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Abstract: Non-cooperative scheduling games can be used to coordinate residential loads in order to
achieve a common goal while accounting for individual consumer’s interests, privacy, and autonomy.
However, a significant portion of the residential flexibility—Thermostatically Controlled Loads
(TCLs) such as water and space heating/cooling appliances—has not been fully addressed under
this game theoretic approach: their comfort constraints and integer control were not considered.
This paper presents a method for properly including TCLs in this framework and discusses its
application in energy communities. Specifically, we propose a general mathematical formulation
for considering users’ comfort in non-cooperative games. We model the integer nature of the TCLs
control with binary variables and show that optimal or close to optimal (less than 1%) solutions
are reached. Moreover, different total cost functions can be used depending on the market context
and the objective of the demand management program. To illustrate and discuss these aspects in
practical applications, we used a case study of an energy community in Spain. The results show that
the TC solutions are optimal or only 0.80% worse than optimal; different total cost functions result in
different results (load curve smoothing or peak load reduction); consumers’ comfort is respected;
and the proposed game model cooperates with consumers in order to minimize community’s costs.

Keywords: energy communities; load scheduling; non-cooperative games; thermostatically controlled
loads; transactive control

1. Introduction

In the context of the transition to sustainability in power systems, transactive control
(TC) has emerged as a form for coordinating the multiple agents in power systems (con-
sumers; producers; distributed system operators—DSOs; transmission system operators—
TSOs; aggregators, etc.) in order to optimize their operation to reduce the system’s costs,
provide ancillary services, and enhance energy quality, among others [1]. TC methods
consider agents’ particularities, priorities, interests, and autonomy [2]. The core objective is
to reach an optimal allocation of resources (e.g., generation, controllable devices, and loads)
in a decentralized form by only allowing actors to exchange minimal information (e.g., total
consumption) among themselves [3]. These decentralized and transparent characteristics
make TC an attractive solution for load control in the residential sector in which privacy is a
main concern and a large number of consumers exist [4]. Therefore, the main motivation of
the approach proposed in this paper is to deploy TC based solutions to unveil the flexibility
offered by residential loads in order to cope with new challenges in power systems.

An effective method of implementing TC is by non-cooperative game theory because it
allows modeling agents’ preferences, priorities, conflicting interests, and complex inter-
actions in a decentralized manner [5]. When applied to the load control in the residential
sector, game theoretic methods capture load scheduling interactions between mid-size to
small-size consumers that negotiate their load flexibility until an equilibrium is reached
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and all consumers are satisfied with the result [6]. Mohsenian-Rad et al. [7], who conducted
one of the first studies in this field, proposed a non-cooperative game approach to schedule
residential appliances by considering consumers’ preferences. In this pioneering study,
the authors adopted simple load models with continuous decision variables, constant daily
energy to be scheduled, and no operation constraints. Additionally, to divide the market
results among participants, this study considered a billing mechanism that allocates the
total quadratic cost according to the energy share of each individual consumer. Later
on, other studies extended this discussion on billing mechanisms applied to transactive
load control by analyzing the fairness of different methodologies [8], studying potential
cheating behaviors [9], proposing alternatives to avoid untruthfulness of consumers [10],
and analyzing other costs models [11].

At the same time, other works have focused on implementation aspects, for example,
by developing a game-theoretic software framework to simulate demand response of
electric vehicles and evaluate real-world use cases [12], by proposing new coordination
algorithms that require less communication among participants and consider communi-
cation losses [13], by analyzing the stability of the Nash Equilibria when non-quadratic
payoffs are designed [14], by introducing a market mechanism able to deal with a large
population of devices [15], and by considering the role of utilities/aggregators [16–18].
These contributions kept using relatively simple models to describe controllable loads,
particularly using continuous variables to describe the scheduling problem.

Recently, new forms of load have been introduced as resources of TC in the context of
non-cooperative games. For example, the authors of [19] added electric vehicles (EV) to the
continuous non-cooperative game model while addressing the uncertainty related to the
number of EVs in a system. On a separate path, the authors of [20] replicated the study of
reference [7] in a more realistic manner, including a simplified form of heating, ventilation,
and air conditioning (HVAC) systems modeled as continuous loads but without explicitly
representing their operation constraints. A better representation of consumers’ discomfort
associated with HVAC loads was added as part of the cost function in reference [21]
together with additional energy supply constraints.

None of the studies referred above explicitly modeled thermostatically controlled
loads (TCLs), particularly with respect to power/temperature comfort characteristics.
The lack of attention to TCLs in the context of non-cooperative games is a significant gap.
This is because these loads are a main source of flexibility in the residential sector [22]
and are widely explored in other forms of control (for example, centralized optimization,
time-varying incentives, and dynamic pricing schemes [23–29]) and are present in other
TC models (for instance, auction theory and game theoretic models that apply other
solving methods such as the Nikaido–Isoda function or mean-field approaches, multi-agent
simulation, and fast control strategies) [30–35]. Controlling TCLs raise new challenges for
the game models because they imply representing consumers’ comfort preferences and
their operation constraints. The characteristics of thermal control have not been explored
in the literature of TC with non-cooperative games discussed in the last paragraphs, which
assumes simple operation models for the controllable loads. Thus, understanding the
practical implications of TCLs aspects is key to allow extending transactive energy control
to these loads.

Moreover, the aforementioned literature on non-cooperative games relies on the as-
sumption that control is continuous. As demonstrated by the authors of [36], modeling the
control with continuous variables allows some important guarantees in terms of unique-
ness/optimality of the Nash Equilibria (NE) when applying game theory to these type
of problems. However, thermostatically controlled loads, such as many other residential
appliances, often have an on/off control activated by a thermostat, which, realistically, im-
plies an integer (binary) representation. This means that, in practical terms, the equilibrium
guarantees that a continuous space might not fully apply to the TC in the residential sector,
particularly in situations where the number of consumers is small and the controllable
resources are highly discrete. Even though a few studies have considered this discrete
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nature of residential control, e.g., in the context of potential games [37] and generalized
ordinal potential games [38], introducing more complex types of loads such as TCLs
remains unexplored.

