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Abstract: This article introduces an application of the recently developed hunger games search (HGS)
optimization algorithm. The HGS is combined with chaotic maps to propose a new Chaotic Hunger
Games search (CHGS). It is applied to solve the optimal power flow (OPF) problem. The OPF is
solved to minimize the generation costs while satisfying the systems’ constraints. Moreover, the
article presents optimal siting for mixed renewable energy sources, photovoltaics, and wind farms.
Furthermore, the effect of adding renewable energy sources on the overall generation costs value
is investigated. The exploration field of the optimization problem is the active output power of
each generator in each studied system. The CHGS also obtains the best candidate design variables,
which corresponds to the minimum possible cost function value. The robustness of the introduced
CHGS algorithm is verified by performing the simulation 20 independent times for two standard
IEEE systems—IEEE 57-bus and 118-bus systems. The results obtained are presented and analyzed.
The CHGS-based OPF was found to be competitive and superior to other optimization algorithms
applied to solve the same optimization problem in the literature. The contribution of this article is to
test the improvement done to the proposed method when applied to the OPF problem, as well as the
study of the addition of renewable energy sources on the introduced objective function.

Keywords: modern power systems; renewable energy sources; optimization; optimal penetration;
optimal power flow; smart grids

1. Introduction

In the broadest sense, the scope of electrical power systems is significantly attracting
the interest of many researchers all over the world, as the electrical power system is a
complicated and dynamic one. The electric power system is considered as an umbrella
that covers many subsystems, such as the generation sector, transmission system, and
distribution networks [1]. According to the fact that the power system is a complex one,
there are many constraints on such electrical power systems. The common constraints are
the bus voltage limits, transmission line thermal limit, generator output active and reactive
power constraints, etc. [2]. Initially, in solving the well-known economic dispatch (ED)
problem, limits of the network itself are overlooked, and only the limits of the generator
active power are considered [3,4]. Afterwards, the optimal power flow (OPF) problem is
solved to better describe the electrical power system considering the network physical
constraints [5]. The OPF problem can be solved for different targets and objectives, such as
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losses, emission rate, or generation cost minimization [6]. When solving the OPF problem,
different network parameters can be set as design variables, such as the generator power
and voltage, the transformer tap settings, the reactive power compensators, and others.
In the past, traditional optimization methods were used to solve the OPF problem [7–9].
Quadratic programming [10], interior point method [11], and more are examples of these
traditional methods. These traditional methods suffer from weak points, such as consuming
too much time to solve the problem, the possibility of missing the convergence, and the
dependency on the initial conditions [12]. Moreover, some mathematical assumptions need
to be set for the simplification of the problem. Accordingly, other types of optimization
methods are needed to avoid the weaknesses of the traditional optimization methods.

In the literature, different metaheuristic-based optimization methods were used to
solve the OPF problem. Advantageously, the metaheuristic-based optimization methods
avoided the weak points of the traditional optimization methods [13]. The metaheuristic
optimization algorithms are inspired by nature and simulate natural phenomena to reach
the best solution after initializing random agents, and then updating them throughout the
iterations. For instance, [14] provided modified versions of the genetic algorithm (GA)
and discussed their advantages and disadvantages. The new advances in GA were also
introduced. Piotrowski in [15] discussed the possibility of using particle swarm optimiza-
tion (PSO) to solve the problem, which is a well-known population-based metaheuristic
optimization method. The problem is to set the PSO population size in detail, according to
tests conducted on eight PSO variants. Many benchmarks and applications are used for
verification of the problem introduced in this reference. PSO is applied to different scientific
scopes, especially in engineering fields and physics. Since being introduced, PSO has been
continuously inspected, and this has resulted in the appearance of many modified PSO
versions. Tree seed algorithm (TSA) [16] is one of the metaheuristic optimization methods
that is inspired by the relationship between the trees and seeds. The trees are generated
randomly in the search space. The fitness values of the trees are calculated based on the
objective function. After the production of the seeds for a tree, the best seeds are selected.
If the fitness of the seed is better than that of that tree, it will replace it. The sine-cosine
algorithm (SCA) [17] simulates waveforms of the sine function and the cosine function.
The SCA mimics the mathematical formulation of the ‘sine’ and ‘cosine’ functions. The
SCA is applied widely for its feature selection besides the update process. Salp swarm
algorithm (SSA) [18] is a swarm optimization method that simulates the behavior of the
salps. Salps look like jellyfish in movements. This algorithm simulates the salp chain in the
deep-sea searching for food. It is known for its high processing, and its few parameters to
be adjusted. Hussien et al. introduced sunflower optimization (SFO), and cuttlefish opti-
mization (CFO) algorithms in [19–21]. In general, each metaheuristic-based optimization
algorithms have their pros and cons [22].

