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Abstract: While extensive research has gone into demand response techniques in data centers,
the energy consumed in edge computing systems and in network data transmission remains a
significant part of the computing industry’s carbon footprint. The industry also has not fully
leveraged the parallel trend of decentralized renewable energy generation, which creates new
areas of opportunity for innovation in combined energy and computing systems. Through an
interdisciplinary sociotechnical discussion of current energy, computer science and social studies of
science and technology (STS) literature, we argue that a more comprehensive set of carbon response
techniques needs to be developed that span the continuum of data centers, from the back-end cloud
to the network edge. Such techniques need to address the combined needs of decentralized energy
and computing systems, alongside the social power dynamics those combinations entail. We call this
more comprehensive range “carbon-responsive computing,” and underscore that this continuum
constitutes the beginnings of an interconnected infrastructure, elements of which are data-intensive
and require the integration of social science disciplines to adequately address problems of inequality,
governance, transparency, and definitions of “necessary” tasks in a climate crisis.

Keywords: smart grid; demand response; social aspects of energy; carbon footprint; carbon intensity;
edge computing; data center; big data; linked data; mixed qualitative and quantitative methods

1. Introduction

With growing digitization of human activities, greenhouse gas emissions (GHG)
from information and communication technologies (ICTs) are increasingly a matter of
concern. While the energy efficiency of hardware continues to improve, and a partial turn
to renewables for powering computing systems ensues, these trends might not be able to
keep pace with the explosive growth in demand for digital services [1,2]. Estimates of ICTs’
share of global electricity consumption vary widely and transform rapidly with changing
technology and changing demand for digital products [3]. However, there is a narrower
band of estimated greenhouse gas emissions. A review of peer-reviewed estimates shows
most researchers place ICTs at 1.8–2.8% of current global emissions, putting it roughly
on par with the aviation industry [4]. Belkhir and Eleligi [5] predict ICTs’ relative GHG
contribution could rise to 14% by 2040, approximately half of the total GHG emissions of
the entire transportation sector.

In this context, computing systems are increasingly looking to reduce their emissions
impact through increased energy efficiency, whether in data centers (especially given
their extensive cooling needs) [6,7], in data transmissions [8,9] and the use of local or
co-located renewable energy sources [10]. However, a series of more radical responses are
emerging (i.e., delaying, redistributing, stretching or shrinking computing workloads) [11],
as a function of real time electricity carbon intensity (technically defined as the amount
of carbon by weight emitted per unit of energy consumed, but used here to connote
the percentage of energy from non-renewable sources). As a form of demand response,
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temporal and spatial shifting of workloads are optimizations that could: (1) reduce the
overall carbon footprint of ICT devices; (2) further incentivize the transition to renewables
by creating demand for “spare” renewable energy; and (3) support grid providers’ needs
for manageability, therefore reducing the need to expand energy generation capacity,
whether renewable or not. We term this new approach carbon-responsive computing (CRC)
and such systems could substantially increase the participation of the ICT industry in
demand response.

Carbon-responsive computing is the umbrella term we use to describe a range of tech-
niques that currently exist under various other names. For example, in a hyperscale data
center (i.e., large warehouse-size data centers typically owned by the largest technology
companies), carbon responsiveness has been referred to as geographic load balancing [12],
smart grid integration [13], or time shifting [11]. However, as we show below, limiting CRC
to data centers misses important opportunities in other areas of computing. Therefore, in
carbon-responsive computing, as we define it, energy sources and computing elements of
all kinds—PCs, networking devices, electric vehicles, Internet of Things (IoT) devices, large
or small data centers—collaborate with the shared goal to prioritize the usage of energy
with the least carbon intensity, regardless of whether the strategy is spatial, temporal, or
a combination.

This umbrella term enables researchers to consider such techniques holistically, across
a range of different types of computational infrastructures and energy generation infrastruc-
tures and in light of the sociotechnical implications that arise as these techniques mature.
Without this holistic picture carbon-responsive computing could be built in siloed ways
that prevent it from becoming a more substantial energy-computing infrastructure, and it
could be designed in ways that exacerbate economic exclusion and invite greenwashing.
We aim to prevent that outcome by supporting an interdisciplinary dialogue across com-
puter science, energy research, and social studies of science and technology (STS). With
this aim, this paper reviews relevant literature across energy research, computer science,
and STS—disciplines that do not always communicate—to arrive at a more socially aware
research agenda for carbon-responsive computing.

To summarize the argument, carbon-responsive techniques are fairly well understood
in the context of hyperscale data centers, where they have been initially applied. There is
great interest in data center applications because data centers have grown massively in
recent years [6,12], and much of their workloads can tolerate delays to flexibly adapt to
match the variability of renewables [13]. However, changes in both energy infrastructure
and computing infrastructure make a data center-centric research agenda insufficient.
Specifically, rapid growth in edge computing—that is, computing that happens more
proximate to the very edges of the network infrastructure—means more computational
power, storage, networking, control, and data management is situated outside big data
centers [14,15]. As we discuss below, there is some engineering research on implementing
carbon response within edge systems, though the approach is less commonplace. This
constitutes a particularly problematic research gap, because renewable energy generation
is also growing in distributed ways [16]. The proliferation of renewables at the edges of
the electrical grid amplifies opportunities to align the energy use of computing tasks both
locally and non-locally through energy–compute exchange systems.

The problem, however, goes far beyond simply developing optimization techniques
in edge systems in ways analogous to those found in data centers. With growth outside
data centers also taking place, and CRC techniques beginning to evolve in that direction,
the stage is set for CRC to transform from a series of related but discrete technologies
into a more cohesive and interdependent set of underlying social and technical concerns
to address. That evolution requires that researchers acknowledge urgent social consider-
ations often overlooked in efficiency-focused technical approaches. Non-sociotechnical
approaches treat carbon responses as a matter of a single company conducting demand
response with a single energy provider using a bespoke suite of algorithms. With a so-
ciotechnical approach, CRC considers carbon responsiveness to be a matter of wider public
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interest: it is taking place within heterogeneous sociotechnical systems with multiple actors
involved and various technical and social dynamics that demand attention. Less powerful
actors, such as owners of small-scale renewable energy systems, become newly implicated
in CRC, and we cannot assume the interests of all actors are easily aligned.

We argue that this is likely to come to a head with respect to the underlying data that
enables carbon responses, which serves as a shared resource for heterogeneous actors. Not
only is more research required to better specify the technical requirements of shared data
infrastructure to meet the needs of different ICT systems, but social scientific research is
also necessary to address societal questions that arise in the design of that infrastructure.
These questions concern social equity, inclusion, transparency, governance, the role of
markets, environmental impact, and ask what constitutes the need for a computing task to
proceed at all, or in a different form, in the context of a climate crisis. We find that many of
these more fundamental questions are only answerable with a more holistic approach that
includes integration with STS.

In this paper we qualitatively connect the dots across fields and subfields not tradi-
tionally considered together, to make the case for a broader sociotechnical research agenda
that lays a foundation of equitable inclusion in this emerging way of allocating energy and
computing power. Where available, we leverage pre-existing reviews of the state-of-the-art
for this purpose. We proceed as follows. In Section 2, we present the trajectory of carbon-
responsive computing from early experimentation in data centers through to new areas
of application such as edge-based systems, and we identify the areas of innovation that
become newly feasible given the increasingly distributed nature of renewable energy as
well as computing infrastructure [17]. In Section 3, we employ the classic sociotechnical
model of infrastructure growth from Hughes [17] to reason that data, particularly carbon
intensity data, are likely to be a newly important enabler that arises from the early growth
we trace. We then outline a synthesizing framework for CRC that provides high-level
guidance for other researchers in identifying the implications of their activities in one area
for another. In Section 4, we delve into the key challenges that must be addressed by
this interdisciplinary community—researchers and industry—in a sociotechnical manner.
Lastly, we conclude by identifying areas of research in CRC that must be expanded to
address broader societal challenges.

2. State of the Art: Foundations for Carbon-Responsive Computing

One widely recognized problem in the transition to renewables is the variability in
renewable energy production, as renewable energy is only produced when, for example,
the sun is shining or the wind is blowing. Times of peak demand, such as winter evenings
when heating is most needed, can also require energy generation capacity that in all other
times of the year would constitute an overprovisioning. Even a small offset of peak demand
can mitigate the need for such overprovisioning [18]. Computers do not have the same
biophysically driven temporalities as wind and sun. They can schedule and distribute their
operations with tremendous plasticity. Armed with the right data insights, computing’s
spatial and temporal plasticity can turn into a significant advantage for sustainability
initiatives, as systems can be optimized to favor the availability of renewable energy.

