
energies

Review

Fault Diagnosis of Electric Motors Using Deep Learning
Algorithms and Its Application: A Review

Yuanyuan Yang 1, Md Muhie Menul Haque 2,3,*, Dongling Bai 4,5 and Wei Tang 2

����������
�������

Citation: Yang, Y.; Haque, M.M.M.;

Bai, D.; Tang, W. Fault Diagnosis of

Electric Motors Using Deep Learning

Algorithms and Its Application: A

Review. Energies 2021, 14, 7017.

https://doi.org/10.3390/en14217017

Academic Editor: Alberto Bellini

Received: 28 September 2021

Accepted: 20 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Science and Technology, Zhengzhou Railway Vocational and Technical College,
Zhengzhou 451460, China; yangyuanyuan@zzrvtc.edu.cn

2 School of Electrical and Control Engineering, Shaanxi University of Science and Technology,
Xi’an 710021, China; wtang@163.com

3 Department of Mechanical Engineering, Bangladesh University of Engineering and Technology,
Dhaka 1000, Bangladesh

4 School of Economics and Management, Chang’an University, Xi’an 710064, China; bdl990@chd.edu.cn
5 School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
* Correspondence: 81185@sust.edu.cn; Tel.: +86-15686068712

Abstract: Electric motors are used extensively in numerous industries, and their failure can result
not only in machine damage but also a slew of other issues, such as financial loss, injuries, etc. As a
result, there is a significant scope to use robust fault diagnosis technology. In recent years, interesting
research results on fault diagnosis for electric motors have been documented. Deep learning in
the fault detection of electric equipment has shown comparatively better results than traditional
approaches because of its more powerful and sophisticated feature extraction capabilities. This paper
covers four traditional types of deep learning models: deep belief networks (DBN), autoencoders
(AE), convolutional neural networks (CNN), and recurrent neural networks (RNN), and highlights
their use in detecting faults of electric motors. Finally, the issues and obstacles that deep learning
encounters in the fault detection mechanism as well as the prospects are discussed and summarized.

Keywords: electric motors; fault diagnosis; deep learning; deep belief network; autoencoders;
convolutional neural networks; recurrent neural network

1. Introduction

The electric induction motor is perhaps the most significant driver of today’s produc-
tion activities and everyday life, and it is extensively utilized in many sectors of production
and manufacturing industries as well as in domestic utility applications. An electric motor
is a mechanical mechanism that transforms electrical energy. Most electric motors work
by generating force in the form of torque delivered to the motor’s shaft by interacting
between the magnetic field of the motor and the electric current in a wire winding. The
failure or stoppage of this type of vital electrical machine will not only harm the equip-
ment itself but will also likely result in significant economic losses, fatalities, pollution,
and numerous other issues. Therefore, research into motor fault diagnostic technology
is extremely important.

The fault diagnostic technology can detect motor defects early in their development,
allowing for prompt overhauls, saving time and money on fault repairs, and enhancing
the economic advantages while avoiding production interruptions. Traditional fault diag-
nostic approaches need the artificial extraction of a considerable quantity of feature data,
such as time domain features, frequency domain features, and time–frequency domain
features [1–3], which adds to the fault diagnostic uncertainty and complexity. Traditional
fault diagnosis methods are unable to meet the needs of the fault diagnosis in the context of
big data due to the complex and efficient development of motors, which presents the data
reflecting the operating status of motors with the characteristics of massive, diversified,
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fast flowing speed, and low value density of “big data” [4–6]. Simultaneously, the ad-
vancement of artificial intelligence technology encourages the evolution of fault diagnosis
technology from traditional to intelligent [7]. Artificial neural networks (ANNs) were
first introduced in the 1980s. Shallow neural networks may learn features in an adaptable
manner without creating exact mathematical models [8], eliminating the uncertainty and
complexity that human involvement brings. However, traditional shallow neural networks
have drawbacks, including gradient vanishing problems, overfitting, local minima, and
the requirement for extensive prior information, all of which decrease the effectiveness of
the fault diagnosis [9].

In 2006, Hinton et al. [10] developed the concept of deep learning (DL) and demon-
strated that data characteristics generated by a deep multilayer network structure may more
accurately represent the original data, and that the approach can effectively minimize the
complexity of training deep neural networks. This has resulted in a surge in deep learning
related research in both academia and industry. In 2007, Bengio et al. [11] suggested the use
of unsupervised greedy layer-wise training to train deep neural networks so to optimize
the structure of deep networks parameters in order to improve the model generalization
ability. Bengio et al. [12] have proposed using an error backpropagation technique to better
improve the deep network structure parameters. The use of this approach increases model
performance much further.

Deep learning has rapidly progressed in the academic and industrial sectors since its
introduction. Many classic recognition tasks have witnessed considerable improvement
in recognition rates due to deep learning. The capacity of deep learning to perform
complicated recognition tasks has piqued the interest of many academics who seek to
understand more about its uses and theories [13]. As a result, deep learning theory is
widely utilized to address issues in a variety of disciplines. Simultaneously, different and
better deep learning algorithms are continually suggested and implemented. Deep learning
has just been developed in the last ten years, with advances in image [14], speech [4], and
face recognition [15], among advances in other disciplines. Deep learning-based research is
also in full swing in the field of motor defect diagnostics. Given that deep learning provides
novel concepts and methodologies for motor fault diagnosis, the literature methodically
expounds on deep learning theory and its use in motor fault diagnosis research. Thus,
this article examines and explains the basic ideas, operating principles, and modeling
methodologies of the four types of classic deep learning models, as well as the local and
international applications that have emerged in recent years.