In this article, a newly developed chaotic hunger games search (CHGS) optimization
algorithm is introduced as an application of the optimization methods for solving a prob-
lem in the electrical power engineering field. The CHGS comes from a combination of
the hunger games search (HGS) algorithm [23], with the chaotic maps introduced in [24],
of which the effect appears in the initial population. The growing development of soft
computation capabilities motivated the researchers for using such an optimization algo-
rithm to solve problems in different fields, and especially, in the field of electrical power
engineering problems. The HGS algorithm itself is inspired by the hunger-driven activities
of the animals. This optimization method simulates the effect of hunger on the exploration
procedures of the animals by designing adaptive weights based on the hunger concept.
The optimization process by the introduced CHGS algorithm reached the optimal solution
professionally. The process does not get stuck in a local point, but it reaches the global one.
The advantage of the CHGS optimization method is its fast and smooth convergence. The
simulation results confirm the superiority of the CHGS optimization method when applied
to many standard test functions. This will be further verified in the results section.
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As the metaheuristic optimization methods are in continuous development, the OPF
problem is accordingly being solved frequently by the newly discovered meta-heuristic
optimization algorithms. Generally, the OPF is not solved only for one objective, but the
objectives can be fuel cost minimization, power losses minimization, etc. [25]. This research
study employs the CHGS to solve the OPF problem with different scenarios. The CHGS
optimization algorithm optimizes a fuel cost function under various systems’ constraints.
The novelty of this work is stated as follows—(i) the CHGS performance assessment
when solving the OPF problems, (ii) using the CHGS to select the optimal buses to which
the photovoltaics (PV) and/or wind turbines can be allocated, and (iii) investigating the
effect of renewable energy sources (RESs) grid integration on the conventional generation
cost [26]. This investigation means observing the reduction in the generation cost from the
conventional power generators due to the addition of the PV panels and the wind energy
sources to the studied IEEE standard systems. The newly developed CHGS determines
how much active power each generator should generate to satisfy the minimum solution
for the fuel cost objective function. Different scenarios are also considered. These different
scenarios are—the system without renewable energy sources, the systems with the addition
of the PV panel, the systems with the addition of the wind energy source, and the systems
with the addition of both energy sources. The program used for this search is MATLAB.
The equations of the OPF and the optimization methods are written and run by MATLAB
software. The simulation results obtained of the OPF problem confirm the effectiveness of
the CHGS when compared with the GA and PSO methods.

Recent developments in optimal power flow analysis are presented in the literature.
In [6], the OPF problem is solved using the Marine Predator Algorithm. The systems
introduced are multi-regional. The variability of the renewable energy sources, as well
as the loads, is also considered. The IEEE-48 bus system is the studied one. The refer-
ence [18] introduced an application of the salp swarm algorithm on the OPF problem,
with four objective functions. These objective functions are solved individually, and then
simultaneously. The IEEE 57- and 118-bus systems are the studied ones in that reference.
Finally, the contributions of this work can be stated explicitly as follows: (1) improve the
newly developed HGS optimization algorithm, (2) apply the CHGS on the OPF problem
to observe the improvement effectiveness of the HGS algorithm compared with other
optimization methods, (3) study the effect of adding the renewable energy sources on the
objective function minimization.

The rest of the work is organized as follows: In Section 2, the mathematical formulation
of the problem is presented. Moreover, the different objectives investigated are discussed.
The proposed chaotic hunger games search (CHGS) optimization algorithm is presented
and discussed in Section 3. Section 4 presents the results obtained and their discussion.
Lastly, the concluding remarks and future work directions are presented in Section 5.

2. Problem Formulation

The optimization problem in this research is divided into three parts. The first objective
is to solve the basic OPF problem using the newly developed CHGS optimization method
with fixed loads and without adding RESs to the systems. MATPOWER toolbox is used
to perform the required simulations on the MATLAB platform. The simulation results
obtained by the CHGS are compared with those obtained by the GA and the PSO. The
second part of the optimization problem in this study is the optimal siting of the PV and
wind energy sources to the studied systems using the CHGS optimization method. Optimal
location means choosing a bus in the system to connect the PV panels or wind turbines
to it. The optimal bus represents the bus that performs a minimal value of the fuel cost
function when RESs are connected to it.

The third part of the problem under study is repeating the OPF problem, but with
RESs connected to the systems on the optimal buses determined before in the optimal
siting part of the problem [27]. The systems used in the OPF problem to evaluate the newly
introduced CHGS optimization algorithms are the standard IEEE 57- and 118-bus systems.
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Finally, some statistical analyses are provided at the end of the simulation results section,
to verify the robustness of the newly developed CHGS optimization method.

2.1. The OPF Problem in Its Basic Case
2.1.1. Fuel Cost Function

The objective function of the introduced problem is the sum of the generators’ fuel
costs through a day. Mathematically, this cost function is a quadratic function of the power
to be generated by each generating unit [25].

Minimize J =
24

∑
h=1

NG

∑
i=1

Ci,h

(
PGi,h

)
(1)

Ci,h

(
PGi,h

)
= aiPG

2
i,h+biPGi,h+ci (2)

where J represents the sum of the total hourly fuel cost over one day. NG represents how
many generators are in the system. PGi,h is the generator power at bus i and hour h.

2.1.2. Equality and Inequality Constraints of the OPF Problem

The equality constraints on the injected power are represented in Equations (3) and
(4), while the inequality constraints of the OPF problem regarding the power limits of
the generators, the voltage boundaries of the buses, and the power flow limits on the
transmission lines are represented in Equations (5)–(8), respectively [25].

Pinjk,h −
Nbuses

∑
l=1

Vk,hVl,h[Gklcos(δl,h−δk,h)+Bklsin(δl,h−δk,h)]= 0 (3)

Qinjk,h −
Nbuses

∑
l=1

Vk,hVl,h[Gklsin(δl,h−δk,h)+Bklcos(δl,h−δk,h)]= 0 (4)

where Pinjk,h and Qinjk,h denote the active and reactive power injected at bus k at hour
h. Vk,h and Vl,h denote the voltage magnitudes at buses k and l at h. Gkl and Bkl is the
conductance and susceptance of the admittance Ykl . δl,h and δk,h are the voltages’ angles at
buses k and l at h. Nbuses is the number of buses in the studied system.