In summary, transactive control offers important decentralized characteristics that
are suitable to residential demand side management. Current technological solutions
developed around non-cooperative game theory have shown promising results, but they
were unable to properly include TCLs, which is the largest source of flexibility among
domestic loads. Moreover, two aspects of TCLs control are not fully addressed by the
current theory of non-cooperative games: (1) the operation model of thermal loads, which
includes temperature constraints, and (2) the on/off nature of the decisions, which produces
the problematic integer and changes equilibria conditions. Therefore, it is important to
understand the implications of these theory gaps in the real-world implementation of TC
in the residential sector.

To address these issues, this paper advances the state of the art of day-ahead load
scheduling of residential consumers by providing a game-theoretic framework in order to
properly include domestic on/off TCLs in transactive control based on non-cooperative
games. The specific contributions are the following:

1. We formulate a game with binary variables representing the on/off control of TCLs
and explicitly model the consumers’ comfort constraints;

2. We discuss the theoretical foundations of this integer TCLs game, and we show that
local or global optimal equilibria can be reached;

3. We generalize the paper’s results to two types of cost functions often applied to
energy communities: quadratic and peak pricing.

All the aforementioned contributions are analyzed theoretically and validated through
simulations with real data. We create a realistic case study using information gathered
from an LV network in the south of Spain with 201 consumers and evaluate the impacts of
the TCLs load model and its integer characteristic in this context.

The rest of this paper is organized as follows. In Section 2, we present the system
model, including the new framework to incorporate integer thermal loads into the set of
controllable appliances and the community cost functions analyzed. We then present the
proposed game in Section 3, including the discussion about the integer nature of the loads
and the applicability to multiple total cost functions. Finally, we present simulation results
in Section 4, and we conclude the work in Section 5.

2. System Model
2.1. System Description

We consider a smart residential community of consumers connected to the same
substation with an aggregation platform [39]. Smart residential communities [40] are
an organization model in which consumers can coordinate their energy utilization and
manage their distributed resources in a manner to reduce their electricity bills and costs [41],
increase their revenues [42], and use their assets more efficiently [43]. This community
architecture is well aligned with the transactive control concept [42], enabling consumers
to be more proactive and autonomous [44]. The non-cooperative game proposed in this
paper can adequately model the interactions among consumers in an energy community.

Our smart community model is shown in Figure 1. We assume that consumers have
flexibility from thermostatically controlled loads and are willing to manage/schedule them
in a TC approach in order to reduce their bills. Moreover, participation on the demand-side
management program is optional. For those interested in joining, their goal is to mini-
mize their payments individually, but the proposed non-cooperative model is community
oriented. For that reason, the aim of the proposed load scheduling game is to coordinate
the consumers in order to minimize the community’s total cost while respecting their
preferences and their decision autonomy. Consumers’ appliances are controlled locally by
their energy consumption controller (ECC), which is part of a home energy management
system (HEMS). The HEMSs from different consumers communicate with each other by
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exchanging only aggregated load information with the neighbors’ HEMSs and cost parame-
ters/billing mechanism with the aggregation platform. Notice that individual consumption
information is not directly shared among the participants, preserving consumers’ privacy.
Consumers’ management systems can be deployed inside their smart meters (or as an
additional equipment that communicates with the energy meter), which are connected to
the power line and to a local area network (LAN), for information exchange [45]. Moreover,
the aggregation platform buys energy for the community in the energy markets (e.g., future
contracts and day-ahead auctions) and passes along the values to consumers in the form
of a total cost function. This function is defined by the aggregation platform in order to
drive consumers’ demand to meet the established contracts/bids in the markets. Since
this platform is no longer responsible for directly coordinating and controlling the user’s
devices, an indirect control [46] is performed, and consumers take decisions locally.

Figure 1. System model considered in this study. Each consumer has TCLs controlled locally by
his/her ECC, which is part of a HEMS that communicates with the other HEMSs and with the
aggregation platform.

It is important to notice that the market participation of the energy community (aggre-
gation platform) is out of the scope of this work: the contributions here are related to the
scheduling process of TCLs within the community given a total cost function, especially to
the solution properties when non-cooperative games are applied.

To model TCLs in this paper, we use physically based load models (PBLM). We
consider the power temperature characteristics presented in reference [26] and assume an
on/off control of these devices.

2.2. Load Modeling

In this section, we present the general framework that includes domestic on/off ther-
mostatically controlled loads (TCLs) in transactive control based on non-cooperative games.
Without the loss of generality, we assume that consumers in the community have one TCL
to be scheduled the day ahead with the objective of reducing the electricity costs. This
assumption can be easily loosened by including an extra index on all variables and parame-
ters. Moreover, we also assume that the remaining load is uncontrollable and deterministic:
Consumption is forecasted and summed in one inflexible load curve for each consumer
(wn). The electrical consumption of TCLs to be scheduled is subjected to consumers’ prefer-
ences, which are related to minimum and maximum acceptable temperatures—e.g., indoor
temperature for air-conditioners (ACs) and space heater and water temperature for water
heaters—and they are described as follows:

θn,t ě θmin
n,t @n P N @t P T , (1)
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θn,t ď θmax
n,t @n P N @t P T , (2)

where θn,t is the indoor temperature, θmin
n,t and θmax

n,t are consumers’ preferences for the
temperature, N is the set of consumers in the energy community, and T is the set of time
slots in the planning horizon. The authors of [26] presented a TCL operation model in
which the temperature is described by a linear function of the appliance’s power demand
and performance as well as other variables, such as ambient temperature, time of use,
and consumer habits. Therefore, the TCLs temperature in a time slot t is described as
follows:

θn,t “ f pxn,t, θn,t´1, ∆q, (3)

where xn,t is the on/off decision variable for the TCL, θn,t´1 is the temperature in time slot
t´ 1, and ∆ includes other parameters (e.g., TCLs performance and power consumption
and inside/outside temperature, among others). For instance, we detail the operation
model of air conditioners (ACs) in Equation (4). For all n P N and for all t P T , the internal
temperature θn,t evolves according to the following:

θn,t “ f pxn,t, θn,t´1, THn, Rn, ηn, En, θet
t , δq “ θn,t´1 ´

δ

THnRn

`

θn,t´1 ´ θet
t ` ηnRnEnxn,t

˘

, (4)

where δ is the time slot size (in hours), THn is the AC thermal capacity, Rn its thermal
resistance, En its power rate, ηn its performance, and θet

t is the external temperature.
The variables xn,t are binary, representing if the TCL of consumer n is on/off during time
slot t.