Section 2.1 begins by describing the contributions that data center research has made
to the development of CRC, highlighting their contributions to technology optimization
and the building of relationships between carbon-intensive data centers and smart grids. In
Section 2.2, we discuss the evolution of CRC beyond data centers, describing the drivers for
this evolution, and what is at stake when CRC is used in edge systems. In Section 2.3, we
describe the changing relationships between computing and energy which directly impact
CRC practices. In Section 2.4, we end with a discussion on the state of the art enabling data
that can support the expansion of CRC within heterogeneous sociotechnical systems.



Energies 2021, 14, 6917 4 of 26

2.1. Data Centers and Carbon-Responsive Computing
2.1.1. Rationale

Not surprisingly, data centers have been leaders in both the scholarship and the
industry in adopting carbon-responsive techniques. Energy is a significant percentage of
the cost of operation, and a portion of a data center’s workload can tolerate delays that
can be programmatically controlled in response to price or carbon signals [19,20]. What
is not acknowledged in the engineering literature, but central in the STS scholarship on
data centers, is the public contestation over data centers’ impacts on energy and water
systems [21]. Deeper concerns over “energy gentrification” [22] have also developed—that
is, concerns about energy providers and policymakers prioritizing the energy needs of
global firms at the expense of local citizens, raising questions of democracy and what
constitutes the public interest [23]. For these economic, societal, and environmental reasons,
there are enormous incentives to more tightly manage energy use.

2.1.2. Optimization Technologies

Wierman et al. [19] offer an extensive survey of the data center optimization literature,
noting that the relevant scholarship is scattered across disciplines. Nevertheless, it is worth
raising a few salient aspects that have been foundational. Initial work focused on sched-
ulers, estimating available near-term solar energy, and balancing this with grid energy
prices and jobs’ deadlines [24], maximizing the use of on-site renewables [25] while miti-
gating impacts on availability for tasks inappropriate for scheduling [26]. Goiri et al. [27]
note the challenges of integrating on-site renewables, not only in simulation, but also in the
real world, including underappreciated topics such as dealing with contractors unfamiliar
with demand response and the temptation to overprovision. Other optimizers specifically
aim to balance both direct energy costs and monetary incentives provided by a regulator
to participate in demand response to reduce overall costs while meeting service level
agreements [20]. Because the largest data centers are owned by firms with an expansive
geographic presence, there has been an emphasis on geographic load balancing where data
center placement of workloads follows patterns of sun and wind around the globe rather
than seek to locally optimize. Dou et al. [28] observe that energy costs to cool are related
to temperature, and therefore cooling needs, and not just on-site renewables production,
must be a factor in decisions about where to run workloads. Liu et al. [29] conducted a
numerical experiment using workload data from Hewlett Packard Labs and corresponding
energy mix data and found that to successfully space-shift workloads across different data
centers, significantly more wind production (80% of the renewables mix) was required,
and small-scale on-site energy storage remains useful. They note an important tradeoff
in attempting to “follow the renewables” [29] (p. 234). In routing workloads to a remote
data center with cheaper energy, the transmission delay and energy usage might increase,
and thus the data center might need to complete the job faster and thus use more energy
overall. Indeed, one challenge for CRC is right-sizing both on-site electricity generation
and storage.

More recently, at least one major cloud provider (Google) began time-shifting non-
urgent workloads in its data centers for maximum renewables availability, claiming in 2020
that, “carbon-aware load shifting works” [30]. Their method involves matching externally pro-
vided day-ahead hourly forecasts of carbon intensity with internal forecasts of computing
task demand over the same time period. In the public sector, the DC4Cities project was able
to shift 5–30% of data center workloads participating in their trial of a federated system of
carbon-response across multiple data centers in a city [31]. These examples demonstrate
that it is possible to bring working systems into production, but how commonplace they
are in practice is unclear from publicly available information.
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2.1.3. The Relationship with Smart Grids

Where there are still unknowns is how these hyperscale data center methods integrate
with the evolving definition of the smart grid. Whereas one of the first steps toward
a smart grid was to deploy smart meters that periodically monitored utility customers’
whole-house energy usage, over time the term smart grid has come to mean an electric
grid infrastructure imbued with the ability to measure and monitor its operation along
many dimensions, at many different places in the topology, and to perform sophisticated
AI algorithms to predict, manage, and optimize its performance.

Thus, where do data centers and smart grids intersect? Data centers are enormous
customers of electricity and as cited earlier have introduced CRC techniques to offset their
carbon footprint with renewable energy, where possible. Of course, this is only a useful
technique when the carbon intensity of the electricity consumed by Internet cloud service
providers is low, which is a function of where they are sited [32,33]. In both [13,19], the
authors note that the relationship with smart grids is ambiguous with respect to pricing
mechanisms, the lack of appropriate regulatory frameworks, and the potential for data
center grid customers to use their purchasing power to game markets, market complexity,
and control points. For example, if the grid supplier makes energy supply available based
on the carbon intensity of that energy, that is a very different social and technical proposition
from supplying infinite access to energy and allowing devices to choose how much they
want to use, depending if the energy is renewable or not. Lin et al. [12] examine the impact
on the grid in terms of renewables absorption and power prices under three conditions:
(a) data centers running at constant load regardless of the status of the grid; (b) data
centers conducting local time-shifting; and (c) grid-wide optimization, where the grid
controllers set power levels of multiple data centers across a grid, and those data centers
adapt to the power available. They show that the grid-wide optimization can increase a
grid’s renewables fraction and reduce the data center’s energy costs, but could create large
changes in data center capacity that could be unacceptable to data center operators.

Since the Wierman et al. survey [19], proposals for pricing and exchange mechanisms
have emerged in various quarters, primarily from simulations. Some examples include
online auctions to incentivize tenants to delay batches in a co-located data center [34],
a bargaining approach specifically designed to overcome the information asymmetries
between utilities and data centers [35], and an energy marketplace for exchanging both
energy flexibility and thermal waste heat [13]. The latter work productively incorporates
the synergistic effects of cooperating multiple actors and networks across a smart city,
including scenarios where data centers can exchange workloads between themselves to
optimize energy costs, and scenarios where smaller data centers collaborate to maximize
the amount of green energy available. This is an excellent example of the higher-level
perspective that we argue will be required as carbon responsiveness grows from one-off
implementations to broader adopted practice. Nevertheless, these areas of inquiry only
scratch the surface of the social dynamics of adoption, which we address in Section 4.

2.2. Carbon-Responsiveness beyond Data Centers
2.2.1. Drivers for Expanding CRC

However, while data centers receive the bulk of attention, they do not necessarily
account for the majority of ICT energy consumption [36]. Various types of networking
equipment (from the core backbone, to on-premise consumer-facing access points, to the xG
wireless access networks) constitute approximately 45% of total energy consumption, while
consumer data centers account for 36%, equipment, electricity associated with equipment
production makes up another 8%, and device usage 2% (Figure 1).
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Dubbed the “overlooked environmental footprint of increasing Internet use” [37], the var-
ious Internet networking equipment that transmit data around the world, onto phones,
televisions, and computers, stand to have as much if not more of an impact on carbon
footprint than data centers. How energy consumption translates to carbon footprint varies
by country, due once again to where the network is drawing electricity; Obringer et al. [37]
estimate a range of 28–63 CO2e per GB of data, depending on the country. Estimates in
ICT energy overhead typically involve large uncertainties regarding data transmission [3],
and Aslan et al. [38] found estimates of data transmissions energy consumption spanned
five orders of magnitude due to variation in system boundaries, age of data, and other
assumptions. Even with these uncertainties, Figure 1 nevertheless illustrates an important
underlying disjuncture between where research effort has been most prolific for carbon
responsive computing (data centers), and where additional energy consumption might
be found and harnessed to balance renewables integration. One unknown is the amount
of CO2 emissions savings that are possible in different scenarios from carbon responses.
For now, we can reason that as long as even the lowest estimates of ICT emissions are
non-zero [3,4,36,37], and as long as demand for data continues to outpace equipment
efficiency gains [3], there is ample reason to continue to apply carbon responsiveness across
the spectrum of ICT systems, given the urgent need for climate action.