PGmin ≤ PGi,h ≤ PGmax , i = 1, 2, . . . , NG and h = 1, 2, . . . , 24 (5)

QGmin ≤ QGi,h ≤ QGmin , i = 1, 2, . . . , NG and h = 1, 2, . . . , 24 (6)

Vimin ≤ Vi,h ≤ Vimax , i = 1, 2, . . . , NG and h = 1, 2, . . . , 24 (7)

Vk,hVl,h[Gklcos(δl,h − δk,h) + Bklsin(δl,h − δk,h)] ≤ Plimkl
, ∀k, l ∈ Nbuses (8)

where PGmin and PGmax are the minimum and maximum limits of the active power to be
generated from the ith generator, respectively. QGmin and QGmax are the minimum and
maximum limits of the reactive power of the ith generator, respectively. Vimin and Vimax

are the minimum and maximum limits of the voltage magnitudes at the bus of the ith
generator.

2.2. Optimal Siting of RESs

In the second part of the problem, OPF was implemented to determine which bus
corresponded to the minimum cost of generating fuel when connecting RESs, using the
proposed CHGS optimization algorithm. In this part of the study, the load is designated to
be hourly time-varying throughout the day. Throughout the simulation process, PV units
are added to system buses frequently from bus 2 to the last bus in the system, one at a
time [28].
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Similarly, the simulation process is repeated to find an optimal location for wind
turbines allocation. After that, the OPF is resolved to select an optimal bus to connect the
PV assuming that the wind turbine is already installed at the previously determined bus.
The generation capacities of the PV and the wind turbine are set to be 15 MW and 30 MW,
respectively. These values are chosen based on the systems’ demands.

2.3. The OPF Problem with RESs

Integration of clean energy is now growing, especially PV. It converts the sunlight
into electrical power with no pollution [29]. Moreover, PV can operate for a while without
maintenance [29]. The RESs are characterized by their intermittency and variance in their
power generation availability [30–33]. Many parameters affect the power generation from
RESs [34]. The PV depends on the availability of the solar irradiance that is different
according to the season, the hour through a season/day, and it differs according to many
factors such as the season, the weather, and the site location [35,36]. Moreover, the output
power of the wind turbine depends on the cut-in and cut-off speeds of wind in the location
of the wind farm [37]. In the problem formulation of this article, the uncertainty of the PV
and wind turbines’ electric power generation is not considered. Instead, constant models
are used for the PV and wind energy sources according to the availability curves shown in
Figure 1, which were provided in [25].

Figure 1. The output power of PV and wind energy sources represented in p.u values.

In the third part of the problem formulation after the optimal siting, the OPF problem
was resolved after some modifications in load values, as a result of RESs’ addition to the
standard IEEE test systems studied.

Various scenarios are considered to investigate the impact of the addition of RESs on
reducing the cost of conventional generating fuel. These are four different scenarios—OPF
problem with the variable load during the day without adding wind or PV sources to
systems; OPF problem with variable load, with only the addition of a PV energy source
that is associated with buses obtained in the second part of problem formulation (optimal
sitting part); OPF problem with variable load with only the addition of a wind energy
source; and finally, OPF problem with variable load with the addition of PVs and wind
energy sources together to studied systems.

In all parts of the problem formulation, the design variables are bounded by their
limits. The constraints that are given in (3), (4) and (6) are satisfied by the power flow in
the MATPOWER toolbox [38–40] in MATLAB. A penalty function (pen) is added to the
objective function to guarantee that the results of the other dependent variables are limited
to their boundaries, and to confirm that there are no violations of limits. The violated
solutions are rejected by the penalty term in the equation of the fuel cost, as specified in (9).
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pen = kv

nbuses

∑
i=1

[
max

(
0, Vi −Vmax

i
)

+max
(
0, Vmin

i −Vi
) ]+ kl

nbr

∑
j=1

[
max

(
0, Sj − Srated

j

)]
(9)

where kv and kl are positive integers of very large values. nbuses and nbr are the number of
buses and branches, respectively.

3. Hunger Games Search (HGS) Optimization Algorithm

The HGS is classified as a population-based optimization algorithm. It is simple to
implement, stable, and competitive when used to solve the optimization problems with
the constraints [23]. The principles of the HGS algorithm rely on the hunger-motivated
behavior of the animals. It is inspired by the animals’ social characteristics, while the
food exploration depends on their hunger level. This dynamic optimization algorithm
follows the concept of “Hunger” as a vital inspiration for activities in the lives of beings.
The HGS optimization algorithm simulates the hunger by designing weights to represent
the hunger affect the search steps. The algorithm obeys the logical rules used by the
animals. Its activities are considered adaptive evolutionary, as the animals try to secure
more opportunities for food possession.

3.1. The Logic of Search, Behavioral Choice, and Hunger-Driven Games

Animals live according to the rules that depend on the environment in which they
live. Rules control animal choices and the evolution of their style. Hunger stimulates
animal choices and activities. Hunger also affects the anxiety of animals and worry from
the hunters. Animals look for food sources when faced with a lack of calories. They should
look for food besides moving around environments to switch between exploration and
defense to change nutrition plans smoothly. Social life supports animals in the possibility
of escaping from hunters and exploring food sources. This social lifestyle improves the
chance of animals surviving. In nature, better-health animals can get food and, therefore,
they live more likely than vulnerable animals. These hunger games are called in nature
where the wrong choices can lead to death. Not only is animal behavior affected by hunger,
but also by the fear of hunters. The more severe the hunger, the stronger the food search.
Therefore, the animal is doing more effort to find food shortly before his death. The
proposed optimization method depends on logical options and species movements.