The present research status of deep learning approaches for motor fault diagnosis
focuses on describing the concepts and training processes of deep belief networks and
self-encoding networks in the hopes of supplementing the existing literature and pro-
viding readers with fresh ideas. Although it has been observed that most of the articles
related to the application of deep learning algorithms for fault diagnosis only discuss single
approaches, there are a handful of research publications that cover all the existing deep
learning approaches and tools. This motivates us to present a comprehensive review of
the available deep learning methods and their application to the fault diagnosis of electric
motors within a single paper, thereby allowing readers to gain a better understanding of
the current state of the art in health monitoring and the management of electric rotating
machines in various industries. The paper is structured as follows. The framework of avail-
able deep learning algorithms is described in Section 2, and the schematic methodologies
are briefly demonstrated. Section 3 discusses how deep learning algorithms can be used
to diagnose electric motor faults. Finally, Section 4 concludes with a quick comparison of
traditional fault diagnosis methods with deep learning fault diagnosis methods, as well as
the benefits and drawbacks of the available deep learning approaches and the difficulties
with the four models that are described in this article.
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2. Deep Learning Theory

Deep learning is a subset of machine learning that stems from the study of neural
networks, which may be defined as a network with many hidden layers [16]. Machine
learning models based on a multilayer network topology are now referred to as multilayer
network models. Unlike shallow neural networks, deep learning models can directly use
the original data as input and learn data features layer-by-layer through a multilayer model,
thus resulting in more effective feature extraction [17]. Currently, deep belief networks
(DBN) [18–32], autoencoders (AE) [33–52], convolutional neural networks (CNN) [53–60],
and recurrent neural networks (RNN) [61–71] are the most well-known deep learning
models. This section delves deeper into the fundamentals of these deep learning models.

2.1. Deep Belief Network (DBN)

In 2006, Hinton et al. presented the deep belief network (DBN) as a typical deep
learning network. The DBN is a multilayer neural network made up of stacked restricted
Boltzmann machines (RBM) and a classifier that integrates low-level data into an abstract
high-level approach. The low level reflects the original data, and the high level represents
the data attribute category while learning data characteristics.

2.1.1. Restricted Boltzmann Machine (RBM)

A restricted Boltzmann machine (RBM) signifies a recurrent neural network with
two layers and which forms the foundation of DBNs. The RBM is made up of one visible
and one hidden layer, each having m visible units v = v1, v2, . . . , vm and n hidden units
h = h1, h2, . . . , hn, (as shown in Figure 1), and both the visible and hidden components are
binary variables with states 0 or 1. The internal neurons of the visible layer and the hidden
layer have no connection, while the neurons of the visible layer and the hidden layer are
linked by the weight w.
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Moreover, the RBM is a model that is based on the energy function. The system is
thought to be more stable if the energy function is lower. The network energy is reduced,
and the optimal parameters of the network are found through training. As a result, the
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RBM energy function is defined as for a particular set of neuron states (v, h) and can be
written as follows:

E(v, h) = −
m

∑
i=1

aivi −
n

∑
j=1

bjhj −
m

∑
i=1

n

∑
j=1

wijvihj (1)

where vi represents the state of the ith neuron in the visible layer, hj represents the state of
the jth neuron in the hidden layer, ai represents the bias of the visible layers vi, bj represents
the bias of the hidden layers hj, and wij represents the weight between the visible element
vi and the hidden element hj. The weight matrix connecting the visible layer and the
hidden layer can be represented by W of size m× n.

2.1.2. Structure of Deep Belief Network

Figure 2 shows a DBN model stacked by n RBMs and a classifier. RBM1 is composed
of the visible layer v (the input layer) and the hidden layer h1, and RBM2 is composed of
the hidden layer h1 of RBM1 and the second hidden layer h2 (the output of RBM1 is used as
the input of RBM2), and so on, while the hidden layer hn−1 of RBMn−1 and the nth hidden
layer hn constitute RBMn, and the output layer is composed of the classifier. The bottom
visible layer provides sample features, which are extracted by the middle n layers, and then
the classification and recognition results are produced by the top output layer. The input
layer contains D units, which correspond to the D-dimensional characteristics of the sample,
while the output layer has c units, which correspond to the sample’s c categories, and
Weights, W = {W1, W2, . . . , Wn+1} is the difference between two consecutive layers. The
first step is pre-training, utilizing bottom-up training layer-by-layer; then, train RBM1, and
then update the parameters in RBM1 using forward propagation and reverse reconstruction.
RBM1 training is finished when the maximum number of cycles is achieved. Then, the
parameters of RBM1 are fixed and the RBM1 output is used as the input of RBM2 so to train
RBM2, and so on, while training n RBMs in turn and obtaining the input layer bias a, the
hidden layer bias b, and the weight W between any two adjacent layers corresponding to n
RBMs. The original features of the lower layers are merged after layer-by-layer training
so to produce a more in-depth and abstract high-level feature extraction. This training
approach is also known as unsupervised greedy layer-wise pre-training [11] since the
pre-training stage does not need categorized information. The number of hidden layers
and units per layer must be determined based on experience.
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2.1.3. Training of Deep Belief Network (DBN)

A training flowchart has been presented in Figure 3. Pre-training and reverse fine-
tuning are the two steps of the DBN training [20,21]. As this pre-training technique cannot
optimize all of the network parameters, the second stage must be used to optimize the
global parameters. The fine-tuning stage is the next step. The parameters are changed
from top to bottom in the appropriate classifier via backpropagation, culminating in the
fine-tuned parameters {W ′, a′, b′}. As this stage involves supervised training, since the
fine-tuning quantity must be gained by learning categorized information, the fine-tuning
procedure is also referred to as supervised fine-tuning. Traditional neural network training
methods are not suited for multilayer networks [22], but the DBN semisupervised training
method successfully overcomes this problem.
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2.2. Self-Encoding Network

A common three-layer unsupervised feature learning model is the autoencoder (AE).
The output can be restored to the input as closely as feasible using adaptive learning
features [33–35]. The corresponding autoencoding network model has evolved according
to different standards for defining feature expression, such as sparsity features, noise
reduction features, regular constraint features, and so on. Among them, the sparse autoen-
coding network (sparse AE) and the noise reduction autoencoding network (denoising
AE) [40,43–47] are the most commonly used. The multilayer structure of the deep self-
encoding network is produced by stacking numerous self-encoding networks, the most
widely utilized of which is stacked AE [39–41,46–52]. The original autoencoding network,
sparse autoencoding network, denoising autoencoding network, and stacked autoencoding
network will all be covered in this section.