Consumer n’s total load in a specific time slot t is calculated as the sum of his/her
base load wn,t and controllable load Enxn,t. The last one is the power consumption of the
TCL (En) times the on/off decision variable (xn,t). Both base and controllable loads are
defined in terms of power and need to be multiplied by the size of the time slot δ (in hours)
in order to have energy consumption. The following equation for each consumer n P N
defines consumers’ day-ahead energy scheduling vectors (ln).

ln,t “ δpwn,t ` Enxn,tq. (5)

In summary, we can define a feasible energy consumption scheduling set Sn for each
user n, which includes all possible scheduling vectors respecting their preferences.

Sn “
 

ln “ rln,1, ln,2, . . . , ln,Ts P RT :

Equations (1), (2), (3), (5),

xn,t “ t0, 1u @t P T u.

(6)

We can define the energy consumption vector of the group of participants as
Lt “

ř

nPN ln,t @t P T .

2.3. Community Costs

In this paper, the consumer’s load (controllable and uncontrollable) is charged accord-
ing to a total cost function. This function is defined by the aggregation platform and is
applied to the community as a whole in order to enforce load control. The game model then
drives the scheduling process and defines how this cost is divided among consumers. Two
total cost functions are studied in order to demonstrate the possibility of implementing
non-cooperative games in different market contexts and to analyze how those functions
impact results.

2.3.1. Quadratic Cost Function

First, we consider the common quadratic cost function applied in most part of the
non-cooperative models for residential load scheduling in the literature [7–11,13,20,37].
In addition to being extensively used in the literature of transactive control, it is strictly
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convex and has a unique global minimum. The total community cost in each scheduling
time slot t P T is defined by the following.

CQ
t pLtq “ atpLtq

2 ` btLt ` ct. (7)

Thus, the total community cost of the day-ahead operations planning is the sum of
the quadratic total cost in each time slot—defined in Equation (7)—in all time slots of the
planning horizon:

CQpLq “
ÿ

tPT
CQ

t pLtq. (8)

where at ą 0, bt ě 0, and ct ě 0 are constants and can be time varying—e.g., have
different values for different time slots of the day to represent better the power system
conditions. In practice, Equation (8) can represent real energy costs associated with thermal
generation or power losses as well as specific tariffs contracted with aggregators or retailers.
For example, the aggregation platform can contract a two-step tariff with the retailer or
the distribution company for the community, which can be approximated by a quadratic
function for the scheduling process.

The solution to the problem described above that minimizes the total system cost
for a group of consumers N can be calculated as the following mixed-integer quadratic
optimization model (MIQP), with the decision variables constrained to the scheduling set
defined in Equation (6).

CQ˚
N “ min

lnPSn
nPN

CQpLq (9)

2.3.2. Peak Pricing Function

In order to study a scenario with high potential for demand management, we also
consider a peak pricing model in which the overall energy costs are composed by an
energy price and a demand charge. Although the quadratic cost function aforementioned is
strictly convex and easy to optimize, a volumetric rate (applied to the energy consumption)
together with a peak demand charge (applied to the peak load of the billing period) is a
more realistic scenario for a residential energy community [47,48]. For instance, the aggre-
gation platform can contract a peak reduction with the retail market for the community
and use this total cost function to drive consumers to jointly reduce the community’s power
demand. Assuming the volumetric energy component as variant in time, e.g., a time-of-use
(TOU) tariff, the total cost of the community can be written by the following:

CPpLq “
ÿ

tPT
dtLt ` e max

tPT

Lt

δ
(10)

where dt ą 0 @t P T are the TOU tariffs for the energy consumption, and e ą 0 is the peak
demand charge for the community. It is important to note that this function is convex as it
results from the sum of two convex functions [49]. The solution that minimizes the total
system cost for the community composed by a group of consumers N can be calculated as
the following mixed-integer linear program (MILP) in which αt are auxiliary variables for
computing the peak load.

CP˚
N “ min

ř

tPT dtLt ` eαt

αt ě
Lt
δ @t P T

Lt “
ř

nPN ln,t @t P T

ln P Sn @n P N

(11)
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3. Thermal Loads Scheduling as a Game

In this section, we present a non-cooperative game designed to coordinate the ther-
mostatically controlled loads (TCLs) when the cost functions described above are applied
to the community. The preferences and market parameters follow the definitions in the
previous sections. We discuss the assumptions of this model when applied to TCLs, the ex-
istence of equilibrium points when integer loads are present, the model advantages, its
general applicability, and the market and price formation. We also present the algorithm
used to solve the game together with an analysis of its computational complexity and
communication overhead.

The definition of the proposed non-cooperative TCLs scheduling game is given by a
tuple Γ “ xN , pSnqnPN , tununPN y in which the following is the case:

N “ t1, 2, . . . , Nu is the set of consumers living in the community and participating in the
scheduling game (i.e., players);

Sn “ tlnunPN denotes the action space for consumer n P N . This set is composed by
feasible scheduling vectors, ln, that respect users’ comfort constraints defined in
Equation (6);

un : S ÞÑ R is the utility function user n P N receives. It is defined as the negative of
consumers’ bill, which is a share of the community’s total cost (either quadratic or
peak pricing). The utility function is shown in Equation (12), in which Cpln, l´nq can
be Equation (8) or (10). The share fn depends on the billing mechanism, and we use
a version that bills each consumer according to his/her energy consumption during
the scheduling horizon—see Equation (13). This is a popular billing model in the
literature of non-cooperative scheduling games [7–11,19,36,37], and we analyze its
advantages and limitations when applied to the game with TCLs.

unpln, l´nq “ ´ fnCpln, l´nq (12)

fn “

ř

tPT ln,t
ř

tPT Lt
(13)

In this billing setting, if two participants n and m have total load
ř

tPT ln,t “ β
ř

tPT lm,t
after the scheduling game is solved, then consumer n will pay β times consumer m’s bill.
Moreover, the sum of all consumers’ payments will be equal to the community’s total cost:
note that

ř

nPN
ř

tPT ln,t “
ř

tPT Lt.

3.1. Model Assumptions

In this paper, we assume that TCLs have a fixed total energy to be scheduled in the
billing period in line with the load models reported in the literature [7–11,13,19–21,36–38].
This assumption makes the factor fn constant for each n P N and consumers seek to
minimize the community’s total cost in order to increase their own utility. Therefore,
consumers must coordinate their controllable load schedules to optimize the community’s
consumption; otherwise, they will pay more.