3.2. Mathematical Model

This sub-section introduces the important mathematical equations of the HGS opti-
mization algorithm. The mathematical model is built based on hunger-motivated actions.

Approaching the food: It is assumed that all the individuals help and cooperate socially.
The pivotal equation of the proposed HGS optimization algorithm which represents the
individual cooperative communication is given in (10) [23]; thus:

→
X(t + 1) =


Game1 :

→
X(t)(1 + randn(1)), r1< l

Game2 :
→

W1
→
Xb +R →

→
W2

∣∣∣∣→Xb −
→

X(t)
∣∣∣∣, r1> l, r2> E

Game3 :
→

W1
→
Xb− R →

→
W2

∣∣∣∣→Xb −
→

X(t)
∣∣∣∣, r1> l, r2< E

(10)

r1 and r2 are random numbers between [0, 1]. t is the number of the current iterations.
→

W1 and
→

W2 are the weighting factors of hunger.
→
Xb denotes the best individual location at

the current iteration.
In (10), individuals are looking for locations close to the best solution, as well as

searching for other locations far from the best solution. This ensures that the exploration
process covers the entire search space to meet its limits.
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The hunger role: The starvation features of the population in the exploration field are

mathematically expressed and
→

W1 is calculated by (11) [23].

→
W1(i) =

{
hungry(i) N

SHungry × r4, r3< l
1, r3> l

(11)

Meanwhile,
→

W2 in (10) is calculated as shown in (12):

→
W2(i)= 2

(
1− e−|hungry(i)−SHungry|

)
r5 (12)

where hungry is the hungr of the population. r3, r4, and r5 are random values between
0 and 1. N is the population size. SHungry defines the summation of the populations’
hungry feelings.

The hungry (i) can be represented mathematically as follows (13) [23]:

hungry(i) =
{

0, ∀ AllFitness(i)== BF
hungry(i)+H, ∀ AllFitness(i)! = BF

(13)

where AllFitness(i) is the fitness of the current iteration. At every iteration, the best popu-
lation’s hunger is set to 0. Meanwhile, the new hunger (H) is added to other populations
according to the original hunger. The H values that correspond to each population are not
the same. The pseudo-code of the HGS optimization algorithm is presented in Algorithm 1.

Algorithm 1. Pseudo-code of HGS.

Initialize the parameters and positions
while (t ≤ T)

Calculate the fitness of all individuals
Update BF, WF, Xb, BI
Calculate the Hungry, W1, W2
for each individual

Calculate E
Update R and positions

end for
t = t + 1

end while
Return BF and Xb

3.3. Chaotic Hunger Games Search Optimization Algorithm (CHGS)

In the meta-heuristic optimization algorithms, the initial population is set randomly
within specified upper and lower bounds. The performance of optimization algorithms is
greatly influenced by the initial configuration of agents. The better the initial population,
the better the results. In this research, the initial population is improved using chaotic maps.
The principle of modifying the initial population by the chaotic maps in the metaheuristic
algorithms was discussed in [39,40].

The discussion in [40] led to the fact that the logistic chaotic maps are the best among
the recent chaotic maps because of the computational efficiency, due to the random ini-
tialization of numbers near 0 and 1. This type of chaotic mapping can be represented
mathematically, as given in (14) [24].

y1= rand,
yi+1= 4yi(1− yi), ∀ i ∈ N

(14)

where rand is a vector set randomly from 0 to 1. After that, the initial population of the
proposed CHGS optimization algorithm is defined by replacing the initial population
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determined by the HGS with the values obtained by such a type of chaotic mapping. This
replacement of the initial population improves the simulation performance of the HGS.
The flowchart of the power flow problem using the CHGS optimization method is shown
in Figure 2.

Figure 2. Flowchart of the power flow using the CHGS optimization algorithm.

4. Simulation Results

The steps of using the CHGS to solve the OPF problem are as follows: the number
of populations, the dimension of the problem, the constraints of the design variables,
and the maximum number of iterations are defined and set. The CHGS generates the
initial population using chaotic maps. The OPF is run by the MATPOWER toolbox [38].
The values of the active power generated, obtained by the results of the OPF, are used
to calculate the objective function (cost function). Then, the other populations are used
to solve the OPF iteratively by the MATPOWER, and the output from the OPF in each
iteration is used to calculate the objective function. If the cost of the current iteration is less
than the cost of the previous one, it replaces the old result. These steps end if the maximum
number of iterations is reached, as shown in Figure 2.
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To verify the applicability of the developed CHGS optimization algorithm in the field
of modern electrical power systems, it is used to solve the OPF, with the three scenarios
of the optimization problem presented before in the problem formulation section. The
standard test systems IEEE 57-and 118-bus are used in this study. This section of the
paper shows simulation results for the three scenarios of the optimization problem in the
following subsections. In Table 1, the main data of the first and second studied systems
are presented [5]. The data tabulated include the number of buses, branches, transformers,
loads. As a sample of the studied systems, the single line diagram of the IEEE 57-bus
system is presented in Figure A1 in Appendix A at the end of this article, just before the
references section. The values of the loads and the constraints of the voltages at each
bus for the two studied systems are also included in two separate tables, in Table A1 in
Appendix A.