2.2.1. The Original Self-Encoding Network

The topological structural diagram of the self-encoding network is shown in Figure 4a.
The self-encoding network is a three-layer neural network with an input layer, a hidden
layer, and an output layer, as illustrated in Figure 4. It consists mostly of an encoder and a
decoder. The encoder is made up of the input layer and the hidden layer, while the decoder
is made up of the hidden layer and the output layer. The encoder encodes the original
data, the hidden layer obtains the feature output vector, and the feature output vector
is subsequently rebuilt into the original data by the decoder. The feature output of the
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hidden layer is regarded to be the typical expression of raw data when the error between
the output data and the input data is minimal enough.
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A schematic diagram of the self-encoding network is shown in Figure 4b. Encoding is
defined as the process of passing an input x through an encoder to produce a characteristic
output h, where h = f(W,b)(x) = s f (WX + b), W is the weight matrix connecting the input
layer and the hidden layer, b is the bias matrix between the input layer and the hidden layer,
and s f is the activation function of the encoder. Decoding is the process of using the feature
output h to reconstruct output y using the decoder, with y = g(W ′ ,b′)(h) = Sg(W ′h + b′),
where W ′ is the weight matrix connecting the hidden layer and the output layer, b′ is the
bias matrix of the hidden layer and the output layer, and sg is the activation function of
the decoder. The self-encoding network looks for the best parameters {W, W ′, b, b′} to
get the reconstructed output y as near as possible to the original signal x. Reconstruction
error is a measure of how near the input and output are. There are two approaches to
characterize reconstruction error, the mean square error and cross-entropy, depending on
the type of data:

Lmse(x, y) =
1
m

m

∑
i=1

1
2
‖x− y‖2 (2)

Lce(x, y) =
1
m

m

∑
i=1

[y log(x) + (1− y) log(1− x)] (3)

The cross-entropy function can converge quicker since its derivative is steeper, but it
is only suited for situations where the value range is between [0, 1]. Due to this property of
cross-entropy, the mean square error is utilized when the network output layer employs
a nonlinear activation function, whereas cross-entropy is employed when the network
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output layer employs a linear activation function. The cost function of the self-encoding
network can generally be written as,

J(W, b) = L
(

x, g
(

f (x)
))

+ λ×Ωweight = L(x, y) +
λ

2

nl−1

∑
l=1

Sl

∑
i=1

Sl+1

∑
j=1

(
Wij(l)

)2 (4)

where L(x, y) is the reconstruction error; λΩ is the weight attenuation term to prevent
overfitting [35]; m, nl , and Sl represent the number of samples, the number of network
layers, and the number of neurons in the l layer, respectively; Wij represents the weight of
the interlayer connection; b is the unit bias of the l layer.

2.2.2. Sparse Autoencoding Network

The sparse autoencoding network (sparse AE) is based on the sparse coding principle.
The sparse penalty term is added on the basis of the autoencoding network model, that is,
the hidden layer meets the sparsity so that the autoencoding network may learn to express
relatively sparse and compact feature expressions within the sparsity restriction [36–42].
The activation state (active) for neurons in the hidden layer is defined as when its value is
near to 1 and close to 0 (corresponding to the sigmoid activation function) or −1 (corre-
sponding to the tanh activation function) (not activated). Sparse restriction occurs when
the restricted neurons are blocked in most states and activated in a few others. Figure 5
represents the layout of the sparse autoencoding network.
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Under normal conditions, the sparse penalty term PN is chosen as the Kullback–Leibler
(KL) divergence, as shown in Equation (5):

PN =
S

∑
j=1

KL(ρ||ρ̂j) =
s

∑
j=1

ρ ln
ρ

ρ̂j
+ (1− ρ) ln

1− ρ

1− ρ̂j
(5)
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where S is the number of units in the hidden layer, ρ is a sparse constant close to 0, and ρ̂j is
the average activation of the jth unit. When ρ̂j = ρ, the KL divergence value is 0, and the
KL divergence value gradually increases as ρ̂j deviates from ρ. Then refer to Formula (4),
the autoencoding network containing the sparse penalty term and the cost function can be
written as,

Jsparse = J(W, b) + β× PN (6)

where β is the coefficient of the sparse penalty term.

2.2.3. Noise Reduction Self-Encoding Network

Pascal Vincent et al. [43] proposed the denoising AE (DAE). After encoding and
decoding the original sample signal, noise with specific statistical characteristics was
randomly added and the final mapping returned an undisturbed noise which is the sample
signal that was affected. The idea behind the denoising self-encoding network is similar
to that of the human body’s sensory system. For instance, when the human eye examines
an object, even if a tiny portion is obscured the human may still recognize the object.
Similarly, the noise reduction self-encoding network accomplishes decoder reconstruction
by introducing noise, thereby effectively minimizing the impact of random variables on
signal extraction such as mechanical working conditions or ambient noise. The denoising
self-encoding network has considerably enhanced generalization and feature expression
abilities, as well as resilience, when compared to the original self-encoding network [43–47].

Figure 6 shows the construction of the noise reduction self-encoding network, which
uses a random mapping x′ ∼ qD(x′|x) [43] to interfere with the original signal x to mimic
noise and produce the signal x′. To retrieve the feature output, encode x′ through the
encoder: y = f(W,b)(x′) = S f (Wx′ + b), where W is the weight matrix linking the input
layer and the hidden layer, b is the bias matrix between the input layer and the hidden
layer, and s f is the encoder’s activation function. After decoding the feature expression
y through the decoder, a reconstructed and pollution-free signal is obtained, z = g(W ′ ,b′)
(y) = sg(W ′y + b′), where W ′ is the weight matrix connecting the hidden layer and the
output layer, b′ is the bias matrix in between the hidden layer and the output layer, and sg
is the activation function of the decoder. By seeking the optimal parameters {W, W ′, b, b′},
the reconstructed output z is as close as possible to the original signal x. The reconstruction
error of the denoising autoencoding network still indicates the closeness of the input
and output when compared to the original autoencoding network, but the characteristic
output y of the denoising autoencoding network is obtained by mapping the signal x′
which is affected by the noise instead of the original signal x, thereby forcing the denoising
self-encoding network to learn a more intelligent mapping, which is a feature extraction
method that is conducive to denoising.
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2.2.4. Stacked Self-Encoding Network