Although Figure 1 identifies that networks rival data centers in electricity usage, it
does not capture new developments in edge computing, which introduce a proliferation
of resources outside the back-end cloud data center. In other words, the “elsewhere”
beyond the data center is growing. Indeed, Gartner predicts that by 2025, 75% of all
data will be created and processed in edge computing systems [14]. Estimates predict a
24% compound annual growth rate (CAGR) for edge data centers by 2025, as upwards of
100,000 edge-based data centers will be deployed [15]. While it would be unwise to take
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any prediction of an emerging technology at face value, such claims do reflect a changing
sensibility within the industry about the technologies worth investigating and building.
Well-designed interactions between the local edge and remote back-end data center have
the potential to reduce energy consumption for a given system [39], but whether those will
be implemented in real-world systems remains to be seen. Edge growth in aggregate could
mean more energy-consuming devices overall if they ultimately add to, not displace, data
center growth. With such growth there is a need to control edge-related carbon emissions
as rigorously as data centers often do.

While devices that live at the network edge might include cameras, phones, Internet of
Things (IoT) sensing devices, PCs, cars, the edge itself is often a reference to a collection of
resources that do not reside in a back-end hyperscale data center cloud, but instead reside
locally or proximately. These resources may or may not rise to the level of a data center,
but they are not a remote cloud in the sense of being a large scale, far away hyperscale
provider offering outsourced computation cycles and storage as a service [40]. Some might
nevertheless be “cloud-like” in the sense that they might be built as a shared resource or
service. For example, a telecom company’s or other provider’s points of presence will
typically have server storage alongside routers and other networking equipment, and these
often cache content for quicker delivery to end users [41]. The beauty of the edge is that
there are so many potential places where an edge might reside and where its placement
can offer efficiency benefits for certain classes of data-centric applications.

With the tremendous growth in the numbers of devices connecting at the very edges
of the Internet, and the torrent of data that they create, edge computing has growing appeal
for the technology industry [42]. Tasks that formerly could only take place in a data center,
such as training AI models, can now take place elsewhere, as computational resources are
distributed widely and new techniques such as federated learning (a way of distributing
the training process of AI models) make edge computing a viable alternative for those
tasks [43]. Data processing, including AI, increasingly even happens in the network itself,
not just in servers and on clients [44]. Many tasks once outsourced to a back-end remote
data center cloud have requirements that render that choice no longer appropriate. The
main reasons for this shift [45,46] tend to be data volume (it is impossible to fit all the data
over the network pipe, at least in its original form), latency (the cloud is too far away), and
privacy-sensitivity or regulatory/jurisdictional considerations that limit data movement
(such as with HIPAA in the US, or GDPR in the EU). For example, smart city data might
need cleansing at the network edge to ensure no personally identifiable information is
stored or leaked, and that pre-processing takes computing power.

2.2.2. Carbon-Responsiveness at the Edge

Given the energy consumption of both data transmission and data center cooling, we
expect sustainability, or at least energy cost, to be added to the rationale for building edge
systems. Although there is a recent survey of the state of the art of energy considerations
in edge computing [47], tellingly, its focus is not on renewables, carbon, or real-time
carbon responses, but instead the traditional energy efficiencies of specific edge hardware,
architecture, software, and networking design. Workload scheduling is addressed in terms
of overall efficiency, not in terms of capturing the least carbon intensive energy. There is
some discussion of power capping, where firm limits are placed on the energy consumed
by a piece of hardware regardless of workload, and more discussion of techniques for task
offloading to the cloud in order to save battery and other local resources. The authors
note that an inefficient offloading strategy can consume more energy and have high
associated carbon footprints. They also discuss that controllers that offload computational
tasks typically either aim to maximize total throughput or to minimize the total energy
consumption, and they call for a hierarchical approach where “energy-intensive tasks should
be offloaded to cloud servers, computing-intensive (CI) tasks should be offloaded to edge servers,
and data-intensive (DI) tasks should be offloaded to servers that are close to the data source” [47]
(p. 575). We can extrapolate from this that the offloading controllers that orchestrate this
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joint optimization might be in a position to include in their decision-making processes
consideration of carbon intensity.

There are, however, a few studies within the edge computing literature that explore car-
bon responsiveness. Li et al. [26] offer a framework and a prototype for carbon-responsive
computing at the edge, where the main energy grid is treated as a supplemental non-
renewable energy source to locally produced renewables. Forecasting of solar and wind
availability 24 h in advance enabled battery charging optimizations and a classifier dis-
tinguished between delayable and time-sensitive tasks. Another study [39] explored the
energy impacts of different configurations of an IoT sensing system with an edge gateway
(i.e., data processing capacity larger than a PC but smaller than a data center) powered
by a microgrid (a decentralized group of electricity resources that is able to function in-
dependently from the traditional grid). They included different ways of relating these
systems to the cloud, with one scenario where cloud processing was used only when
local renewable energy was unavailable. Another [48] proposed the close integration
of edge computing systems and local microgrids, to service time-elastic computations,
whilst considering IoT workloads of a time-sensitive nature. A fourth study compared the
full energy consumption, including network data transmission consumption, across four
types of architectures, spanning from fully centralized to fully decentralized [49]. It con-
cluded that a completely distributed architecture might save 25% of energy consumption
through avoiding intra-data center network traffic and reducing the need for large-scale
cooling systems.

Put together, this group of studies suggests that carbon responses at the edge are
indeed nascent if underdeveloped. Although these systems are not in real-world production
beyond academia, given the opportunity for carbon savings as shown in Figure 1, we expect
them to emerge. One significant unknown is the extent to which algorithms used in data
centers to schedule and distribute computing tasks can be repurposed for edge data centers,
given the differences in scale, computing infrastructures, and types of tasks involved at
the edge.

2.2.3. Edge Systems and Energy Markets

Another, perhaps deeper, unknown is whether the exchange and pricing mechanisms
proposed in data center contexts are equally useful at the edge, or whether entirely different
kinds of marketplaces or forms of exchange need to be created. Proposals for methods
of exchanging renewable energy at the edge have emerged recently, without considering
energy consumed by computing. For example, Mengelkamp et al. [50] proposes individual
level peer-to-peer energy market trading for rooftop solar energy using blockchain. Verga-
dos et al. [51] propose “prosumer clustering” of individual rooftop solar owners into virtual
microgrids composed algorithmically, in order to participate as a single entity in the energy
marketplace to reduce costs. Paladin et al. [52] showed through a simulation study that
in high density, distributed solar generation with battery storage, a micro-energy market
could reduce costs for all grid users by 4–20%. The next step for research, then, is to explore
whether there are additional improvements that could be made by integrating carbon
response techniques alongside other forms of demand response, although as we outline
in Section 4, there are significant social factors at work that need to be taken into account
beyond the current emphasis on efficiency, carbon savings, and cost. However, it is also
quite promising that peer-to-peer relationships and federated groups of like-minded edges
are emerging. This contrasts with the status quo, where large cloud service providers se-
quester data and services. Thus the impact of this shift to smaller regions of administrative
control and to cooperation across administrative domains should be studied further.

2.3. The Changing Relationship of Energy and Computing: What Is at Stake for CRC?

When we think of the relationship between computing and energy, we tend to think
about smart grids that have employed computing traditionally to measure, monitor, and
ultimately optimize energy delivery. The growth of edge computing introduces a new dy-
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namic into this relationship. Distributed renewable generation networks, whether rooftop
solar, microgrids, or other types of configurations, are growing [53,54], leading to efforts
to localize energy distribution and control perceived by practitioners as advantageous
for resilience, efficiency, addressing social equity and justice, and for responding to local
resource needs [53]. Edge computing, by definition, is similarly decentralized. Because
there are energy and compute costs in processing data remotely, the decentralization of
both energy and computing raises an important question: how should these two trends
come together, both in engineering terms and social terms? What new types of combined
energy–compute systems are possible? To underscore the significance of such combinations,
we use the term “edge-ification” [55] which refers to moving resources away from large
production centers and toward the edges of the infrastructure, whether energy creation,
storage, or computational resources.

Data centers have begun to edge-ify, either in their siting choices that have incorpo-
rated considerations of access to cheap renewable energy, such as Facebook and Google’s
presence in eastern Oregon, which offers plentiful hydropower, or in choices about building
supplementary on-site renewable power [25]. More problematically, cryptocurrency miners
have been relocating to areas of cheap renewable grid energy, creating problems for local
electricity companies, who are forced to invest in last mile infrastructure improvements
for high-demand users who can easily move their equipment to the next cheap electricity
hotspot, saddling the local electricity provider with useless investments [56]. Data centers’
size means they benefit from being sited near energy generation megaprojects such as
hydroelectric dams or gigantic wind farms. Yet for edge systems, the scale of necessary
renewable energy is more modest.