Table 1. Data of the two studied systems.

Data/System 57-Bus System [5] 118-Bus System [5]

Number of buses 57 118
Number of generators 7 54
Number of branches 80 186

Number of transformers 17 9
Number of loads 42 99

Connected loads (MVA) 1250 + j336.4 4242 + j1438
Power losses (MVA) 16 + j72.97 132.86 + j783.79

As mentioned in the problem formulation section, the output power of each con-
ventional generator is the design variable of the optimization problem. The simulation
results of the three parts of the OPF optimization problem are explained in detail in the
following subsections.

4.1. Base Case

The values of the best cost and best design variables obtained by the CHGS and
other optimization techniques for the 57-bus and the 118-bus systems are presented in
Tables 2 and 3, respectively. The performance of the CHGS in terms of the convergence in
case of the 57-bus and the 118-bus systems are shown in Figures 3 and 4, respectively, and
it is compared with the convergence rates of the GA and the PSO.

Table 2. Optimal cost and design variables for the 57-bus system.

Generator Power (MW) at Bus CHGS GA PSO [5] HHO [3]

1 144.856065349 151.43944 153.41 144.89
2 93.0378363798 85.655155 0.00 94.85
3 45.2090447019 47.316627 47.07 45.08
6 68.2622752728 63.81441 61.09 65.90
8 457.026753271 471.12909 550.00 457.17
9 95.8566504056 75.268325 89.58 96.01
12 365.956944195 375.58131 374.31 366.24

Min cost (USD/hr) 41,872.90323 41,891.3742 42,262.61 41,873.06

Table 3. Optimal cost and design variables for the 118-bus system.

Generator Power (MW) at Bus CHGS GA PSO

1 45.1280617027845 42.80843285 69.35736953
4 0 40.46726603 53.66406009
6 0 55.63989136 62.17215812
8 0 43.75528479 48.57892294

10 415.078573959537 263.0082435 0
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Table 3. Cont.

Generator Power (MW) at Bus CHGS GA PSO

12 89.2093137534019 73.4612556 91.82476326
15 0 71.50087072 54.09869923
18 51.1442426543932 40.50725262 100
19 0 30.79849664 0
24 0 51.10298629 0
25 202.066133641544 156.8538738 214.1341696
26 291.435485752547 136.8723279 0
27 0 39.63301115 28.14707861
31 0 33.53374789 7.457592479
32 0 35.67988555 100
34 0 48.36991819 100
36 52.6419746871120 42.5987049 0
40 0 32.43323935 41.61653112
42 0 34.42893636 100
46 20.3002706909648 33.19389347 19.08021288
49 207.252076963502 143.2983532 192.6388498
54 53.8043135610641 64.86753545 0
55 0 40.89349546 22.03011641
56 0 56.95884321 100
59 158.681203488787 112.15389 149.5723921
61 156.137895654654 104.6146765 148.2439412
62 0 45.70804411 0
65 370.286376438208 243.956903 352.4901168
66 368.272586926582 238.3546723 349.5263973
69 474.793720966816 241.9215895 451.7022087
70 0 61.23232172 0
72 12.7542211358947 42.53966077 100
73 0 36.76016444 0
74 0 36.59176546 0
76 39.7126044650688 46.35949401 0
77 0 58.62085889 0
80 450.443391212072 232.9528141 431.3098239
85 0 30.97517145 0
87 0 19.6315873 0
89 512.008503437726 385.117137 491.7252876
90 0 60.1034387 0.486243854
91 0 54.58481294 0
92 0 41.33189298 0
99 0 64.40857576 0.150287884

100 241.441910559835 136.2823639 226.413526
103 40.1846126066996 58.18509146 37.66294986
104 0 41.52387218 100
105 0 41.38774942 0
107 0 52.22079896 13.81565399
110 0 35.33619871 0
111 36.3598190416225 48.42831027 36.33637828
112 57.9142560051964 46.51878285 0
113 0 35.75126213 23.31851727
116 0 44.71488715 0

Min cost (USD/hr) 130,640.2534064 138,991.2993 133,976.07655089

In the case of the 57-bus system, the proposed CHGS optimization algorithm achieved
a reduction in the cost function by 0.044% compared with the GA, and by 0.922% when
compared with the PSO. The CHGS needed fewer iterations to settle. The GA algorithm
needed about 400 iterations to reach its steady-state result. Moreover, the PSO converges
fast, but its steady-state result is worse than the CHGS steady-state one. Meanwhile, in the
case of the 118-bus system, the GA algorithm needs more iterations to settle, and it reaches
the worst result of the three compared methods. The PSO convergence performance is
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similar to that of the CHGS algorithm, but the steady-state result obtained by the CHGS
is better. The CHGS algorithm achieved a reduction in the cost by 3.9% compared with
the GA, and by 2.48% when compared with the PSO. Besides, it is observed that the
simulations of the two studied systems confirm the fast and smooth convergence of the
proposed CHGS algorithm. Moreover, the CHGS can provide better results in the case of
studying larger systems.

Figure 3. Simulated cost function convergence in case of the 57-bus system.

Figure 4. Simulated cost function convergence in case of the 118-bus system.