An autoencoding network (AE) is the basic unit of a stacked autoencoding network
(stacked AE), but it can also be a sparse autoencoding network evolved from AE, a noise-
reducing autoencoding network, etc. The greedy layer-by-layer training method proposed
by Hinton et al. [10] is used in the stacked self-encoding network, which solves the problem
that traditional neural network training algorithms tend to fall into local extremes. As
shown in Figure 7a, the stacked self-encoding network is formed by stacking multiple
self-encoding networks which can learn the characteristics of the original data layer-by-
layer. Each layer’s input is based on the previous layer’s feature output. Each layer feature
expression is more abstract than the one before it. A classification layer is frequently placed
at the top of the stacked self-encoding network for the classification tasks. The stacked AE
is more appropriate for applications such as complicated categorization than the original
autoencoder network.
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The stacked AE network’s training method is comparable to that of the DBN, which are
separated into two stages: forward training and reverse fine-tuning. The forward training
of the stacked self-encoding network is seen in Figure 7b. Train AE1, then randomly set
the initial weights and biases of AE1 {W, W ′, b, b′} according to formula (4), compute the
input and output reconstruction errors, then use the backpropagation method to adjust
the parameters in AE1, and the process continues to update until the reconstruction error
is the least. At this point, only the encoder portion of AE1 is retained, and the feature
output of AE1 is used as the input of AE2 to train AE2, and so on, until all n AEs have
been trained. When AE has finished training, the final feature output is the hidden layer
output of AEn. The reverse fine-tuning stage of the stacked autoencoding network can
adjust the parameters of the entire network (this is similar to the DBN and is suitable for
large amounts of training data) or it can only adjust the parameters of the classifier. The
coding network is known as a feature extractor.
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2.3. Convolutional Neural Network (CNN)

A prominent deep learning model is the convolutional neural network (CNN). Local
perception, shared weights, and spatial or temporal downsampling are hallmarks of the
CNN [53–55], which minimizes the parameters and makes maximum use of the data’s
local characteristics.

An input layer, several hidden layers, a fully connected layer, and an output layer
make up a CNN. A convolutional layer and a sub-sampling layer make up the majority
of the hidden layer. Data in the form of images or vectors can be used as input. The
convolutional layer is mostly utilized for feature extraction. The sigmoid function is
frequently chosen as the activation function of the convolutional layer in classic CNNs.
Several convolution kernels make up a convolutional layer. Each convolution kernel can
be considered as a filter in its own right. Each filter scans the input picture or the data
according to the scanning step length (each filter scans the image or data once local), and
each scan is done with the same weight and offset (i.e., different filters use different weights
and offsets). After convolution, the vector size is (n− k + m)/m, where n is the input
vector size, k is the convolution kernel size, and m is the scan step size. Human experience
must be used to control the size and number of convolution kernels, as well as the scanning
step length. Here is the mathematical model of the convolution layer,

xj
l = f ( ∑

i∈Mj

xi
(l−1) × Kij

l + bj
l
) (7)

where Mj is the input feature; l is the layer l network; K is the convolution kernel; b is
the bias; xj

l is the output of the l layer; xi
(l−1) is the input of the (l − 1) layer, which is also

the input of the l layer.
The main purpose of the sub-sampling layer is feature dimensionality reduction, also

known as pooling. The sub-sampling procedure can be thought of as dividing the features
acquired by convolution into numerous discrete sections and then choosing the maximum
value (maximum pooling method) or average value (mean pooling method) of the data in
each region as the features after sampling. The degree of feature sparsity is represented by
the size of the sub-sampling. The sparsity impact is stronger, and the resulting features are
more robust as the size increases. The mathematical model of the sub-sampling layer is,

xj
l = f

(
β j

ldown(xi
l−1) + bj

l
)

(8)

where down(.) is the sub-sampling function and β is the network multiplicative bias.
The CNN is a supervised deep learning algorithm. It uses a similar training strategy

to artificial neural networks. It typically employs a backpropagation technique to pass
errors layer-by-layer, and a gradient descent to update the network parameters.

To understand the process, consider time series signal processing, as illustrated in
Figure 8. The output is the classification result while the input is a 32 × 1 signal. Select 6
groups of 5 × 1 convolution kernels, and the step size is 1, to generate 6 groups of 28 × 1
features, where 28 = (32 − 5 + 1)/1, and the neurons in C1. Only a few neurons in the
previous layer are linked to the cell. The sub-sampling layer is S1. Select 7 × 1 as the
sub-sampling size for the maximum pooling approach, then divide the 6 groups of features
in C1 into blocks. Each block is 4 × 1 in size, and by taking the maximum value of each
block, 6 sets of 7 × 1 features can be obtained. The collected features are processed in the
fully connected layer after multiple convolutions and pooling, and the category output is
obtained in the output layer. The fully connected layer, for example, employs a common
layer or multi-layer neural network [53], in which each neuron in one layer is linked to all
neurons in the preceding layer.
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2.4. Recurrent Neural Network (RNN)

The DBN, AE, and CNN all presume that elements are independent of one another, as
well as input and output. However, many factors are intertwined. The output of a recurrent
neural network (RNN) is dependent on the current input and memory, and it connects
the units in the same layer to construct a directed cyclic neural network [61]. Hundreds
of RNN topologies have been proposed to suit the demands of a wide range of dynamic
performance [62]. The Jordan network [62–65] and the Elman network [62,63,65] are the
two of the most well-known RNN models.

The basic structure of the RNN is depicted schematically in Figure 9. The hidden layer
unit not only takes data input at the current time but also receives hidden layer output
at the prior time, as shown in the diagram. As a result, the network may recall earlier
knowledge. Equation (9) provides the network’s mathematical model.