Translating the techniques used by hyperscalers to the edge requires acknowledging
that there are many kinds of edges, ranging in size and distance either from the devices
themselves or from back-end warehouse sized data centers, forming an edge-cloud con-
tinuum [57–59]. For example, roadside units (RSUs) can couple data storage, compute
processing, and data transmission with on-site solar or wind energy and energy storage of
some kind [59]. Edges also are being sited at base stations to support cellular networks, and
in POPs (points of presence) or COs (central offices) of the Telco infrastructure. In the former
case, they are being opportunistic about the availability of a place to site services [60]. In the
latter case, workload consolidation and virtualization have led to many fixed function
machines being replaced by fewer high-end servers, leaving the spaces virtually empty and
ripe for additional compute/storage to site a new edge [61]. Mobile phone infrastructures
sometimes have on-site power generation, whether diesel or renewable, particularly in the
Global South [62]. In these examples, public rights of way create physical opportunities
for edge equipment installation. Larger industrial sites, city properties, and universities
could offer similar opportunities for co-located, co-evolving systems, as these are places
that are more likely to have either edge systems in place, and/or on-site renewable energy
generation. These types of edges, and their particular requirements, have not yet been
explored as sites of carbon-responsive computing.

Edge-ification also creates possibilities for data centers to resemble, or interact with,
edges in new ways. For example, Yang et al. [63] propose siting modular data center-like
units at each turbine of a wind farm to take advantage of reduced energy transmission
losses and “free cooling.” This is a telling phrase used in data center contexts, which betrays
just how far away from the natural world computing systems have come to be. In any other
field, “free cooling” is simply called “air”! While Yang et al. [63] propose making the data
center similar to the edge, Nurminen et al. [64] propose an interaction with the edge by
redistributing the computational tasks that would normally take place in a data center and
running them in homes where there are rooftop solar panels. Based on solar production
data in Finland, and the associated spot price for cloud computing services during that
same time, the authors’ economic viability analysis showed such an approach was feasible,
and could introduce local economic benefits that could help overcome objections to “energy
gentrification” [22] and the gentrification of low-carbon infrastructure more broadly [65].
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The authors [64] argue that moving data is always more efficient than moving electricity
and, therefore, data centers should be willing to pay rooftop solar owners for executing a
computing task. This is all the more reason to expand research into carbon responses at
the edge.

2.4. State of the Art of Enabling Data to Support CRC

Section 3 offers a rationale for why enabling data is likely to play a bigger role in the
future of carbon responsive computing. Some elements of those datasets, and systems that
enable use of those datasets, have emerged already for reasons unrelated to CRC. Here we
identify two key areas of enabling data, and in the following section we elaborate on the
changing role they play.

2.4.1. Available Carbon Intensity Data

All carbon responses, whether in the data center or elsewhere, rely on data about
carbon intensity to make decisions about where and when to perform tasks (e.g., execute
workloads, route data across a path in the network, postpone the movement of stored
data). It stands to reason that carbon intensity data are likely to become an important
shared resource for heterogeneous actors and therefore need to be properly maintained. It
is important not to mistake energy prices for a sufficient proxy for carbon intensity. Prices
are also affected by many factors unrelated to carbon intensity, making them an unreliable
source of information for conducting carbon-responsive actions. Liu et al. [29] show that
the ability to reduce fossil fuel use through geographic load balancing strongly depends on
whether the data center’s price directly reflects the instantaneous fraction of energy that
is from fossil fuels. The extent to which incentive systems will, in practice, reflect carbon
intensity specifically is an area of uncertainty.

On the national grid side, there is some amount of public data provision in many
jurisdictions, but not all. Real time data, as opposed to downloadable historical data, can
be even less readily available, as can fine-grain predictions and machine-readable data via
application programming interfaces (APIs). An example of a carbon intensity data service
specifically designed for enabling appliance demand response is the UK National Grid
ESO’s Carbon Intensity API [66], which provides half-hourly carbon intensity prediction
and actuals for 14 UK regions in both human-readable and machine-readable formats.

To take advantage of differences in weather across the globe, a multi-jurisdictional
carbon intensity data system is necessary. An example of an effort to integrate available
data internationally, available in both human- and machine-readable formats, is Electrici-
tymap.org [67]. This map is a useful indicator of the state of the art of publicly accessible
carbon intensity data. It makes visible the coverage gaps across jurisdictions, which at
the time of writing appears to be centered in Central America, Africa, and South, Central,
and East Asia. South America, Europe, and Australasia appear to have largely consistent
coverage. It also shows inconsistencies in maintaining live links between systems, which
appear to be the greatest issue in North America. It also reveals a pattern of reportage by
country for small and mid-sized countries, and by region for larger countries. Finally, it
also maps energy import/export relations, which gives a better indication of the carbon
intensity of consuming electricity in that region than raw energy generation figures.

Temporal granularity requirements for CRC have some associated research. Carbon-
responsiveness decisions made in data centers on the hour consume significantly more
non-renewable energy than those made on ten minute intervals [29]. Dou et al. [28] note
that wind data shows an obvious variation at ten minute intervals, suggesting that ten
minutes is also likely the smallest window of opportunity to respond. This suggests
that ten minute windows are a potentially useful unit to report and to base predictions
around. Many, but not all, grid providers appear to provide roughly compatible temporal
granularity, though there is significant variation. Even within the US, “live” readings range
from five minute to hourly intervals. In terms of forecasting, many of the systems cited
above use day-ahead predictions, including Google’s.
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While there are significant gaps that create challenges for adapting currently avail-
able data to meet the needs of carbon responsive systems in light of edge-ification (see
Section 2.3), these two examples demonstrate there is a good basis upon which to build.

2.4.2. Energy Consumption Measurement

When practices of time- and space-shifting workloads begin to affect energy providers,
whether privately owned microgrids or public utilities, it will become vital to be able
to predict, measure, and where necessary, disclose the energy consumption of shifted
computing tasks. Peer-to-peer energy–compute exchanges across microgrids (i.e., you run
my workload when you have energy and I run yours when I have energy) will need a way
of predicting how much energy will be consumed by the exchanged task so the microgrid
can decide whether or not to accommodate it. They will also need a way to confirm energy
used. At an individual level, people cannot change their computing behavior without a
sense of how much a difference it makes to delay or forego computing tasks.

There is a good deal of research on energy consumption of individual devices (see [47]
for edge devices), and there is growing interest in measuring the energy consumption
of AI models both as a matter of academic research [68,69] and in benchmarking [70].
However, software tasks executed across a system depend on different hardware and
software configurations that change over time. In a real-world setting, a model is but
one step in a larger process to complete a task; how it is integrated into that task has an
effect on energy consumption. These complex dependencies mean that even measuring
the difference between conducting inferencing with an AI model on a client such as a PC
or in the cloud is remarkably complicated in a real-world setting. Energy measurement
is not a routine practice of software developers, which makes matters even more difficult.
The emergence of new categories of computing such as edge and the even more granular
fog computing, which are intrinsically more distributed, make the gaps in knowledge even
greater. For these reasons, there is more work to do to translate current practices into the
capacity to predict how much of an energy “envelope” a given task will require.

However, there does appear to be more interest within the ICT industry in greater
transparency about energy consumption. For example, calls have emerged for assessments
of energy consumption as a regular part of machine learning model development and
disclosing that information via model cards (a standard documentation format) [71]. New
open source tools such as Power API [72] and SmartWatts [73] are also emerging. These
tools allow developers a programmatic means to flexibly measure power consumption of
algorithms or workloads at runtime across varied machines and contexts. As concerns over
AI’s carbon footprint continue to grow, and carbon response techniques mature, there is
more incentive to measure and disclose in appropriate ways, and more incentive to develop
end-to-end toolsets that will allow real-world workloads to be measured and predicted.

3. Framework for Carbon-Responsive Computing in Diverse Contexts

In the previous section we described the increasing interdependence between energy
and computing, the broadening of CRC into new types of ICT systems, and the nascent
foundational groundwork laid for an enabling data infrastructure. These trends show no
sign of abating. From a sociotechnical perspective, then, what do these seemingly disparate
foundational elements of CRC amount to? How might we consider questions of social
dynamics and social power as CRC matures? In this paper, we use social power to refer
to a person or group’s ability to influence and shape the development of sociotechnical
systems which, in turn, influences how power is distributed and experienced by different
people in society. Because social power shapes technology and vice versa, we refer to
technology systems as sociotechnical systems. Social power is always an element in
technology development and use, whether it is explicitly recognized or not.