Moreover, we consider that the aggregation platform contracts the community’s load
in the market and chooses one of the total cost functions defined in Section 2.3 to drive
the game. This buying process is out of the scope of this paper, and we assume that the
platform’s benefits/costs are included in the parameters of the chosen function. Moreover,
we also consider that the risks of imbalances between the result of the day-ahead scheduling
game and the real consumption of the community are taken by the aggregation platform
(e.g., it measures the probability of consumers’ deviating from the equilibrium in real time
and add the imbalances’ cost to the parameters of the total cost functions).

We also assume that the consumers’ uncontrollable load is forecasted by their energy
management systems using past consumption data and a forecasting method. Thus, this
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load is considered deterministic, and its prediction method and errors (including the
difference between the forecasted and real consumption) are out of the scope of this paper.

3.2. Equilibrium Points of the Integer Game

In games, the players’ goal is to choose and play optimal strategies, i.e., those resulting
in larger utilities. However, the best strategy for a player depends on the choices of the
other players. Therefore, one solution of a game is a Nash Equilibrium (NE): a strategy
profile from which no player has incentive to deviate. In our setting, a strategy profile
pl˚n , l˚´nq is an NE if, for all consumers n P N , the following holds.

unpl˚n , l˚´nq ě unpln, l˚´nq @ln P Sn (14)

The billing studied in this paper guarantees the existence of the Nash Equilibrium
for the game with integer thermal loads. With the fixed factor fn multiplying the total
community’s cost, consumers seek to minimize this function. If the total cost function
has a minimum, it will be the Nash Equilibrium of the game [50]: no consumer would be
better off by unilaterally moving from this solution if the others are playing it as this would
increase the total cost and consumers’ bills as a consequence. This can be seen by replacing
the utility Equation (12) in the NE Equation (14). Due to the integer nature of the variables,
the NE can be a local or global minimum [50]. Both total cost functions studied in this
paper are convex, meaning they have minimum points that can be local or global optima of
the community’s scheduling problem and equilibria points as a consequence. In the results
section, we show that solutions of the game are optimum or close to optimum values.

3.3. Advantages of the Game Model

The game model is designed to divide the total cost of the community according to
a fixed share, which brings a coordination aspect to the game: All participants intend
to minimize this total cost function, and minimum values for the entire community are
equilibria. Here, it is important to note that, despite the name, non-cooperative games can
be intentionally created to achieve cooperation goals [51], as shown by the design of our
utility function.

Moreover, any total cost function with a minimum point (local or global) can be
used in this setting, e.g., convex functions as the quadratic and peak pricing studied
here. The existence of a Nash Equilibrium is guaranteed for any community’s total cost
function with a minimum value, allowing the implementation of this model in multiple
market contexts.

Another interesting advantage is that cheating behavior is discouraged in this model.
As consumers’ bills equal a fixed share times the total cost function, any behavior that
results in a non-equilibrium solution and does not minimize the cost will also harm the
cheater participant.

Finally, in this non-cooperative game, the interactions between consumers to reduce
their individual energy bills can be mimicked by the iterative and decentralized learning
algorithm described in Section 3.5. The idea is to reach an equilibrium point, the Nash
Equilibrium (NE) [52], which is a stable solution. This also means that the autonomy of
consumers is respected during the process because they decide their schedules individually
and locally, according to their constraints and preferences.

3.4. On Market and Price Formation

The smart energy communities studied in this paper are inside energy markets. In this
section, we provide a discussion on how the interactions between consumers, energy
community, aggregation platform, and the current energy markets might happen.

Energy communities are an important aspect to the clean energy transition. By moving
citizens to the fore, public acceptance of renewable energy projects is increased, which
makes private investments on clean energy more attractive. Moreover, they can provide
direct benefits to citizens such as cheaper electricity bills and higher energy efficiency.
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Finally, this organization model can help provide flexibility to electricity markets through,
for instance, storage systems and demand response.

A new regulation has been implemented to provide a legal framework for energy
communities’ constitution and market participation. For instance, the European Parliament
and Council passed directive 944 in 2019 authorizing citizens to organize themselves in
energy communities and participate in the energy markets [53]. In this context, the con-
sumers considered in our scope would be able to trade in the energy markets through their
energy communities and aggregation platforms.

More specifically, the definitions of the total cost function and its parameters (e.g., at,
bt, and ct for the quadratic, dt, and e for the peak pricing) are a result of the trading process
between the aggregation platform and the energy markets when buying the community’s
load. The community participants are, therefore, price-takers in the definition process
of these parameters because they cannot influence wholesale/retail markets prices, even
when joining forces as a community.

On the other hand, consumers inside the community have the power to influence the
final total cost: By choosing their strategies (appliances schedules), the value to be split
between them is optimized, as well as their utilities. This inside-community trading process
results in consumers who know the impact of their choices in the game results. Therefore,
within the boundaries of their community and given a total cost function, consumers
are price makers. One should note that the focus of this paper is on the negotiation
process among consumers and on this price-making characteristic. This inside-community
negotiation process is better described by the algorithm used to solve the game, which is
presented in the next section—see Figure 2.

3.5. Best Response Algorithm

To find a solution to the proposed game, we use the Best Response Dynamics (BRD),
which is a learning method applied to solve games; in other words, it finds equilibrium
points. It is a sequential decision model in which consumers take turn and best respond to
opponents’ last strategies (TCLs schedules in our framework). We use a version in which
consumers communicate the total group’s load instead of their individual profiles, which
results in less message exchanges and reduces the privacy issue [10].

The algorithm works as follows. Assuming that each consumer’s home energy man-
agement system keeps track of opponents’ total consumption vector (Lk

´n) and the total
load of all players is initialized with zeros L0 “ r0s, each iteration of the gameplay consists
of three steps:

1. Consumers receive the total load vector and calculate the load of opponents Lk
´n

using their previous best strategies;
2. They update their strategies lk`1

n as a response to Lk
´n by solving the local MIQP (15)

with Cpqn, Lk
´nq defined by (8), if the quadratic total cost function is applied, or the

local MILP (15) with Cpqn, Lk
´nq defined by (10), if the peak pricing total cost function

is applied;

lk`1
n “ BRnpLk

´nq “ argmax
qnPSn

unpqn, Lk
´nq “ argmin

qnPSn

Cpqn, Lk
´nq (15)

3. Consumers add their local strategy lk`1
n to the opponents’ total consumption vector

Lk
´n and send this new aggregated consumption profile Lk`1 to the next player.