St = f (WSt−1 + Uxt)
yt = g(VS)

(9)

where xt−1, xt, and xt+1 correspond to the input at t− 1, t, and t + 1, respectively; St−1, St,
and St+1 correspond to the hidden input at t− 1, t, and t + 1, respectively, and the layer
state; yt−1, yt, and y t+1 correspond to the output at t− 1, t, and t + 1, respectively; f and g
are activation functions; U, W, and V correspond to the weight from the input layer to the
hidden layer, the weight from the hidden layer to the hidden layer, and the weight from
the hidden layer to the output layer, respectively.
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Figure 10 depicts the first and most well-known RNN structures: the Jordan and
Elman networks. Figure 10a shows that the Jordan network adds a connection layer to the
basic RNN and uses the previous time’s feedback and the current time’s network input as
the hidden layer input at the current time, which is comparable to output feedback. The
Jordan network’s mathematical model is,

St = f (W × Ct + U × xt)
Ct = yt−1 + αCt−1

yt = g(V × St)
(10)

where xt is the input at time t; St is the hidden layer state at time t, and yt−1 is the
output at time t− 1; Ct−1 and Ct are the output of the connection layer at time t− 1 and
t, respectively; α is feedback gain factor; f and g are activation functions; U, W, and V,
respectively, correspond to the weight from the input layer to the hidden layer, the weight
from the connection layer to the hidden layer, and the weight from the hidden layer to the
output layer.
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By linking the layers, the Elman network uses the hidden layer state at the previous
instant and the network input at the present moment as the hidden layer input at the
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present moment, which is similar to state feedback, as shown in Figure 10b. The Elman
network’s mathematical model is,

St = f (W × Ct + U × xt)
Ct = St−1 + αCt−1

yt = g(V × St)
(11)

The Jordan network can only convey the output properties, whereas the Elman net-
work incorporates state feedback. In comparison, the Elman network is superior at express-
ing dynamic systems [61,63].

3. Application of Deep Learning in Electric Motor’s Fault Diagnosis

Bearing faults, stator faults, rotor faults, and air gap eccentricity faults are all common
motor defects, with bearing failures having the highest probability and rolling bearings
being prone to gearbox faults.

Signal processing approaches combined with classification algorithms (such as support
vector machines, decision trees, K closest neighbors, etc.) are frequently used in classical
fault detection to categorize and identify defects. The signal processing method is one of
them, and it employs several approaches depending on the type of fault. When a motor
bearing fails, for example, vibration signals or stator current signals are frequently used,
and time–frequency domain analysis, statistical analysis, wavelet decomposition, and other
methods are used to extract features from the signal when the motor rotor fails, while the
time–frequency domain analysis, statistical analysis, wavelet decomposition, and other
methods are used to extract features from the signal. The stator current detection method
is the most often utilized. The features of the stator current signal are retrieved using the
Fourier transform or the Hilbert transform since the stator current signal is straightforward
to gather. When a motor stator breaks, a mathematical model or the determination of the
motor problem is typically applied. The defect is diagnosed using the current and voltage
signal detecting approach. When using the signal detection method, feature extraction
calculations are still required; however, when the motor has an air gap eccentric defect, the
current signal analysis approach is frequently utilized to diagnose the fault.

Artificial feature selection and extraction are always necessary for the generally used
traditional motor fault diagnosis methods, which raises the uncertainty of the motor fault
diagnosis and affects the accuracy of motor problem diagnosis. The deep learning model
may extract features from the source signal in an adaptive manner, thereby avoiding the
impact of artificial feature extraction.

3.1. Application of Deep Belief Network (DBN)

Since the DBN was introduced in 2006, it has been employed mostly in the field of
machine vision. The DBN was initially used in the field of fault diagnosis in 2013. A DBN-
based aircraft engine failure diagnosis approach was proposed by Tamilselvan et al. [18].
Although the DBN is used as a classifier in this method to achieve fault classification, the
DBN-based feature extraction is not implemented. However, it has aided in the develop-
ment of a DBN-based fault diagnosis approach. Tran et al. [19] introduced the DBN to
compressor failure diagnosis in 2014, thereby promoting the DBN’s growth in the fault di-
agnostic sector. Xie et al. [23] have established a DBN model based on Nesterov momentum
optimization that captures the frequency domain signals from rotating machinery, feeds
them into the model for feature learning and classification, and achieves simultaneous bear-
ing fault category and fault level diagnosis. The author also employed the traditional DBN
model and support vector machine (SVM) to classify the same signal and used trials to show
that the optimized DBN model has the highest classification accuracy among the three ap-
proaches (optimized DBN model > traditional DBN > support vector machine). Dur-
ing the simulation phase, Li Mengshi et al. [27] proposed a DBN-based fault diagnostic
technique for wind turbines, which built a fault diagnosis model using a DBN network
and employed Gaussian noise to simulate the noise in the actual operational environment
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of the wind turbine. Sensor faults, actuator faults, and system faults are among the nine
categories of faults. Simultaneously, the author compared the DBN model to Bayesian
classification, the random forest classification, the K-nearest neighbor algorithm, and de-
cision trees, the four standard diagnostic approaches, and utilized tests to show that the
DBN-based diagnosis method was more robust and stable.

The DBN has been widely employed in the field of motor defect diagnosis, including
in rolling bearings [23–26], wind turbines [27,28], sensors [9,29], gearboxes [30–32], and
so on, in just a few years of development, and feature extraction based on the DBN has
been realized.

Figure 11 depicts a fault diagnostic framework based on the existing DBN-based
motor fault diagnosis method, which consists mostly of the following steps:

Step—1:Obtain the time/frequency domain signals of the equipment under normal and
fault situations using sensors and signal preprocessing technologies;

Step—2:Split the signal into training and test sets after segmenting and normalizing it;
Step—3:Create a multi-hidden-layer DBN model and utilize the training data for layer-by-

layer unsupervised and greedy training;
Step—4:Use category information to fine-tune the DBN model parameters;
Step—5:Perform fault diagnosis on the test set using the trained DBN model.
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3.2. Application of Self-Encoding Network