4.2. Optimal Siting of PV and Wind Energy Sources

In the second part of the optimization problem, the OPF problem is solved using the
proposed CHGS, but for a different purpose. The goal in this part is to find the optimal bus
to locate PV and/or wind energy sources. The optimal bus means the bus that achieves the
minimum cost of power generation fuel in the system of the OPF problem. It is determined
by checking the power generation fuel cost at each bus, and then, choosing the optimal one.

The optimal siting is targeted for the two systems under study, the 57-bus system, and
the 118-bus system. First, the PV energy source is located, then the wind energy source.
After that, both PV and wind energy sources are optimally located together. This is done by
adding the PV source into the system, assuming that the wind source is already installed
at the previously selected bus, as the wind energy source has a dominant effect on the
reduction of the cost among the added RESs. The simulation results obtained for this part
of the optimization problem for the two studied systems are presented in Table 4. These
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results are used in the third part of the optimization problem when the OPF is solved
with variable load curves through the day, and with RES added to the studied systems.
In this optimization problem, the PV and wind turbines are assumed to be added to the
studied systems as a negative load changing in steps through the day, and the uncertainty
of parameters was neglected for simplicity [41–44].

Table 4. Optimal buses designated for RESs connection in the studied systems.

Test System 57-Bus System 118-Bus System

Optimal bus with PV power
source 37 29

Optimal bus with wind power
source 12 28

Optimal bus with mixed
PV/wind sources 37/12 4/28

4.3. Different Scenarios of the OPF Problem Considering RESs

The third part of the optimization problem is solving the OPF problem with different
scenarios. These different scenarios consider the system with hourly loads change. Values
of the load of the 57-bus, and the 118-bus systems at each hour of the day are shown in
Figures 5 and 6, respectively [5].

Figure 5. Hourly load values of the 57-bus system.

Figure 6. Hourly load values of the 118-bus system.

Furthermore, the OPF problem is solved with the RESs, the PV, and wind energy
sources, which are added to the systems individually or simultaneously. The aim in the
third part of the problem is to investigate the impact of the addition of the RESs to the
systems on the cost of conventional generator fuel. The RESs are supposed to be installed
initially when included in the systems studied. This means that the initial capital costs of in-
stalling the RESs system have not been taken into account in this problem [44]. All scenarios
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are considered in the two studied systems; 57 buses, and 118 bus systems. These different
OPF problem scenarios are resolved using the proposed CHGS optimization method.

The first scenario is the scenario where the OPF problem is solved with variable load
and with no RES addition. In the second scenario, PV energy source is added to bus 37 in
case of the 57-bus system, and to bus 29 in case of the 118-bus system. In the third one, a
wind energy source is added to bus 12 in case of the 57-bus system, and to bus 28 in case of
the 118-bus system. The last scenario investigates the OPF problem with the PV energy
source installed on bus 37 and the wind energy source installed on bus 12, in the case of
the 57-bus system. Meanwhile, in the 118-bus system, the PV energy source is installed on
bus 4, and the wind energy source is installed on bus 28. Comparisons between these four
scenarios in fuel cost through a typical day are demonstrated in Figure 7 for the 57-bus
system. The hourly fuel cost comparison for all scenarios in case of the 118-bus system
is also indicated in Figure 8. It is observed that the fuel cost is reduced between hours 9
and 18 after installing the PV energy source. Meanwhile, after the installation of the wind
energy source, the fuel cost is reduced during the day. This happens due to the availability
of wind energy all day, and the dependence of the output power from the PV energy source
on solar irradiance.

Figure 7. Hourly fuel cost of the four scenarios of the 57-bus system.

Figure 8. Hourly fuel cost of the four scenarios of the 118-bus system.



Energies 2021, 14, 6962 14 of 21

4.4. Statistical Analysis

It is well known that metaheuristic optimization algorithms have a random nature.
For this reason, the algorithms’ (CHGS, PSO, and GA) performances have been examined
20 times independently. The best, worst, mean, and median values are calculated and
presented in Table 5 for the IEEE 57-bus system, and Table 6 for the IEEE 118-bus system.
The standard deviation of the presented results has also been calculated.

Table 5. Statistical measures of the results of the IEEE 57-bus system obtained with different algo-
rithms over 20 independent runs.

Algorithm Best Worst Mean Median Standard
Deviation

CHGS 41,872.9032 41,872.90 41,872.90 41,872.90 4.76 × 10−10

PSO 4.20 × 104 42,404.38 42,133.54 42,172.18 162.0120
GA 41,891.3742 42,037.36 41,938.62 41,932.65 41.01491

Table 6. Statistical measures of the results of the IEEE 118-bus system obtained with different
algorithms over 20 independent runs.