As BRD converges to a Nash Equilibrium for games in which all consumers have the
same concave utility function (the negative of the total cost) [50], the process continues until
an equilibrium is reached and consumers can no longer reduce their bills when changing
their schedules.
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Figure 2. Flowchart of the scheduling process using the non-cooperative game model and the Best
Response Dynamics (BRD).

As shown in Figure 2, this algorithm is decentralized and each consumer has the
autonomy to schedule locally his/her TCLs. The aggregation platform is responsible for
defining the cost function parameters. However, consumers’ decisions are taken locally
by their HEMSs through the BRD. Moreover, because of the design of the utility function,
i.e., the billing proportional to each participant’s share, the consumers aim at minimizing
the global objective (the total cost). Finally, their shares and bills are calculated by the
aggregation platform after receiving consumers’ loads.

One should notice that community participants communicate the group’s total load.
This design guarantees users’ privacy as they do not share individual preferences, strategies,
or load profiles: their personal consumption is integrated in the total load vector and no
participant knows the opponents’ individual values. This aspect is better illustrated in
Figure 3 in which L is the total load vector communicated between consumers, and ln
is the local consumption vector, which is known by participant n only. Other methods
to enhance data privacy and secrecy can be added to the algorithm, e.g., multi-party
computation protocol (MPC) [10] or Institute of Electrical and Electronics Engineers (IEEE)
2030.5 standard [54].
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Figure 3. Solution algorithm to solve the proposed game model: consumers communicate the total
load of the community, which guarantees information privacy.

3.6. Computational Complexity and Communication Overhead

In this section, the computational complexity and communication overhead of the Best-
Response Algorithm is analyzed in comparison to the centralized model. An homogeneous
scenario is considered: All consumers of the community have one air conditioner with
operation described by Equation (4) and same parameters (i.e., performance, thermal
capacity, thermal resistance, and power rate), as well as same preferences θmin

n,t and θmax
n,t .

Moreover, a constant outside temperature θet
t during the day-ahead horizon is examined,

which is also equal for all community participants. If θmin
n,t (θmax

n,t ) is less than (greater than)
or equal to the minimum (maximum) temperature the thermal load can reach, the space
of solutions of the binary problem of one consumer is 2

24
δ . In the worst case, one iteration

of the Best Response Algorithm would have to explore this entire space to find a solution.
Moreover, this must be performed for each consumer n P N sequentially. Finally, the BRD
will take r rounds to converge, resulting in a worst-case complexity of Opr ˆ N ˆ 2

24
δ q.

For the centralized model, all consumers’ problems are solved simultaneously, and the
computation complexity is, thus, Op2N 24

δ q.
When realistic preferences on the minimum and maximum temperatures are consid-

ered, the complexity decreases as the space of feasible solutions also decreases according to
Equation (4). However, this worst-case analysis provides insight on what influences the
BRD resolution time: the size of the time slots, the consumers’ preferences, and the number
of consumers. One should notice that the number of rounds of the BRD is proportional to
the number of consumers in the game, but it is also impacted by other factors such as the
path to reach the minimum total cost (which is related to algorithm’s playing order) and the
complexity of one iteration given the opponents’ consumption vector.

Finally, each iteration of the BRD means one exchange of messages; thus, the communi-
cation overhead is equal to rˆ N. The analytical conclusions on computational complexity
and communication overhead are summarized in Table 1.

Table 1. Computational complexity and communication overhead of the best response algorithm if
compared to the centralized model (worst-case analysis).

Computational Complexity Communication Overhead

Best Response Dynamics rˆ N ˆ 2
24
δ rˆ N

Centralized Model 2N 24
δ -

3.7. General Applicability of the Model

The game model can be extended to other appliances. For instance, different types of
thermostatically controlled loads (TCLs) have similar behavior to the ACs presented—as
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shown in reference [26]—and can be modeled using Equations (1)–(3). Moreover, shiftable
appliances, such as washing machines, also have an on/off control, resulting in the same
conclusions on equilibrium points presented in Section 3.2. Even devices that can be
modeled as continuous variables (e.g., an electric vehicle) could be added to the model
without changing its properties. This can be explained by the fact that consumers try
to optimize the total cost function in order to minimize their own bills. Therefore, all
conclusions related to the existence of Nash Equilibria, convergence of BRD, application
of total cost functions with minimum values, and nonexistence of cheating behavior are
applicable and do not depend on the appliances controlled and their constraints.

Moreover, uncertainties could be added to the model. For instance, uncertainty on
participants’ final consumption, especially the non-controllable loads, can be a risk to the
total cost consumers or the aggregation platform will pay depending on the demand-side
management contracts they agree upon. In Section 3.1, those uncertainties were assumed
deterministic, and the risks are taken by the aggregation platform, but they can be modeled
as stochastic variables in the scope of our proposition without changing the nature and
properties of the non-cooperative game. One could add an expectation over the base load
probability function in Equation (12). It is clear that simulation results could be different if
uncertainties are considered, but consumers will continue seeking to minimize the total
community cost in the uncertain framework, the game will have a Nash Equilibrium for
any convex function considered, and the best response algorithm will converge.

4. Results
4.1. Case Study

To simulate the proposed model in a realistic context, verify its applicability, and ana-
lyze its advantages and limitations, we use real data collected from a real community of
consumers in the South of Spain for which its network is shown in Figure 4. Hourly active
power consumption from June 2019 is collected and averaged to build a daily consumption
curve for each of the 201 consumers of the community.

Figure 4. Spanish LV network considered in this paper: each bus is a consumer.

The thermostatically controlled loads (TCLs) considered are air conditioners (ACs),
with their operation model described in Equation (4). Their physical parameters (power,
resistance, capacity, etc.) are calculated based on random values according to the data in
Reference [26], while each household occupation is estimated by considering the real data.
Only consumers with high enough consumption are assumed to have an AC installed.
As a result, 70 consumers out of the 201 have ACs. Afterwards, we simulated the AC load
with physical parameters using Equation (4) and calculated consumers’ inflexible loads by
subtracting the AC load from the data collected. We kept the other 131 consumers without
AC in the TCLs management program because they are part of the community, their
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inflexible load impacts the community’s consumption/peak (i.e., the total cost), and we
can study how the TC approach affects consumers without flexibility. This initial scenario
with both type of consumers is called base case (BAS) and is shown in Figure 5.