Thomas Hughes’ [17] classic history of how electricity became ubiquitous provides
a useful sociotechnical model of how infrastructures form and evolve. Hughes describes
five phases of infrastructural development: an invention and development phase, a tech-
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nology transfer phase, a system growth phase, a system momentum phase, and a mature
phase. Following this five-phase approach, it appears that, when we bring together the
foundational elements of CRC, we have the makings of the early stages of an infrastructure.
The relative maturity of carbon-response techniques in data centers, and the movement
of the concept into nascent prototypes and experiments in edge systems, suggests that
we have at least partially moved away from the initial invention and development phase,
and into the technology transfer phase. In the technology transfer phase, the core concept
of an infrastructure is adapted and elaborated, and local “styles” of how to instantiate
it emerge. In CRC, the transfer is not from one type of society to another (as in Hughes’
original formulation), but a transfer between different computational settings. In Hughes’
account, the connections between systems and subsystems become more important as
disparate point solutions become an integrated infrastructure. In the technology transfer
phase, points of interoperability and shared, facilitating components become conceivable,
though are not necessarily well-defined and not yet locked in. In the later system growth
phase, “reverse salients” [17] (p. 14) become a factor, which is Hughes’ term for social or
technical elements that hold back larger elements, potentially inhibiting an infrastructure
from developing at all. These are put in place during the invention and technology transfer
phases but become problematic during the system growth phase and beyond. For the time
being, the final system momentum and mature phases appear to remain distant for CRC.

Thinking within this five-phased approach, we notice that, in the long term, the
particularities of a scheduling algorithms in data centers or at the edge matters less than
sociotechnical interdependencies. That is, if CRC is to become an infrastructure of some
kind, it needs its own underlying connective tissue. What underlying capabilities do data
centers, networks, edge systems, and energy grids large and small all have to rely on?
When more ICT systems gain similar CRC capacities, what shared fate will befall them as
interaction effects between different elements take hold at a more systemic level? When the
priority is the development of working prototypes of individual systems, the infrastructural
issue of shared fate—and its sociotechnical nature—has been largely neglected.

To address this missing facet, we offer a sociotechnically oriented framework to guide
CRC development and practices (Figure 2). This three-staged framework clarifies in simple
terms the cross-domain capabilities necessary to transition from domain-specific point
solutions to a fully interdependent, interoperable infrastructure. These capabilities are
described as three “jobs” to be done (column 2), deliberately leaving open to further debate
how to do those jobs. The staged nature of the framework articulates the interdependencies
between real-time carbon responses and the slower evolution of enabling infrastructures.
This enables designers and engineers to map technical considerations onto social consid-
erations, in order to anticipate the social and technical consequences of their designs for
other parts of the interdependent system, and to mitigate potential problems before they
arise. These stages are conceptually sequential, in that it is impossible to contemplate
actions in the second stage without sufficient elements from the first stage. In practice, the
cycle is iterative as experiments succeed or fail, and feedback loops support the maturation
of systems.

3.1. Carbon-Aware Computing

As shown in Figure 2, carbon-aware is the foundational property that describes when
ICT systems understand the carbon intensity of the energy consumed by a given device,
element, or task. This stage describes a system that is able to characterize and predict
the carbon intensity on the energy supply side, and measure energy consumption on the
demand side. It also requires engagement with anthropological and sociological questions
about the values and systems of social power that inform definitions of carbon intensity
and shiftable tasks. Short-term response and long-term resilience planning (the next two
stages) rely on knowing how many of which tasks can be delayed or redistributed to fit
the “excess” energy available. Reliable carbon awareness becomes even more important in
energy–compute exchanges across organizations. It is one thing to poorly estimate energy
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consumption and accidentally pay more energy costs within one’s own system, but it is
quite another to pay someone else to take on your workload, only for them to discover it
consumes much more energy than anticipated, or to incentivize someone to consume your
excess electricity, only to discover the electricity generated is not as abundant as anticipated.
For this reason, telemetry is needed to provide ongoing measurement and monitoring.
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3.2. Carbon-Responsive Computing

Carbon-responsive describes computing systems and their actions that are enabled
by carbon awareness. Here, the research task for devices or systems is to identify and
test which actions are feasible and desirable, based on data derived from the carbon-
aware phase and additional social scientific and design research. This stage includes
examining incentive structures (pricing, contractual arrangements, market position, etc.),
and further engagement with sociotechnical research questions, particularly regarding the
relationships necessary to facilitate improved carbon responses. Depending on context,
actions might include time- and space-shifting, opportunistic sleep or other low-power
states, or foregoing some or the entire task, such as postponing transmission. Another
approach, used regularly in sleep and performance management algorithms, is to expand
the time to execute a task, by slowing or speeding up a task in order to fill the time,
given the energy available. It also includes any data systems necessary for matching
workload providers and energy suppliers. Some researchers and early adopters in this
field (e.g., Google) include both awareness and actions in their definition of “carbon-aware
computing.” However, keeping awareness and actions separate emphasizes that carbon-
awareness is insufficient on its own—a system can be aware of its emissions and continue
with business-as-usual nevertheless. In our framework, a carbon-aware system can serve
many actors independent of the type of responses they pursue.
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3.3. Carbon-Resilient Computing

Carbon-resilient systems explore the types of design, evaluation, and infrastructural
changes on both the ICT and the energy side that will become necessary to manage carbon
responsiveness at a more systemic level. These changes go beyond building a telemetry and
data management infrastructure for carbon awareness and focus on what can be learned
about a system as a whole from the carbon responses that emerge, and the monitoring
available through ongoing carbon awareness. For example, a grid or microgrid might plan
for different types of energy generation or levels of battery storage if it is clear that ICT and
other energy demands can use otherwise stranded energy. Similarly, networking engineers
might see that data transmissions become burstier upon renewable energy availability,
and design new methods for prioritizing, scheduling, and routing time-elastic workloads
toward edge data center locations with (excess) available renewables. A carbon-resilient
computing system must also be able to use carbon-awareness data and response techniques
to behave differently in emergency situations such as brownouts, denial-of-service attacks,
or natural or climate-related disasters.

3.4. Using the Framework

Because the stages are interdependent, a designer, developer, or engineer can use
the guiding, high-level questions outlined in Figure 2 to reflect on possible consequences
in other areas of a CRC-enabling infrastructure. For example, if a networking engineer
wanted to create software for routing packets in the least carbon-intensive way, she is
working in the “carbon responsive” stage. However, if she examines the questions in the
carbon awareness phase, she might not just look for the most convenient data, but realize
that carbon intensity data that she is planning to use might have been defined in a way that
does not match her values concerning different energy sources. She might advocate for
changing how those data are collected, or choose another source so as not to give further
legitimacy to those data. Conversely, the questions in the carbon-resilient stage might
encourage her to probe on whether societal expectations of “on time” can change if there
is a significant carbon gain, or if those expectations are indeed immutable and the better
strategy is to encourage more on-site renewables at key nodes of the network.

This framework also allows researchers and developers to begin to anticipate where
the reverse salients will be, by evaluating where the current state of the art does not
support the goals listed in the second column. For example, in the carbon-aware stage,
any data gap that inhibits the ability for a system to both understand carbon intensity, and
energy consumption on a per-task basis prevents responses from happening at all. In the
carbon-response stage, energy–compute exchange mechanisms, or a lack of methods to
prevent gaming of the system, could inhibit participation from all relevant actors, and
therefore system growth. In the carbon-resilient stage, reverse salients might come from an
inappropriate energy mix whose bursts of energy supply cannot be made compatible with
the temporalities of computing, or networking bottlenecks created by bursts of collective
computing activity timed with the sun or wind.