Shallow networks include the original autoencoding network, as well as its evolved
sparse autoencoding network and denoising autoencoding network. They are frequently
piled into deep-stacked autoencoding networks in practical applications. Due to their
strength, stacked autoencoding networks are popular. The ability to understand data
properties is something that many experts and academics pay attention to. A deep sparse
self-encoding network is used in the literature [42] to detect a permanent magnet syn-
chronous motor’s turn-to-turn short-circuit defect. Negative sequence current and torque
signals make up the sample. To increase the sample size and create a training set, the
generative confrontation network (GAN) is utilized. For classification testing, the sparse
self-encoding network created via sample training is used, and the experiment shows that
it has a classification accuracy of 99.4%. The literature [46] proposed a multilayer denoising
autoencoder network (SMLDAEs) for wind turbine gearbox fault diagnosis because the
vibration signal comprises a lot of noise and most denoising autoencoding networks utilize
a single noise to train the network. This strategy trains the network with varying noise
levels, allowing it to learn more detailed and general fault characteristics from the vibration
signal. This classification method is accurate after the experimental verification. The accu-
racy rate has been consistent in the range of 97.5 to 98 %. To diagnose rolling bearing faults,
the literature [39] employs a deep autoencoding network. To improve the denoising ability,
minimize computational complexity, and the training convergence speed, they integrate a
sparse autoencoding network with a noise-reducing autoencoding network. This method
is more robust and can increase the accuracy of rolling bearing failure diagnosis more
efficiently. A defect diagnosis approach for rolling bearings and planetary gearboxes based
on a stacking autoencoding network was proposed in the literature [41]. This study uses
stacking autoencoding networks to classify ten different types of bearing and gearbox
problems under various loads. The accuracy percentage for the classification is 99.68%. It
shows that the method has a greater diagnostic accuracy than the shallow neural network
fault diagnosis method. Since its inception, the stacked autoencoding networks have been
applied to rotating machinery [39,45], wind turbines [46,48], rolling bearings [40,49,50],
gears [51,52], and aviation equipment, among other fields, with promising outcomes. Fur-
thermore, the literature [33] has elaborated on the self-encoding network development
process, detailed the principles of more than ten different types of self-encoding networks,
and has conducted a comparison study.

The diagnosis framework is depicted in Figure 12 and summarizes the available elec-
tric motor fault diagnosis approaches based on deep self-encoding networks. It essentially
contains the following steps:

Step—1:Obtain signals from the equipment in both normal and defective states using
sensors;

Step—2:Separate the signal into training and test sets by preprocessing it;
Step—3:Create a deep self-encoding network model based on the data selection reconstruc-

tion error and use the training set for unsupervised and greedy layer-by-layer
training;

Step—4:Add a classification algorithm to the top layer, then tweak the parameters of the
entire deep self-encoding network or simply the classifier parameters as needed;

Step—5:Perform the defect diagnosis on the test set using the learned deep self-encoding
network model.

Self-encoding networks, also known as deep self-encoding networks, are primarily
utilized for noise reduction and feature extraction in the context of fault detection. In
comparison to DBN, the self-encoding network training involves fewer samples, and the
feature extraction has a higher ability while being more robust.
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3.3. Application of Convolutional Neural Network (CNN)

The CNN has local perception and weight sharing properties, reducing the number of
network parameters and preventing network overfitting to some level. As a result, it has
attracted the attention and research of numerous researchers. As the activation function in
traditional CNN is often a saturated nonlinear function such as the sigmoid function or the
tanh function, the literature [56,57] suggested and shown that an unsaturated nonlinear
function (ReLU function) can improve the CNN network performance. A method based
on the CNN gearbox vibration signal fault diagnosis approach was proposed in the litera-
ture [58], but the method still requires manually extracting features to construct the input.
The literature [59] has developed a CNN-based gearbox vibration signal fault diagnosis
approach that can adaptively learn features in response to this challenge. The literature [72]
has also presented a new multiscale convolutional neural network (MSCNN) architecture
for simultaneous multiscale feature extraction and classification so to address the problem
of intrinsic multiscale characteristics in gearbox vibration signals. This strategy employs a
number of different techniques. The convolutional layer and the subsampling layer have a
hierarchical learning structure that increases the feature extraction efficiency and the diag-
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nostic performance. A diagnostic framework (DTS-CNN) based on the features of motor
vibration signals was developed in the literature [73]. This method adds misalignment be-
fore the convolutional layer of the CNN rather than using the recovered original vibration
signals as the input. The layer extracts the relationship between signals at different intervals
in a periodic mechanical signal, overcomes the limitations of standard neural networks,
and is more suitable for modern induction motors, especially in nonstationary settings.
A real-time motor failure detection approach based on the one-dimensional CNN was
proposed in the literature [74]. In the training phase, this method extracts high-resolution
features using a large number of one-dimensional filter kernels and then combines the
classification algorithms so to extract the characteristics of real-time motor current inputs,
and the classification achieved an accuracy rate of higher than 97%. In the literature [75], an
intelligent composite fault diagnosis method based on deep decoupling CNN is proposed
which addresses the limitations of the traditional fault diagnosis methods in compound
fault diagnosis (e.g., a lack of consideration of the connection between a single fault and a
compound fault, whereas traditional classifiers can only output one label for the detection
samples of compound faults, etc.). The limitation of the fault diagnosis method allows for
the reliable identification and decoupling of compound faults. The approaches of the CNN
used in the field of electric motor fault diagnosis can be effectively split into two types
based on the existing literature. One method is to employ the CNN as a classifier [58,60,75].
Data preparation and feature extraction are required at this time. The other option is to
utilize the CNN as a feature extraction and recognition classification model [59,72–75] and
classify while applying adaptive feature learning.

Figure 13 depicts the CNN-based motor defect diagnosis system. The following are
the main steps in order:

Step—1:Obtain the time domain or frequency domain signals from the equipment under
normal and abnormal conditions using sensors;

Step—2:Separate the signal into training and test sets by preprocessing it;
Step—3:Using the received data, determine the size, number, scanning step, and the

number of hidden layers of the CNN and create a CNN model;
Step—4:Use the training set for supervised training after initializing the CNN network pa-

rameters and keep updating the network parameters until the maximum number
of iterations is reached;

Step—5:Perform the fault diagnostics on the test set using the trained CNN model.
The CNN is a deep learning model that specializes in processing large amounts
of data, but it has limits when it comes to diagnosing electric motor faults. The
CNN is often limited to processing one-dimensional signal data, with the multi-
dimensional data processing capabilities being limited. In terms of the types of
faults the CNN for multidimensional data processing can handle, more research
is needed [61].
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3.4. Application of Recurrent Neural Network (RNN)

The RNN is a neural network model that excels in processing time series and boasts
fast convergence, high accuracy, and high stability. In terms of defect diagnosis, the RNN
is particularly well suited to complicated equipment or systems [68–71].