Figure 5. Total energy consumption of the community with ACs in the base scenario (without
energy management).

The parameters of the cost and utility functions are generated following two different
methodologies depending on the type of function: quadratic or peak pricing. For the first,
we use a three-step piecewise function to represent the cost function. The parameters are
defined based on the following tiers prices: 22, 33, and 45 ¢/kWh. The thresholds between
tiers are adopted as 60% and 75% of the group’s peak load on the base scenario. We adjust
a quadratic curve to this piecewise function, resulting in parameters at “ 0.081 ¢{kWh2,
bt “ 12.605 ¢{kWh, and ct “ 1.701 ${kWh for all t P T . For the peak pricing function,
the chosen parameters are as follows: 1 $/kW for the peak charge and a two-level TOU
tariff for the volumetric rate, with values equal to 0.12 $/kWh between 0 h and 17 h, and
0.20 $/kWh between 17 h and 24 h. Although the process of defining those cost parameters
by the aggregation platform is out of the scope of this work, some of the chosen values
are based on PG&E tariffs for 2019 [55]. The final ranges of all parameters (generated or
calculated) are presented in Table 2.

Table 2. System and market parameters generated or calculated to create the case study.

System Parameters Market Parameters

N 201 ηn [3.0, 3.2] at (¢{kWh2) 0.081

T 96 θmin
n,t (˝C) [18, 22] bt (¢{kWh) 12.605

δ 0.25 (15 min) θmax
n,t (˝C) [20, 26] ct (${kWh) 1.701

Rn (˝C/kW) [5.0, 8.0] θn,0 (˝C) [θmin
n,t , θmax

n,t ]
dt ($/kWh)

0.12 [0–17]

En (kW) [1.5, 3.5] θet
t (˝C) 35 0.20 [17–0]

Cn (kWh/˝C) [0.5, 4.2] e ($/kW) 1.00

4.2. Solutions of the Non-Cooperative Game with TCL

We apply the Best Response Dynamics (BRD) to solve the scheduling game designed
in Section 3, with the data generated according to Section 4.1. The BRD is run twice: one
with the quadratic total cost function and once with the peak pricing function. Both results
are the Nash Equilibria of the proposed transactive control approach. We also calculate
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the optimal solutions with respect to problems (9) (centralized with quadratic total cost)
and (11) (centralized with peak pricing function) in order to obtain a quality measurement
of the NEs attained. Moreover, by comparing the results of the games with the centralized
solutions, we also analyze their ability to flatten the community’s load curve and how
different total cost functions impact the outcomes.

The results are shown in Table 3, including the base scenario total costs calculated
with the different functions. The solutions of the proposed TC approach with different
total cost functions are very close to the centralized ones in terms of community’s total cost.
In the case of the quadratic total cost function, the game solution has same value as the
centralized counterpart. For the peak pricing, the game solution is slightly more expensive
($4.65), which is a value that does not affect much consumers’ payments given that they
are 201. Therefore, the prices-of-anarchy (PoAs) of the game solutions, which measures the
amount of damage suffered by consumers due to the absence of a central authority [56], are
1 and 1.008, respectively. Those close to optimal results are explained by two factors: the
utility function is designed to make minimizing the community’s total cost the consumers’
goal, and the integer nature of the variables can lresult in local optima. Even though the
solution can be sub-optimal, in the TC settings, consumers benefit from a decentralized
optimization process in which they have local autonomy to define their TCLs schedule,
an impossible feature for centralized approaches.

Table 3. Solution of each scenario: community’s total cost and peak-to-average ratio of the group’s
final load curve.

Scenario
Quadratic Function Peak Pricing

Total Cost ($) PAR Total Cost ($) PAR

Base 618.32 1.492 625.20 1.492

Centralized 617.42 1.285 580.84 1.141

Transactive Control 617.42 1.285 585.49 1.188

In addition to optimizing the community’s total cost, the TC approach with different
total cost functions also optimizes the group’s peak-to-average ratio (PAR). This parameter
measures how flat the resulting load curve is [57]. In Figure 6, which depicts the load
dispatch of the three scenarios for both total cost functions, it can be seen that the load curve
is smoothed and/or flattened with TC approaches almost as much as in the centralized
cases. In the peak pricing scenario (right plot in the figure), consumers are motivated to
reduce the group’s peak to reduce their own bills due to the peak charge in the community’s
cost function (10), with consumers’ utility proportional to this total cost. This explains why
the PAR values are smaller for the peak pricing function than for the quadratic function in
Table 3. Therefore, the quadratic total cost results in smoothing the load curve while the
peak pricing intends to reduce the peak and flatten the load curve.

Moreover, in the quadratic total cost case (left plot in Figure 6), solutions of the TC
and centralized approaches overlap, demonstrating that the decentralized game is able to
reach optimal solutions, especially when the total cost function is strictly convex.
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Figure 6. Final load of the community in each scenario: centralized optimization (blue), game solved with BRD (orange),
and base scenario (green).

4.3. Convergence Process of the Algorithm

The orange lines in Figure 6 represent the Nash Equilibria: solutions attained with
the proposed TC approach with different total cost functions. In Figure 7, we show the
convergence path taken by the BRD to reach those solutions. The plots depict change in
consumption per iteration of all consumers with AC. In both plots, the algorithm’s first
round show all 70 consumers modifying their schedules, as this round is designed to
construct an optimized initial solution: the consumers start without load and respond best
to the previous players at their turn, and the total community load is known after the end
of this first round when all consumers had played once (including consumers without
AC who do not have flexibility but add their inflexible load schedule to the game)—see
flowchart Figure 2. Moreover, the number of consumers changing their schedules in each
round reduces throughout the iterations until no modifications exist and the NE is reached.
This happens after 12 rounds in the case of the quadratic total cost function (left plot) and
10 rounds for the peak pricing (right plot).

Figure 7. Convergence of the Best Response Dynamics.

4.4. Scalability and Solution Times

In this section, we provide results on scalability and time required to reach solutions.
In order to analyze the impact of the factors discussed in Section 3.6 in solution time,
multiple simulations are performed in a Windows 10 computer with AMD Ryzen 5 3500U
processor running at 2100 MHz and using 20 GB of RAM. The algorithm is implemented in
Python 3.7 and uses Gurobi 9.1 solver.