The questions in the third column are not exhaustive, but point in an overall direction
to facilitate further discussion outside any researchers’ or developers’ “natural” domain.
Without critically reflective discussions, there is a risk of repeating what Hughes [17] found
for the early days of electricity, namely, that those with the strongest social power can
succeed in locking in their interests, not through a grand overarching architecture, but
over the course of many seemingly small design decisions. As lock-in usually happens
in the system momentum phase (see [74,75]), sociotechnical research and socially aware
CRC practices will be essential for ensuring the social and technical elements enabling
CRC promote equity, inclusion, and the flexibility to adapt to transforming social and
environmental dynamics—something that will be key in times of climate crisis. In the
next section, we will describe some of the practical challenges to conducting such essential
sociotechnical research.
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4. Practical Challenges and Areas for Sociotechnical Research

Sections 1–3 demonstrated the relevance of carbon responsive computing to an ever
broadening suite of actors, from data centers managers, to edge developers, to microgrid
owners, smart grid utilities, and energy–compute exchange enablers. Such heterogeneity
requires change in research approaches. Not only is it necessary to build a body of
engineering work that adapts these techniques to the edge and to the networks that connect
them and builds the relevant energy–compute exchange mechanisms and underlying
facilitating datasets, but it is also necessary to address the societal considerations that
arise as this nascent infrastructure coalesces into an interconnected, cross-domain system.
In this final section, we put the framework into action by examining two potential reverse
salients in the carbon-aware stage (carbon intensity data and task energy consumption
measurement) and one in the carbon-response stage (workload-for-energy exchanges) We
begin by defining what it means to robustly address societal questions in this area.

4.1. The Democracy Gap

In the literature we examined in Section 2, proposals for new technologies or new
exchange mechanisms were presented as if they were straightforward technical matters.
STS scholars have raised concerns that this leaves insufficient room for democratic de-
liberation. For example, Ransan-Cooper et al. [76] have expressed this concern about
algorithms that manage neighborhood-scale batteries, noting that this results in a bias
towards designing only for the easily quantifiable, and problems of explainability and local
autonomy. Without intervention, there is a high risk of replicating these problems in carbon-
responsiveness, and creating what Miller et al. describe as “stunted energy debates that provide
limited opportunities for people other than energy engineers, bureaucrats, and economists to make
influential contributions to energy policy deliberations” [77] (p. 135). This is a longstanding
issue, particularly in the case of technologies directly related to centralized geopolitical
power (see [78,79] for the case of oil, see [80,81], for the case of nuclear, and [77] for US
energy policymaking more broadly). However, efforts to promote democratic deliberation
about energy technologies are increasing. For example, there are public deliberations on
national nuclear energy policies in South Korea [82,83] and Finland [84]; participatory and
deliberative public engagement in renewable energy systems development in Canada and
Denmark [85]; participatory approaches to radioactive waste management in Belgium,
Slovenia, Sweden, and the United Kingdom [86]; among others.

Deliberative and participatory processes are not linear or straightforward: e.g., they
require navigating the uneven politics of participation [85] and developing innovative
methods to elicit people’s values and interests [87], or to contend with dynamic social and
material relations [88]. Nonetheless, they remain important to the success of energy design
projects and therefore involve more actors (see [89,90] for examples of community engage-
ment and opposition in wind energy and [88] for the role of social sciences and humanities
scholars in the development of marine renewable energy). Ransan-Cooper et al. [76] pro-
vide a working example in the context of neighborhood batteries, where they showed
that “upstream” engagement with involved communities leads to substantially different
algorithmic control system design. They also show that there is no “optimal” algorithm
that can successfully balance all needs; instead, public processes are necessary to come to
consensus about priorities.

The need for social engagement and deliberation in energy technology and systems
development is not only because these practices align with democratic principles, but
because the knowledge shared by the public in these deliberations can greatly enrich the
knowledge of experts and, thus the outcomes of technology development [80]. As noted
by [80], energy technologies emerging out of democratic deliberations would necessarily be
different from technologies developed through mere nominally public debate (Makhijani
and Saleska [81] provide examples). Such insights fit into wider discussions on energy
polities, which specifically attend to the social relations that result from adopting different
energy sources [91]. These authors advocate for the need to acknowledge the social and
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political aspects of energy systems since “modes of fuelling and modes of governing society can
no longer be easily separated” [91] (p. 95).

Adding a social perspective, then, does not mean merely adding a collaborating
sociologist. It also means inviting broader public deliberation to take place in order to
shape the future direction of these technologies. In the “transfer stage,” (see Section 3), the
enabling, data-intensive infrastructures are important sites where public deliberation and
STS expertise can make a difference. We outline three enabling areas below to demonstrate
how matters of public importance do in fact arise.

4.2. Linked Carbon Intensity Data for Carbon Awareness

In Section 2.4 we showed a good baseline for public availability of carbon intensity
data. Because social power is always produced in data systems, whether consciously or
not, (e.g., [92]) it is important to articulate whose perspective is reflected in those data.
The current offerings we discussed in that section provide a grid-centered view of energy.
Data from microgrids or other distributed sources appear less readily available in a similar
systematic way. Yet to include multiple actors equitably, the grid-centered view needs
extension, and this introduces problems of granularity, centralization vs. decentralization,
standardization, and the social realities produced through data, which we discuss below.

4.2.1. Data Granularity

While there is emerging research on temporal granularity (see Section 2.4.1), spa-
tial granularity has distinct social implications. In a world where energy generation is
also being decentralized, and only some of that energy makes its way onto a national
grid, a grid-centered view systematically underestimates edge-produced solar and wind
energy. Some jurisdictions such as California require microgrids over a certain size to
report measurements to public utilities, but not all jurisdictions do so. Associating carbon
intensity with a geographic region to represent location, as in [67], belie the challenges and
opportunities microgrids pose. For example, it might be unwise to send a workload to a
region currently running at a high carbon intensity, but perfectly reasonable to send it to a
microgrid where renewables are located within that region.

Improving spatial resolution beyond averages across a region could make a difference
when it comes to choosing how to route data through a network. That might not mean
reporting at a finer granularity than what currently exists (by county, for example) sys-
tematically, but it could mean reporting where there are pockets of renewables outside a
national grid. This could support choices that take into consideration where renewables are
located and in turn potentially alternate less carbon-intensive computing choices. However,
any notion of spatial resolution needs to be sensitive to associated ownership of and access
to the available energy as well as the associated data.

4.2.2. Data Centralization vs. Decentralization

Should energy-related data be compiled into a centralized or decentralized system,
or a combined approach? A grid-centric view of the world would expand currently
available datasets about grids to include information from microgrids and make them
more interoperable across jurisdictions. A microgrid-centered view would do the opposite
and propose a platform for microgrid owners to declare their excess energy production to
one another with the intention of peer-to-peer exchange, where the electricity grid plays a
more supportive backup role. A centralized approach provides generality, scale, and public
interest that has utility. However, a centralized approach could force other smaller entities
into unduly high barriers to participation. Large organizations tend to “see like a state” [93],
meaning that they tend to require data from people, systems, and land that serves the
interests of a large-scale bureaucracy, but makes less sense locally. For example, a large
power utility has the resources to conduct detailed audits that appropriately validate claims
about carbon intensity. However, that same costly scrutiny is unlikely to be necessary for
a 100% renewable microgrid, where there is no risk of fossil fuels being present. Would
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microgrid owners wish to contribute or receive data as a matter of inclusion, or would
inclusion be experienced as coercive, or make them vulnerable to outsiders, as was the
case in Scott’s [93] classic study of centralization? Although one centralized system might
marginalize smaller actors, a system specifically built for microgrid-to-microgrid exchanges
or for edge-to-microgrid cooperation might miss cross-system opportunities, such as a data
center sending workloads to households with rooftop solar [64], which requires information
from both the microgrid and the central grid to understand if migrating the computation is
less carbon-intensive.

4.2.3. Data Governance

Both distributed and centralized systems require governance, and as carbon intensity
data becomes increasingly available as the basis for decision making, equitably designed
governance practices begin to matter more. What kind of entities should provide gov-
ernance structure(s), set the terms of access, conduct quality assurance, participate and
fund development, and be responsible for maintenance? What resources are necessary for
governance? For example, even just maintaining stable connections to APIs to retrieve
carbon-intensity data can require multiple full-time developers. Who should be respon-
sible for developing and maintaining the algorithms necessary to make carbon intensity
predictions, and what happens when those predictions are inaccurate?

4.2.4. Standardization

What kind of standardization is desirable to support carbon responsive computing?
Both software and people will need to be able to interpret carbon intensity data, though
machines may be less forgiving about unexpected, incomplete, or incompatible data. For
the purposes of interoperability, solution scalability, and ecosystem development, there is a
strong need for data standards, to promote consistent representation and formats for data
exchange. Participants will also desire standard methods to attest to data trustworthiness,
particularly if other systems integrate and come to rely on these data, for example, to defer
time-elastic workloads until such time as renewables are available, or to select one network
path over another based on the relative carbon footprint. However, even if sustainability
metrics for greener path selection [94] were standardized, there are sociotechnical issues to
be investigated that will impact the process of wide-scale adoption and deployment in an
infrastructure such as the Internet.