According to the literature [76], the typical RNN has the problem of gradient disap-
pearance or gradient explosion, which prevents it from using information from the past;
therefore, a long- and short-term memory neural network (LSTM) is proposed to tackle
this problem as it addresses the gradient problem and has benefits in processing data with
a strong correlation with time series. The LSTM is widely employed in the field of fault
diagnostics [77–81]. An electric motor defect detection approach based on the LSTM was
proposed in the literature [78]. The real-time prediction of the three-phase current value
of the next sample instant was utilized to observe the motor in real-time by capturing
the three-phase current value and phase angle information of the previous sampling data.
In the literature [79], the feature vector of the vibration signal of the rolling bearing of
a wind turbine is extracted using a wavelet packet transform, and the LSTM is used as
a classifier to diagnose three frequent problems of the rolling bearing of a wind turbine.
Through a case study, the literature verifies the usefulness of the method. It demonstrates
that LSTM can still perform well in fault diagnosis when the difference in the fault feature
quantity is not significant. The literature [80] utilized empirical mode decomposition and
LSTM to provide rotating machinery state monitoring and prediction. When compared to
support vector regression machine (SVRM), it was found that LSTM can effectively avoid
parameter selection difficulties and has a superior accuracy rate. The literature [79,80] all
employ LSTM networks as classifiers, which must be paired with other feature extraction
methods, but it also [81] uses LSTM adaptive feature extraction and classification, which



Energies 2021, 14, 7017 19 of 26

does not require the use of other feature extraction methods or classifiers. Figure 14 depicts
an LSTM-based fault diagnosis architecture.
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The sluggish training pace of traditional RNNs is also of concern [82]. To address this
issue, the literature [83] has proposed a fault detection method for asynchronous motors
that combines RNN with dynamic Bayesian networks while also training the neural net-
work using the simultaneous perturbation stochastic approximation (SPSA) method, which
improves the training efficiency and fault diagnosis accuracy. A robust RNN adaptive
gradient descent (RAGD) training technique was published in the literature [84], which
considerably improves the RNN training speed. Using diagonal RNNs, the literature [68]
presents a method for diagnosing interturn defects in the stator windings of asynchronous
motors. RNNs with deviation units are used in the literature [69] to implement distor-
tion voltage waveforms based on rectifiers. This method for diagnosing complex power
electronic equipment or systems has been shown to be useful through fault classification
and in experiments. An upgraded echo state network based on the RNN is applied to
electromechanical systems in the literature [85].

3.5. Other Customized Deep Learning Methods

Despite the four conventional deep learning networks discussed above, researchers
are still working to improve the detection method of occurring faults in electric machines
and have developed several customized deep learning structures which showed a signif-
icant amount of perfection upon deploying to fault diagnosis. Chengjin et al. [86] have
developed deep twin convolution neural networks with multidomain inputs (DTCN-
NMI) which builds three input layers so to integrate automatically extracted time domain,
time–frequency domain, and hand-crafted time domain statistical characteristics, thereby
resulting in improved model performance. The use of twin convolutional neural networks
with large first layer kernels for extracting multidomain information from vibration signals
is demonstrated, as is the resistance to the effects of ambient noise and changes in the
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operating circumstances on the final diagnostic findings. The efficacy of the suggested
technique is demonstrated by comparing it to current representative algorithms and using
experimental datasets. Taking into consideration the prospect of fault diagnosis under
noisy environments, Dengyu et al. [87] have proposed a noisy domain adaptive marginal
stacking denoising autoencoder (NDAmSDA) based on acoustic signals to mitigate the
problem of domain shifting by introducing Transfer Component Analysis (TCA) and by
speeding up the training process by replacing the traditional gradient decent of backprop-
agation with a forward closed-form solution, which enables the feasibility of reducing
the difference between numerous noise levels as well as moving the classifiers from one
noisy domain to others. An unsupervised deep learning network with mutual informa-
tion (MI) [88], which is called deep mutual information maximization (DMIM), has been
used to determine motor faults considering both global and local MI. The MIs between
the output and multiple levels or areas of representations are estimated and maximized
simultaneously using the f-divergence variational divergence estimation technique. It
has been noted as a pioneer where a deep neural network input and output of mutual
information has been maximized so to create a motor defect diagnosis model where the
working environment is complex and noisy.

4. Discussion

Many scholars have been drawn to the deep learning model because of the advantages
it offers over traditional fault identification approaches. The most significant advantage of
the deep learning model over the traditional feature extraction method is that it eliminates
the uncertainty and complexity caused by human intervention [19], improves the intelli-
gence of the recognition process, and of traditional fault diagnosis. A comparison of the
traditional approach and the deep learning model analysis is presented in Figure 15.
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Furthermore, each of the four types of deep learning models described in this article
has its own set of benefits, which are summarized as follows:

(a) Without a formal mathematical model, the DBN can learn data features adaptively [27].
The DBN multihidden layer structure efficiently avoids the dimensionality disaster
problem. The inapplicability of the standard neural network training methods is
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effectively solved by the DBN semisupervised training method regarding multilayer
network problems;

(b) The Sparse AE facilitates the reduction of computational complexity and the genera-
tion of more concise features. The DAE can efficiently reduce the impact of random
elements on signal extraction such as mechanical working conditions or external
noise. The robustness of the stacked AE is improved;

(c) The CNN offers tremendous mass data processing capabilities [89], as well as local
perception, shared weights, and spatial or temporal downsampling, all of which help
to lower network parameters and avoid network overfitting;

(d) The RNN has significant applicability and improved accuracy in time series learning
analysis [90], as well as in good dynamic system expression capacity.

Traditional fault diagnostic methods cannot match these benefits. These four types of
deep learning models, on the other hand, have some flaws, which are outlined as follows:

(a) The DBN uses a semisupervised training method in which each RBM is trained
individually, and the parameters are adjusted layer-by-layer. As a result, the training
will be much slower than in traditional defect diagnostic methods, and poor parameter
selection will lead training to converge to a local optimum;

(b) The Ordinary AE’s output and input are identical, making it susceptible to data
overfitting during the mapping phase. Over-fitting can be avoided to some extent if
the dimensionality of the hidden layer of the AE is smaller than the dimensionality of
the input data, but this limits the characteristics that AE can represent, thus making
reconstruction difficult. Deep AE can express more useful features, but it slows down
the AE training time significantly;

(c) The implementation of the CNN is relatively complicated, and the training of the
CNN requires a lot of data, which also causes the training speed of the CNN to be
very slow. For image processing, and due to the difference between the images and
the industrial signals, the effect of the CNN in industrial applications is not very
satisfactory. Therefore, there is relatively little research on the application of the CNN
in motor fault diagnosis;

(d) Gradient disappearance or explosion is a problem with ordinary RNNs. Although
LSTM can help with this problem to some extent, it is more commonly utilized as a
classifier. LSTM is only used in a few studies to achieve adaptive feature extraction.