Four aspects are analyzed: the number of consumers in the community, consumers’
preferences, size of the time slot, and number of rounds to reach the equilibria. For the
first, we create five sub-cases with different numbers of consumers N = {5, 10, 50, 100, 150},
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with N = 5 as a subset of N = 10, which is a subset of N = 50, and so on. The second is
an aspect related to the complexity of each consumer’s local problem, and we analyze
it by constructing six sub-cases with 10 consumers: the first three are chosen by picking
them randomly in terms of one for those with the largest total energy consumption; one
for those with the largest AC load as a percentage of their total energy use; and one for
those with the smallest total energy consumption. For the third, we create two cases by
modifying the size of the time slot to δ “ 0.5 (30 min) and δ “ 1.0 (1 h), thus, adjusting
all system/market parameters. The fourth aspect is analyzed within the results of the
aforementioned scenarios. One should note that the sub-cases created are variations or
parts of the data presented in Section 4.1 in order to have comparable results.

Tables 4–6 show the time to reach equilibria. More consumers means more time to
solve the algorithm, but this is not the only factor, as can be seen in Table 4 for cases
N = 100 with quadratic total cost and N = 50 with peak pricing. The complexity of each
consumer’s problem also influences resolution time. This complexity can be described by,
for instance, the number of appliances each participant needs to schedule (which is one in
our test case) or by his/her constraints/preferences. As shown in Table 5, the instance in
which consumers have the highest load takes more time to solve for both total cost function.
Finally, the discretization of the day-ahead in smaller time slots (e.g., 15 min or 30 min)
results in more variables and, thus, in more time to solve the problem—see Table 6.

Table 4. BRD solution times when changing the number of consumers.

Total Cost Function Aspect N = 5 N = 10 N = 50 N = 100 N = 150 N = 201

Quadratic
Time (s) 211.60 254.53 465.23 1426.71 592.06 10,295.66

Rounds 3 3 8 12 8 12

Peak Pricing
Time (s) 251.47 317.16 2603.32 1778.08 1877.39 2299.58

Rounds 4 4 10 9 9 10

Table 5. BRD solution times when changing the complexity of each consumers’ problem (all instances have 10 consumers).

Total Cost Function Aspect Random 01 Random 02 Random 03 Highest Load Highest AC Smallest Load

Quadratic
Time (s) 254.53 600.14 1137.92 1536.55 739.21 430.03

Rounds 3 4 4 4 6 4

Peak Pricing
Time (s) 317.16 687.64 378.49 5,616.34 871.75 308.71

Rounds 4 5 5 10 4 6

Table 6. BRD solution times when changing the size of the time slot (all cases with N = 201).

Total Cost Function Aspect δ “ 1.00 δ “ 0.50 δ “ 0.25

Quadratic
Time (s) 135.03 1632.21 10,295.66

Rounds 4 6 12

Peak Pricing
Time (s) 64.88 1042.80 2229.58

Rounds 2 4 10

4.5. Consumers’ Comfort and Savings

As we are discussing the impact of adding TCLs to scheduling games, we show one
consumer’s solution in Figure 8 for the scenarios without and with energy management.
The consumer’s load without energy management is shown in the upper left plot, with en-
ergy management and a quadratic total cost function in the upper right, and with energy
management and a peak pricing total cost in the lower plot. The plots include the inflexible
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load (yellow bars), the AC dispatch (blue bars), the temperature inside the room (theta),
and consumer’s preferences. Between time slots 0 and 27 (6 h 45) and 56 (14 h 00) and 67
(16 h 45), this consumer is not at home or does not need the internal temperature to be from
21 ˝C to 23 ˝C (his/her comfort constraints). Therefore, preferences during these time slots
are relaxed, i.e., are kept 0 ˝C and 100 ˝C.

Figure 8. Final load curve with the dispatch of one consumer’s AC. Theta, tmin, and tmax are the temperature inside the
room, the minimum, and the maximum comfort constraints, respectively.

In the base scenario, the AC is turned on as soon as the internal temperature reaches
the consumers’ comfort limit. This dispatch without management does not consider the
community’s load and total cost and only considers individual consumers’ preferences.
In the scenarios with the TC energy management, the equilibria solutions turn on the AC
when the consumers are not at home to anticipate consumption during the community’s
periods with higher demand. This flexibility is essential for the decentralized model to
minimize the total cost: optimizing the solution depends on smoothing consumers’ load
when a quadratic total cost function defines their bills and reducing the community’s load
peak and filling its valley when a peak pricing function specifies their bills.

Moreover, consumers’ comfort is respected in the decentralized solutions. The internal
temperature is kept inside the defined comfort range during the time slots when the
consumer is at home and/or wants the switched AC on. Moreover, lower temperatures are
reached in the decentralized setting: instead of being close to the upper limit as in the base
scenario, the game solutions reach temperature values closer to the lower limit. For the
consumer shown in Figure 8, the average internal temperature during those constrained
time slots (28 to 55 and 68 to 95) is 22.7 ˝C in the base scenario and is lowered to 22.2 ˝C
when the TC with a quadratic total cost function is applied and to 22.5 ˝C when the TC with
peak pricing is used. Therefore, the game is able to lower the average comfort temperatures
of air conditioners while also reducing consumers’ bills.

We also present consumers’ monthly savings provided by the TC approach when
compared to the base scenario. To calculate them, we define their energy consumption in all
scenarios to determine consumers’ billing factor fn and share the total cost of the scheduling
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among them. We compute their payoffs using Equation (12) and multiply the value by
30 days. Thus, bills in the base scenario equal f BAS

n times the quadratic or peak pricing

total cost of this scenario, and bills in the TC scenarios equal f
TCQ
n times the quadratic

total cost of the NE, or f TCPP
n times the peak pricing total cost of the NE. Then, the savings

are calculated as the difference between consumers’ utility in the scenario without energy
management (BAS) and their utility when they participate in the scheduling game. For the
quadratic total cost, consumers’ monthly savings vary from $0.00 (very small consumers)
to $1.34 (very large consumers), and the community saves around $27.08 with the TC
coordination in a month. For the peak pricing total cost, consumers’ savings vary from
$0.00 to $61.19, and the community saves around $1191.24 with the TC approach in a month.
We show the distribution of savings, for both types of consumers (with and without AC)
in Figure 9. The left plot depicts savings when the quadratic total cost function is applied
to the community, and the left one depicts when the peak pricing is used. Both plots show
savings against the total amount of energy change in consumers’ schedules if compared
to the scenario without energy management. One can observe that consumers that made
more flexibility available to reach the community’s goal had more savings, especially in
the peak pricing scenario.