With the deployment of more edge data centers [14,15], and edge CRC, how can the
industry support the federation of edges and/or their association with multiple cloud data
centers, through a standard control protocol and/or a standard set of APIs? This federation
would enable, for example, dynamic or semi-permanent regions where renewable energy
availability and ICT energy consumption are naturally balanced. Will the emergence of
edge service providers bring the larger cloud service providers to the table to open up the
CRC algorithms and interfaces currently in use but proprietary?

At the same time, much social scientific scholarship [95–98] make clear that it is a
fallacy to assume that, separate from consensus on data representation and formats, any
data system can accurately arrive at the one true measurement of emissions. For exam-
ple, [38] shows that, using carbon intensity to calculate the transmission of data on fixed
line networks, there will exist a diversity of legitimate approaches that nonetheless arrive
at a range of estimates.

We would expect to see multiple organizations and research teams continue to develop
and evolve competing approaches to predicting carbon intensity or energy consumption
needs, but industry is likely to prefer consistency in order to mitigate perceived risk. Will
the institutionally-driven need for consistency hamper the adoption of new approaches
and predictions? Is strict agreement on what counts as “low” carbon intensity necessary, or
is it a sufficient goal simply to achieve lower carbon intensity than at present?
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4.2.5. Data’s Power to Create Social Realities

Those who design data systems have the power to create their own social reali-
ties [92,98]. When designing more carbon-responsive systems, whose version of what
constitutes “carbon intensity” will become dominant? For example, on 17 June 2021, at
4:35 p.m. Carbonintensity.org.uk [66] reported the UK grid to be at 188 gCO2/kWh, while
Electricitymap.org [67] reported 285 carbon dioxide equivalent per kWh (gCO2e/kWh),
which includes non-carbon greenhouse gasses. The latter also incorporates a lifecycle
analysis (LCA) of embedded emissions in energy equipment. Whose reality will become
what computing systems take to be carbon intensity? Matters are likely to get even more
heated when it comes to handling controversial energy generation technologies, such as
nuclear. While nuclear energy itself emits no carbon dioxide, building, operating, mining
for rare minerals, decommissioning, and waste storage certainly does, and estimates range
from 1.4 g of CO2e/kWh to 288 g CO2e/kWh, with a mean of 66 g CO2e/kWh [99]. What
carbon intensity a system reports for nuclear (or any energy source) says much about
systems’ developers’ beliefs about that energy source, and about the power that comes
from defining the scope of data.

Datasets also create their own social realities through exclusions. For example, a
literalistic approach might define any impacts on the environment beyond greenhouse
gasses to be out of scope. Any negative impacts of hydroelectric power, nuclear, solar, wind,
or battery production would be defined as irrelevant. This exclusion, however, replicates a
core problem of sustainability: the externalization of problems deemed inconvenient. To
the extent that most people equate “low carbon” with “good,” this exclusion greenwashes
energy systems. Similarly, scholars have documented human rights abuses committed in
the production of renewable energy technologies [100], and in the installation of renewable
energy equipment (see [101]). It would be empirically valid to define these matters as
out of scope, but including carbon intensity data from human rights violators, as if there
were no issues in using that energy, potentially violating the UN Guiding Principles on
Business and Human Rights. We are not arguing that carbon intensity data need also to be a
repository of all social responsibility information. We are, however, suggesting that choices
do need to be made about the entities to include, and where and how to acknowledge these
problems in the datasets themselves. These cannot be treated as out-of-scope matters.

A third and final way datasets create their own social realities is through the ways
they facilitate actors’ abilities to pursue additional, unanticipated purposes, some of which
could amount to gaming the system. Energy providers, governments, and even ICT actors
tied to specific sources of energy have stakes in claiming that their systems are less carbon
intensive than other systems. A likely secondary use of carbon intensity data will be in
the compilation of emissions estimates by corporate social responsibility professionals, an
arena where multiple carbon realities proliferate, depending on the goal and scoping of
the measurement [97]. Could that use put pressure on the system to paint a certain type of
picture that favors one actor or another? What can be put in place to mitigate that pressure?

Another use is likely to be in policymaking. If governments decide that interconnecting
ICT and energy infrastructures is an important strategy, carbon intensity data could have
significant impacts on planning decisions. For example, in Watts’ [102] study of renewable
energy generation on Orkney, locals were deeply frustrated by the UK National Grid’s
decision not to invest in an energy transmission cable to the mainland. One reason given
was that there are few people on Orkney to serve, even if there is a great deal of wind. Does
the calculus change, then, if the users are not people but data? Whose values are prioritized
in that change? Would governments invest in coupled energy–compute infrastructures
as a way of attracting private sector investment? Conversely, if much of the Global South
remains heavily reliant on fossil fuels, carbon-responsive computing could re-entrench
this longstanding path dependence by driving investment elsewhere. To prevent this,
it is important to include research and development on carbon-response techniques by
researchers situated in the Global South, where intermittent grid availability constitutes a
research advantage.
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4.3. Challenges in Facilitating Energy–Compute Exchange
4.3.1. Market Questions

We saw in Section 2 how various market mechanisms for enabling demand response
and even exchanging workloads are beginning to emerge, but they did not address many
of the questions raised in the carbon-response stage of the framework in Section 3. Fu-
ture research that builds on Cioara et al. [13], taking into account a fuller range of ICT
infrastructure, such as edge data centers and networks, can go a long way toward defining
appropriate mechanisms for exchange given a broader heterogeneity of actors. Ethno-
graphic and case-study research similar to [76] is also required to understand which systems
or actors are currently leveraging machine-readable carbon intensity data, with a view to
understanding emerging practices of workload-for-energy exchanges.

What has gone unsaid in the aforementioned designs and simulations (other than [76]),
however, is the more fundamental question about the role of markets in the delivery of an
essential resource. Addressing people as primarily or exclusively market actors might not
motivate participation. Smart meter feedback systems are supposed to encourage market
behavior by making energy savings visible, but they are not effective due to indifference to
the relatively small monetary savings possible [103]. Conversely, a “peer-to-peer” energy
trading system that does seem to work can be found in Watt’s ethnography of Orkney,
UK [102], where non-market factors created strong incentives to pool excess energy and use
it to alleviate on-island energy poverty—a factor not taken into consideration in the various
trading algorithms we examined. Similarly, [53] report that those building local smart
energy systems cite local resilience, justice, and equity as motivating values, underscoring
the need to make these social aspirations a reality.

The Orkney example suggests that it is possible, and in fact might improve adoption,
to organize exchanges as an embodied commons rather than an abstract commodity market.
Giotitsas et al. [54] propose an energy commons predicated on the adoption of informatics
systems, which might be adaptable for carbon responses. For example, one can imagine
a system of delayed reciprocity (a routine principle of exchange observed by decades of
economic anthropology since Mauss [104]) between two microgrids where if one entity is
faced with the choice of turning to a backup diesel generator or shipping some workloads
for all its IoT devices to its trading partner, it might choose to ship the workload, or pause
it temporarily, if their trading partner is facing similar constraints. The receiving microgrid
could also have its own optimizer that might scan the forecast of renewables supply and
decide that even though there is not much energy flowing now, it is worth taking the
risk of discharging some battery for their partners’ needs. An account could be kept
concerning total energy used to ensure long-term imbalances do not arise, without the
need to maximize profit in the short term. In a sense, this mimics what vertically integrated
companies with multiple hyperscale data centers do: it makes no sense to internally charge
a data center for services that the company also owns. Conversely, Nurminen et al. [64]
work on distributing data center workloads to those with solar rooftops does require a
price mechanism to ensure exchange. However, those with rooftop solar might not, in
practice, have the opportunity to earn money if data centers lack a way to find willing
solar owners, or if the necessary computing equipment is not in place. This barrier could
easily lead to what geographers call “splintered urbanism” [105], where the infrastructures
available to elites and non-elites are kept separate and unequal.

4.3.2. Complexity and Inclusion

Complex bidding and price clearing algorithms also raise barriers for democracy and
ultimately social equity because they are inscrutable by non-experts who may be impacted
by them. Özden-Schilling observes that contemporary energy markets have grown so
complex that they “transfer the burden to organize information onto market actors, making them
into data processors and the markets themselves into infrastructures of information” [106] (p. 68).
Hyperscale data centers have the resources to manage the burdens of complex economic
optimizations; a rooftop solar owner or rural microgrid cooperative might not. Both future
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research and practical experimentation should explore ways of reducing the complexity of
information signals concerning what workloads can be executed when, to ensure incentives
can be realized by a heterogeneous set of actors, and that the signals are in fact directly
aligned with carbon intensity. As noted in [76] and [68], this issue is also a problem of
responsible AI more broadly.