Algorithm Best Worst Mean Median Standard
Deviation

CHGS 1.31 × 105 1.37 × 105 1.322 × 105 1.3212 × 105 7.97 × 102

PSO 1.32 × 105 1.36 × 105 1.33 × 105 1.33 × 105 1.14 × 103

GA 1.36 × 105 1.40 × 105 1.39 × 105 1.39 × 105 8.56 × 102

It is clear from Table 5 that the standard deviation has the lowest value when the
proposed CHGS algorithm is applied. It can be concluded that the deviation of the results
obtained from each run is very small, so the results obtained are consistent. The same
is achieved for the IEEE 118 bus system, as shown in Table 6. A non-parametric statisti-
cal test called Wilcoxon’s rank-sum test is also carried out. This test enables additional
comparison between the proposed CHGS algorithm and PSO and GA algorithms. The
corresponding p-values obtained by applying this test are presented in Table 7, with a
5% level of significance between the CHGS and other optimization methods. Besides, in
addition to the previous non-parametric statistical analysis measures, a non-parametric
statistical test called the Friedman test is also carried out to determine whether there is
a difference between results in acceptance or not. Friedman tests classify values in each
group (algorithm results in each run) from low to high. Each row is arranged separately. It
then sums the ranks in each algorithm (column). The corresponding p-values obtained by
applying this test are also presented in Table 7. The small p-values calculated validate the
hypothesis that all differences between algorithm results due to random sampling can be
rejected, and at least the proposed algorithm differs from the other based on convergence
and other test results. To conclude, the results shown in Tables 5–7 validate the superiority
of the CHGS algorithm over other considered algorithms in solving the investigated OPF
problem under the conditions given in the problem formulation.

Table 7. p-values obtained with Wilcoxon’s and Friedman’s rank-sum tests.

System IEEE 57-Bus IEEE 118-Bus

Algorithms/tests CHGS vs. PSO CHGS vs. GA CHGS vs. PSO CHGS vs. GA
p-value

(Wilcoxon test) 6.40 × 10−8 6.50 × 10−8 2.73 × 10−1 1.43 × 10−7

p-value
(Friedman test) 5.33 × 10−5 3.06 × 10−3
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5. Conclusions

This paper has introduced an improved CHGS optimization algorithm to solve the
optimal power flow problem. The systems used in this paper are the benchmark IEEE
57-bus and 118-bus test systems. The problem formulation was divided into three parts.
The first part is the OPF with a base case, to investigate the convergence of the CHGS
algorithm. In the second part of the problem formulation, an optimal allocation of the RESs
was introduced by the CHGS algorithm. In the third part, different OPF scenarios were
considered and solved by the CHGS. Different hourly load values and different levels of
penetration of RESs into the studied systems were also considered. The penetration of
the RESs resulted in considerable hourly cost reduction. The simulation results showed
the applicability of the proposed CHGS optimization algorithm when used to solve the
OPF problem in electrical power engineering fields. Compared with other optimization
algorithms, the CHGS resulted in better convergence rates. In addition, it is simple to
implement. The CHGS employment in the OPF problem has reduced the fuel cost by
0.04% up to 0.92% for the 57-bus system, and 2.4% up to 3.9% in the first part of the
studied optimization problem. Finally, it can be recommended to try to apply the CHGS
optimization algorithm to solve other problems in the scope of electrical engineering,
energy, and other engineering fields in future research, while taking into account the
uncertainty of the parameters and loads.
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Appendix A

Figure A1. Single line diagram of the IEEE 57-Bus test system.
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Table A1. Voltage constraints, and load data of each bus for the 57-bus system.

Bus No.
Voltage (p.u) Load

Min Max Active Power
(MW)

Reactive Power
(MVAR)

1 0.9 1.1 55 17
2 0.9 1.1 3 88
3 0.9 1.1 41 21
4 0.9 1.1 0 0
5 0.9 1.1 13 4
6 0.9 1.1 75 2
7 0.9 1.1 0 0
8 0.9 1.1 150 22
9 0.9 1.1 121 26
10 0.9 1.1 5 2
11 0.9 1.1 0 0
12 0.9 1.1 377 24
13 0.9 1.1 18 2.3
14 0.9 1.1 10.5 5.3
15 0.9 1.1 22 5
16 0.9 1.1 43 3
17 0.9 1.1 42 8
18 0.9 1.1 27.2 9.8
19 0.9 1.1 3.3 0.6
20 0.9 1.1 2.3 1
21 0.9 1.1 0 0
22 0.9 1.1 0 0
23 0.9 1.1 6.3 2.1
24 0.9 1.1 0 0
25 0.9 1.1 6.3 3.2
26 0.9 1.1 0 0
27 0.9 1.1 9.3 0.5
28 0.9 1.1 4.6 2.3
29 0.9 1.1 17 2.6
30 0.9 1.1 3.6 1.8
31 0.9 1.1 5.8 2.9
32 0.9 1.1 1.6 0.8
33 0.9 1.1 3.8 1.9
34 0.9 1.1 0 0
35 0.9 1.1 6 3
36 0.9 1.1 0 0
37 0.9 1.1 0 0
38 0.9 1.1 14 7
39 0.9 1.1 0 0
40 0.9 1.1 0 0
41 0.9 1.1 6.3 3
42 0.9 1.1 7.1 4.4
43 0.9 1.1 2 1
44 0.9 1.1 12 1.8
45 0.9 1.1 0 0
46 0.9 1.1 0 0
47 0.9 1.1 29.7 11.6
48 0.9 1.1 0 0
49 0.9 1.1 18 8.5
50 0.9 1.1 21 10.5
51 0.9 1.1 18 5.3
52 0.9 1.1 4.9 2.2
53 0.9 1.1 20 10
54 0.9 1.1 4.1 1.4
55 0.9 1.1 6.8 3.4
56 0.9 1.1 7.6 2.2
57 0.9 1.1 6.7 2
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Table A2. Voltage constraints, and load data of each bus for the 118-bus system.