Figure 9. Consumers’ monthly savings according to their “used flexibility”.

4.6. Discussion and Future Challenges

The non-cooperative game presented here is able to properly include thermostatically
controlled loads (TCLs) with an on/off control. The results show that the community total
cost is minimized with a strictly convex total cost function (quadratic) and reaches a close
to optimal solution with a convex one (peak pricing). Moreover, the community’s final
load is smoothed with the quadratic TC and flattened with the peak pricing TC. These
important conclusions can help aggregation platforms to decide whether to use one of
these cost functions.

Moreover, consumers’ comfort is respected with the TC approach: reducing the
community’s total cost does not impact consumers’ comfort, and their average internal tem-
perature is even lowered with the utilization of the transactive control model if compared
to the scenario without energy management.

Another important feature is that all consumers have savings, even those without AC,
which can be an incentive for consumers to stay in the community program regardless
of the flexibility they have to offer, e.g., some days they may not need to use their ACs.
In addition, this model is able to align consumers’ goal with the community’s objectives,
bringing natural coordination to the game. Therefore, these cooperative aspects (every
consumer reduces its own cost while minimizing the community’s total cost) can be
effective in engaging end-users.

Moreover, the studied billing mechanism has other advantages as it is easy to imple-
ment, transparent to consumers, simple to understand, and able to optimize different types
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of total cost functions. For the last, functions can be chosen depending on the aggregation
platform’s goal (e.g., reduce the peak load, smooth the load curve, and provide ancillary
services), without affecting the NE existence or the algorithm’s convergence, as long as the
selected function has a minimum.

A future challenge of this methodology is the problem of how to consider the energy
“payback” nature of TCLs [58,59]. Shifting TCLs in time while maintaining comfort stan-
dards may imply overall energy increase in relation to the baseline consumption depending
on consumers’ preferences and the total cost function. In the study case, the sum of con-
sumers’ total load in the base scenario is 2991.06 kWh. After the Best Response Dynamics
to solve the quadratic game, this value is equal to the base one. In the case of the peak
pricing, there is an increase of 0.94%, resulting in a value of 3019.31 kWh. The additional
28.25 kWh from ACs confirms the energy variant nature of TCLs and their “payback”
characteristic, especially when the peak is highly penalized. In this case, the difference
is small, and assuming a fixed consumption to guarantee coordination and convergence
of the game is reasonable. However, it is important to further extend the analysis of this
energy “payback” characteristic and identify what can be the best scenarios (e.g., strictly
convex total cost functions) and the limitations (e.g., non convex functions with minimum
values) relative to the proposed model.

5. Conclusions

In this paper we advanced the state of the art of non-cooperative games applied
to the day-ahead load scheduling of residential consumers by adding thermostatically
controlled loads (TCLs) into the set of appliances considered in the transactive control
(TC). We proposed a game model for the residential community to schedule their flexible
TCLs—more specifically, air conditioners—with the objective of minimizing consumers
and community costs. Consumers’ comfort constraints were modeled explicitly, and their
TCL’s operation was described with binary variables in order to represent the on/off nature
of the control.

We showed the following: (1) the integer nature of the control can lead to optimal
or close to optimal solutions; (2) the billing mechanism used is able to align individual’s
goal to the community’s goal; (3) consumers’ comfort is properly modeled and respected;
and (4) different total cost functions can be used depending on the market context and the
objective of the demand management program. Moreover, the non-cooperative game was
solved in a decentralized fashion, providing consumers with the autonomy to decide their
schedules according to their preferences and interests.

To discuss the practical application of non-cooperative games to scheduling TCLs
and the aforementioned theoretical conclusions, we created a case study using real data
from 201 consumers in Spain. The results showed that the TC solution is equal to the
optimal one when a quadratic total cost function is used, and it is 0.80% worst than the
optimal total cost when a peak pricing function is applied. Moreover, the quadratic game
was able to smooth the community’s curve while the peak pricing game reduced its peak-to-
average ratio. Both games converged to a Nash Equilibrium in 10 to 12 rounds. Consumers’
comfort was respected, and the internal temperature of their homes was even reduced with
the TC approach. Finally, all consumers had savings compared to the scenario without
energy management.
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Nomenclature

n, m Indexes for consumers
t Indexes for time slots
k Indexes for game stages
N Set of consumers
T Set of time slots
Sn Set of strategies of n
xn,t Binary scheduling variable: is 1 if consumer n’s TCL is on at t and 0 otherwise
ln,t, qn,t Total consumption of n at t
Lt Community’s total load at t
CpLq Community’s total cost when its load curve is L
unpln, l´nq Utility of consumer n
δ Size of time slot (in hours)
T Last slot of time horizon
N Number of participants/consumers
wn,t Inflexible load of n at t
θn,t Internal temperature of n’s household at t
θmin

n,t Minimum accepted internal temperature of n at t
θmax

n,t Maximum accepted internal temperature of n at t
θet

t External temperature at t
THn Thermal capacity of n’s AC
Rn Thermal resistance of n’s AC
ηn Performance of n’s AC
En Power rate of n’s AC
at Quadratic cost at time slot t
bt Linear cost at time slot t
ct Fixed cost at time slot t
dt TOU tariff at time slot t
e Peak load charge
fn Energy share of consumer n
AC Air Conditioning
BAS Base Scenario
BRD Best Response Dynamics
CEN Centralized Scenario
DSO Distribution System Operator
ECC Energy Consumption Controller
EV Electric Vehicle
HEMS Home Energy Management System
HVAC Heating, Ventilation and Air Conditioning
LAN Local Area Network
MIQP Mixed-Integer Quadratic Program
MILP Mixed-Integer Linear Program
NE Nash Equilibrium
PoA Price-of-Anarchy
PP Peak Price
Q Quadratic
TCL Thermostatically Controlled Load
TC Transactive Control
TOU Time-of-Use
TSO Transmission System Operator
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