4.4. Real-Time Energy Consumption Data
4.4.1. Improving Transparency

To build a better picture of ICT energy consumption on a task basis, the divide between
in-house private sector research and public sector research needs to be crossed. Without
access to telemetry, energy researchers are largely excluded from engineering conversations.
As argued in [3], the ICT industry needs to begin making energy consumption telemetry
a standard feature of telemetry offerings and make some of those measurements and
inferences available to researchers and other members of the ecosystem for analysis. We
recognize that measuring energy usage on a per computational task basis is significantly
more complex than “adding telemetry”, and that there needs to be significant research
efforts in-house to understand how appropriate measurement should appear. Companies
will need to examine the granularity that they can reasonably make available for energy
research such that it does not inadvertently disclose commercially sensitive matters. Nev-
ertheless, this appears to be a worthwhile matter to examine—as single company, in-house
research efforts are not likely to be sufficient for the task at hand. Technology developers
cannot see the complex dynamics of energy delivery in ways that energy researchers can.
Nor are developers going to have visibility into the energy consumption of the networks,
servers, gateways, or clients they use without participation from the companies that own
at least some of them, in order to derive measurements indirectly.

There are, of course, ways of implementing telemetry that could in effect significantly
increase energy draw, and this also will need to be managed. Still, the body of telemetry
data that contemporary software collects is already rich. The time is now to bring more
creativity to the problem of collaborative approaches to measuring energy consumption.
If public-facing bounties can be offered for finding security holes, why not offer them for
finding pockets of unnecessary energy draw? Where are the grand challenges for finding
opportunities for all of ICT to draw exclusively on renewable energy?

4.4.2. Defining Shiftable Tasks

Who gets to define what tasks are delayable, or even necessary? Smale et al. [107]
argue, “If these smart grid aspects are to be integrated into the household, this implies major changes
in domestic everyday life”. What is the extent of changes that are indeed required, versus the
changes that can be re-designed to be pushed into the background, or run at lower CPU
clock frequency, or altogether deferred until later? When delaying a task affects end users,
qualitative research and broader public debate becomes vital. Following the practice-based
approaches to energy consumption of [107,108], in the long term, how do individuals’
computing practices evolve with the temporalities of renewable energy availability?

To take a video streaming example, a company could choose to develop an algorithm to
predict the next piece of content that will be watched, and pre-emptively download it onto
the viewing device at times of renewables availability. A different company might indicate
times of renewables availability on its platform and require the user to decide whether now
is a good time to watch a film, or whether it is acceptable to watch in high definition given
the current carbon intensity. These two strategies suggest very different understandings
of what sustainability is about, who is responsible for it. One treats consumer “need” as
immutable, and demand always “satisfied”, while the other assumes companies have a role
in shaping what constitutes “necessary”. Conversely, the first company treats sustainability
as its responsibility, while the other treats it as consumers’ responsibility. Indeed, Obringer
et al. [37] argue that “over the top” service providers such as content delivery companies
and remote meetings software providers are key stakeholders in reducing the Internet’s
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carbon footprint through their design choices, yet users can also choose to simply turn off
their video in meetings, which they suggest could save for an individual user 9 kg of CO2e
monthly. Because Internet video streaming also tends to coincide with times of overall
peak energy consumption [108], an electricity company might also want to identify the
best incentive to time-shift the network transmission portion of the content.

One promising research direction might be to instrument a computing task and explore
how often people do it under different design conditions similar to the ones outlined above.
Would people be willing to host video meetings if they could see directly that the bulk of
the Internet traffic it created was using nonrenewable energy? Might they use it as a reason
to keep the meeting brief, or reschedule, or turn off video? Qualitative interviewing would
yield a perspective on why they took the actions they did and deliver a broader perspective
on publics’ views on who or what should shape “consumer need”, while instrumentation
could enable an evaluation of emissions savings of different carbon responses. Both of
these will be vital to engineering research on algorithmic classifiers that distinguish tasks
available for carbon responses from those that are not.

5. Conclusions

This paper demonstrated that CRC is on a trajectory of expansion, beyond data centers
and into new areas of computing such as edge computing and networking, where many
engineering unknowns remain. It also offered a three-part framework for considering
this maturation beyond domain-specific components and articulates the sociotechnical
interdependencies of that expansion. In that broadening, which coincides with the decen-
tralization of energy production as well as the edge-ification of the Internet, the research
agendas that take on urgency encounter problems of governance, transparency, inclusion,
and what constitutes computing “need” in a climate crisis. These are not research agendas
that can safely remain in the confines of social scientific journals unfamiliar to readers
of Energies. They need to be acknowledged, understood, and acted upon by those who
design and build carbon-responsive systems.

Discipline-specific expertise nevertheless informs interdisciplinary charters. To con-
clude, we list some examples of the kinds of questions researchers should begin to ask
within more discipline-specific framing.

• For quantitative energy researchers: What could the impacts be of coupling edge
computing with microgrids in terms of carbon savings? What do emerging qualitative
and mixed methods findings about appropriate tasks to time and space shift tell
us about the amount of aggregate energy demand that can be decarbonized? Can
improved routes for data traffic be predicted based on carbon intensity data currently
available, and what does this tell us about requirements for carbon intensity data for
the future? What are the geographic and infrastructural factors that influence the
ability to make savings?

• For designers and human–computer interaction (HCI) researchers: What constitutes
computing “need” and “urgency” in what social situations, with what design strate-
gies? What can be learned in environments that are already constrained by renewable
energy availability? What are the best design strategies, of either data systems or ICT
products, when matters of controversy arise (what constitutes carbon intensity, the
acceptability or not of foregoing a computing task, etc.)? What lessons can be learned
from parts of the world with intermittent electricity?

• For computer scientists and the computing industry: In what ways are the tradeoffs
in doing carbon responses in edge systems and networks different or similar to those
in hyperscale data centers? Under what conditions do the energy-saving strategies
in large data centers require adaptation or abandonment in more proximate edge
data centers and networks? What algorithms can best recognize and service the
time-sensitivity of tasks, or recommend what type of response is best? How much of
ICT equipment and its users’ behavior can be predicted and effectively mapped to
microgrid renewables surplus? What kind of energy consumption telemetry setup



Energies 2021, 14, 6917 22 of 26

most efficiently characterizes energy on a task basis? What is the most appropriate
way to disclose energy consumption data in a standardized manner to the ecosystem
and researchers, and to incentivize its use, whilst being mindful of privacy concerns?

• For STS researchers: If “modes of fuelling and modes of governing society can no longer be
easily separated” [91] (p. 95), what kinds of energy politiess are forming as ICTs and
energy increasingly converge? What actors gain, maintain, or lose social power in that
coupling? What sociotechnical interventions are necessary to ensure carbon responses
do not merely reproduce business as usual? What kinds of collaborations are necessary
to ensure that ethical questions are indeed acknowledged, such as environmental
social justice? What actors make for good energy-computing trading partners and
poor ones?

• For economists/management studies scholars: Where markets do play a role, what
types of markets could be designed, and who are the actors and stakeholders involved?
What is the role of pricing, contract structures and business models in maximizing
carbon emissions reductions? What algorithms can best match workloads with en-
ergy sources, and how might they scale to accommodate federation and peerage of
resources within different size regions? How will different regulatory conditions affect
the geopolitical dynamics of investment in coupled energy–computing systems?

• For policy researchers: What disincentives are most effective for preventing actors
to game or manipulate carbon intensity data, or energy usage data? What policies
ensure the best provisioning of electricity as a public good in light of new energy–
computing combinations, and across public–private relationships? What role might
combined energy–computing systems play in national and international geopoli-
tics, across varied cultural attitudes towards data privacy, and varied histories or
electricity provisioning?

These questions are intentionally broad and incomplete. However, a systems-level
problem requires a systems-level view. For too long, computing systems have been de-
signed assuming an infinite supply of natural resources without consequence. Redesigning
computing systems to fit the temporalities and spatialities of the energy available, at scale
commensurate with the global scale of the climate problem, and commensurate with its
urgency, is one way we can profoundly change the relationship between technology and
natural systems. Doing that is an enormous multidisciplinary challenge for both research
and practice, but likely to be a rewarding one.
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