In addition, the applicability of deep learning in motor problem detection is still in
the early stages of research. There are still several issues with the four models discussed in
this article, as well as other existing deep learning models:

(a) While many classic machine learning algorithms have strong theoretical guarantees
in particular contexts, current mathematical theories for deep learning are unable to
provide a good quantitative explanation or theoretical foundation [91];

(b) While the deep learning model’s deep network structure and powerful feature learn-
ing capabilities enable it to meet fault diagnosis in the context of “big data,” the deep
learning model training speed is much slower than the linear model and is highly
dependent on the training data set, and reports on optimizing deep learning training
times are rare;

(c) The number of hidden layers and the various parameters in the deep learning model
must be selected based on experience and are easily affected by the input data, as
reported by the existing literature. This is a problem that requires immediate attention;

(d) Deep learning methods and classical defect diagnosis methods are not mutually
exclusive. Some researchers are attempting to merge deep learning approaches with
classic fault detection methods so to improve the diagnostic findings, but they are still
far from achieving “mutual compatibility” [61].

After analyzing the methods, and with the help of the existing works of literature, we
found that CNNs and RNNs are more suitable in the process of fault diagnosis due to their
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huge data processing ability and because they offer improved accuracy as well as dynamic
system response capacity in detecting faults.

5. Challenges and Future Work

The difficulty of a deep learning model is connected to its design and training pro-
cedures. Despite the fact that there is a lot of literature on DL implementations in fault
diagnosis systems, they require a previous understanding of the architecture. Deep learning
is currently being developed using a variety of computer languages, including MATLAB,
R, and Python. The diagnostic performance of the programming module may differ due to
the different types of coding and training procedures. The architecture of the deep learning
model has proven challenging to train during the previous few decades. The training
process depends on characteristics of input data (i.e., the segmentation process, the size
of the dataset, the parameters, and the hyperparameters of the deep learning algorithm).
Real machinery system implementation is another big challenge in the fault diagnosis of
electric motors. The majority of the deep learning applications accessible in public papers
employ experimental datasets. There are just a few researchers that incorporate a genuine
machinery system. An experimental dataset is acquired in a controlled environment with a
less complicated system and less disruption to the situation. A genuine machinery system,
on the other hand, is a complicated structure, and the data gathered includes information
from several interrelated components of interest.

Many interesting directions in motor fault diagnosis are provided by deep learning,
which has the potential to enhance the availability, safety, and cost-efficiency of complex
industrial assets. However, there are a number of conditions that must be met by industry
players before significant progress can be made. The automation and standardization of
data gathering, notably the maintenance and inspection reports, and the implementation
of data sharing across many stakeholders are among these needs, as are the potentially
widely recognized methods of judging data quality. Moreover, the combined architecture of
deep learning models with shallow machine learning algorithms, better ways to optimize
hyperparameters, the measurement of remaining useful life (RUL), the incorporation of
multiple sensors to collect data, and the analysis of fault visualization methods are the
primary aspects that require further research.

6. Conclusions

This article highlights the current state of research on deep learning in electric motor
fault diagnosis, as well as the benefits and drawbacks of the current deep learning models.
Future improvements in theoretical research are expected to speed up the development
of deep learning and provide greater instructions for both improving and using deep
learning theories. This study will help scholars and respective maintenance engineers to
better understand the general deep learning algorithms as state-of-art, and how they can
be deployed to detect the faults of induction motors. Furthermore, this study varies in at
least three significant ways from previous works in the literature. First, this study briefly
represents the methodological structure of the four most generally used deep learning
models, including their application to the fault diagnosis of induction motors which are
used in manufacturing industries. Second, this article explores the application of the deep
learning algorithms in detecting faults stepwise with an appropriate flowchart. Therefore,
it will be easier for the maintenance engineers and technicians to review the methodology
while applying a particular detection algorithm in the industrial sector. Third, this article
provides a comparison between the traditional fault diagnosis methods and the deep
learning models, exploring both the advantages and disadvantages. The limitations of
these four models are also briefly discussed along with the existing methods. The challenges
and the development of deep learning applications in motor fault diagnosis have been
considered so to increase the operational time during unexpected breakdowns. It is clear
that with the advancements in digital computational technology, deep learning models
will remain powerful and appealing for use in fault diagnosis.
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Nomenclature

vi the state of the ith neuron in the visible layer
hj the state of the jth neuron in the hidden layer
ai bias of the visible layers vi
bj bias of the hidden layers hj
wij the weight between the visible element vi and the hidden element hj
E(v, h) energy function
W weight matrix connecting the input layer and the hidden layer
s f activation function of the encoder
b bias matrix between the input layer and the hidden layer
W ′ weight matrix connecting the hidden layer and the output layer
sg activation function of the decoder
b′ bias matrix of the hidden layer and the output layer
Lmse(x, y) mean square error
Lce(x, y) cross entropy
L(x, y) reconstruction error
J cost function of neural network
λΩ weight attenuation term
m number of samples
nl number of network layers
Sl number of neurons in the l layer
PN Kullback–Leibler (KL) divergence
S number of units in the hidden layer
ρ sparse constant
ρ̂j average activation of the jth unit
β coefficient of the sparse penalty term
Mj input feature
K convolution kernel
xt−1, xt, xt+1 inputs at time t− 1, t, and t + 1
St−1, St, St+1 hidden input at t− 1, t, and t + 1
yt−1, yt, y t+1 output at t− 1, t, and t + 1
f , g activation functions
U, W, V weights in between layers
Ct−1, Ct output of the connection layer at time t− 1 and t
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