 3.5 [rad/d]. The respective
variable from the reference situation is represented with a green line (see Figures 16 and 17).
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Figure 21 shows the functions 1−α
lm(ω)

and
∣∣∣P(ejω, θ)∗Q(ejω, θ∗)

∣∣∣, for ω̃ = 2.5 [rad/d]

and ω̃ = 3.5 [rad/d]. It is found that by adopting the new reference, decrease in the
stability margin is insignificant.

Figure 21. Analysis of the robust stability margin for ω̃ = 2.5 [rad/d] and ω̃ = 3.5 [rad/d].

(3) The effect of a measurement noise with the standard deviation σn = 0.233 on the
controlled variable was tested. Under these conditions, the standard deviation of the
controlled variable is σCOD = 0.0233, and the evolution of this variable is given in
Figure 22.

Figure 22. Effect of measurement noise on the controlled variable.
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4. Conclusions

The key findings of this paper are:

1. The IMC approach results in an extremely attractive solution for the data-based design
of the control law for ADP. However, the adoption of these methods requires taking
into consideration the specificity of these processes.

2. Due to the nonlinearities of the process, the command law must be based on the gain
scheduling strategy, and the design of the local regulators based on a procedure that,
according to the results presented, ensures a good reserve of robust stability.

3. An essential step of the data-based design procedure of the control law in the IMC
structure is the choice of the reference model, which is involved in the calculation
of the transfer functions Q(z) and P(z). Usually, the reference model is established
following iterations of adjustment of the control structure. The main data used to
select the reference model are the essential information on the dynamics of the closed-
loop process, the level of dynamic errors resulting in a closed loop for the adopted
reference model, the maximum amplitude of the CODin disturbance that would cause
a major deterioration of the regulator quality, and robust stability reserve.

Our future work will focus on obtaining a control solution based on the gain schedul-
ing method, and validating this on an anaerobic digester.
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