Bus No.
Voltage (p.u) Load

Min Max Active Power
(MW)

Reactive Power
(MVAR)

1 0.9 1.1 51 27
2 0.9 1.1 20 9
3 0.9 1.1 39 10
4 0.9 1.1 39 12
5 0.9 1.1 0 0
6 0.9 1.1 52 22
7 0.9 1.1 19 2
8 0.9 1.1 28 0
9 0.9 1.1 0 0
10 0.9 1.1 0 0
11 0.9 1.1 70 23
12 0.9 1.1 47 10
13 0.9 1.1 34 16
14 0.9 1.1 14 1
15 0.9 1.1 90 30
16 0.9 1.1 25 10
17 0.9 1.1 11 3
18 0.9 1.1 60 34
19 0.9 1.1 45 25
20 0.9 1.1 18 3
21 0.9 1.1 14 8
22 0.9 1.1 10 5
23 0.9 1.1 7 3
24 0.9 1.1 13 0
25 0.9 1.1 0 0
26 0.9 1.1 0 0
27 0.9 1.1 71 13
28 0.9 1.1 17 7
29 0.9 1.1 24 4
30 0.9 1.1 0 0
31 0.9 1.1 43 27
32 0.9 1.1 59 23
33 0.9 1.1 23 9
34 0.9 1.1 59 26
35 0.9 1.1 33 9
36 0.9 1.1 31 17
37 0.9 1.1 0 0
38 0.9 1.1 0 0
39 0.9 1.1 27 11
40 0.9 1.1 66 23
41 0.9 1.1 37 10
42 0.9 1.1 96 23
43 0.9 1.1 18 7
44 0.9 1.1 16 8
45 0.9 1.1 53 22
46 0.9 1.1 28 10
47 0.9 1.1 34 0
48 0.9 1.1 20 11
49 0.9 1.1 87 30
50 0.9 1.1 17 4
51 0.9 1.1 17 8
52 0.9 1.1 18 5
53 0.9 1.1 23 11
54 0.9 1.1 113 32
55 0.9 1.1 63 22
56 0.9 1.1 84 18
57 0.9 1.1 12 3
58 0.9 1.1 12 3
59 0.9 1.1 277 113
60 0.9 1.1 78 3
61 0.9 1.1 0 0
62 0.9 1.1 77 14
63 0.9 1.1 0 0
64 0.9 1.1 0 0
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Table A2. Cont.

Bus No.
Voltage (p.u) Load

Min Max Active Power
(MW)

Reactive Power
(MVAR)

65 0.9 1.1 0 0
66 0.9 1.1 39 18
67 0.9 1.1 28 7
68 0.9 1.1 0 0
69 0.9 1.1 0 0
70 0.9 1.1 66 20
71 0.9 1.1 0 0
72 0.9 1.1 12 0
73 0.9 1.1 6 0
74 0.9 1.1 68 27
75 0.9 1.1 47 11
76 0.9 1.1 68 36
77 0.9 1.1 61 28
78 0.9 1.1 71 26
79 0.9 1.1 39 32
80 0.9 1.1 130 26
81 0.9 1.1 0 0
82 0.9 1.1 54 27
83 0.9 1.1 20 10
84 0.9 1.1 11 7
85 0.9 1.1 24 15
86 0.9 1.1 21 10
87 0.9 1.1 0 0
88 0.9 1.1 48 10
89 0.9 1.1 0 0
90 0.9 1.1 163 42
91 0.9 1.1 10 0
92 0.9 1.1 65 10
93 0.9 1.1 12 7
94 0.9 1.1 30 16
95 0.9 1.1 42 31
96 0.9 1.1 38 15
97 0.9 1.1 15 9
98 0.9 1.1 34 8
99 0.9 1.1 42 0

100 0.9 1.1 37 18
101 0.9 1.1 22 15
102 0.9 1.1 5 3
103 0.9 1.1 23 16
104 0.9 1.1 38 25
105 0.9 1.1 31 26
106 0.9 1.1 43 16
107 0.9 1.1 50 12
108 0.9 1.1 2 1
109 0.9 1.1 8 3
110 0.9 1.1 39 30
111 0.9 1.1 0 0
112 0.9 1.1 68 13
113 0.9 1.1 6 0
114 0.9 1.1 8 3
115 0.9 1.1 22 7
116 0.9 1.1 184 0
117 0.9 1.1 20 8
118 0.9 1.1 33 15
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Abbreviations

CFO Cuttlefish optimization
CHGS Chaotic hunger games search
ED Economic dispatch
GA Genetic algorithm
HGS Hunger games search
OPF Optimal power flow
PSO Particle swarm optimization
PV Photovoltaics
RESs Renewable energy sources
SCA Sine-cosine algorithm
SFO Sunflower optimization
SSA Salp swarm algorithm
TSA Tree seed algorithm
AllFitness(i) Fitness of the current iteration population
Gkl and Bkl Conductance and susceptance of the admittance Ykl .
J Sum of the total hourly fuel cost over one day
hungry Hunger of the population
kl and kv Large positive integer numbers
N Population size
NG Number of generators in the system
Pinjk,h and Qinjk,h Active and reactive power injected at bus k at hour h
PGi,h Generator power at bus i and hour h
pen Penalty function
rand A vector set randomly from 0 to 1.
r1 and r2 Random numbers between [0, 1]
SHungry Summation of the populations’ hungry feelings
t Number of the current iteration
Vk,h and Vl,h Voltage magnitudes at buses k and l at hour h
→

W1 and
→

W2 Weighting factors of hunger
→
Xb Best individual location at the current iteration
δl,h and δk,h Voltages’ angles at buses l and k at h
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