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Abstract: Due to the complex and variable conditions under which wind turbines operate, existing
working condition classification methods are inadequate for condition assessment of the main
transmission system. Because working conditions are too few after classification, it cannot effectively
describe the complex and variable working conditions of wind turbine. This can lead to high false-
alarm rates in the condition monitoring, which affect normal operations. This paper proposes a
working condition classification method for the main transmission system of wind turbines based
on supervisory control and data acquisition (SCADA) data. Firstly, correlation analysis of SCADA
data acquired by wind farm is used to select the parameters relevant to the main transmission
system. Secondly, according to the wind turbine control principle, the working conditions are initially
divided into four phases: shutdown, start-up, maximum wind energy tracking, and constant speed.
The k-means clustering algorithm is used to subdivide the maximum wind energy-tracking phase
and constant speed phase, which account for a larger proportion of the working conditions, to
achieve better classification. Finally, a case study is used to demonstrate the calculation of alarm
thresholds and alarm rates for each working condition. The results are compared with the direct use
of k-means clustering for working condition classification. It is concluded that the proposed method
can significantly reduce the false-alarm rate of the vibration detection process.

Keywords: main transmission system; working conditions classification; wind turbine working
characteristics; alarm threshold; k-means clustering; SCADA data

1. Introduction

Double-fed wind turbine main transmission systems are mainly composed of a hub,
main shaft, bearings, gearbox, and couplings. They not only provide a transmission channel
for energy but also a transmission path for the unit load. Under long-term operation in
harsh working environments, such as extreme climatic conditions, which involve a wide
range of working speeds and a wide excitation band, time-varying wind loads often cause
oscillation in wind turbine towers, which are somewhat flexible. Then, the inertial forces
of the components of the transmission system may combine with the system’s pneumatic
load and increase the degree of force fluctuations in the components, leading to increased
failure rates. Failures of the main transmission system account for 40–60% of wind turbine
downtime [1]. One of the causes of abnormal transmission system conditions is that the real-
time dynamic loads and the dynamic behaviour of the transmission system under diverse
working conditions remain unclear. The operating environments of the main transmission
system are usually complex and harsh. Different wind speeds, wind directions, and rotor
speeds have different effects on the energy output of a wind turbine [2], which makes it
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very difficult to monitor the condition of its main transmission system. Therefore, it is
essential to classify the working conditions reasonably and accurately before conducting a
conditions assessment.

At present, there are few studies on classifying the working conditions of wind turbine
main transmission systems. Most consider the working conditions of the whole wind
turbine and classify the working conditions according to the operating characteristics of the
wind turbine and the use of clustering algorithms. Yan [3] and Mei [4] divided the wind
turbine speed and torque control process into four phases: start-up, maximum wind energy
tracking, constant speed generation, and constant power generation. Dai et al. [5] classified
wind turbine operation according to the relationship between rotor speed and power as
start-up, first transition, maximum power point tracking, second transition, and full power.
Yang et al. [6] classified wind turbine operation according to power curve parameters into
four phases. Cheng et al. [7] classified wind turbine operating conditions based on wind
speed-power curves, rotational speed-power curves, rotational speed-pitch angle curves,
and power-pitch angle curves into seven states: normal operation, normal shutdown,
power-limited operation, adjustment process, off-grid process, abnormal shutdown, and
on-grid acceleration. Ling [8] identified the working conditions of the main bearing
according to wind speed and classified the working conditions as low power, rapid power
increase, and stable power. Gu et al. [9] used statistical analysis to classify the working
conditions according to ambient temperature first and then by wind speed. However, the
number of classes was relatively small and does not effectively describe the complex and
variable working conditions of wind turbines. This causes a high false-alarm rate during
the monitoring of actual conditions.

Alternatively, working conditions have been classified using clustering algorithms.
Dong et al. [10], Xing et al. [11], Zhang et al. [12], and Wang et al. [13] selected the charac-
teristic parameters of working conditions by analysing the correlations in SCADA data and
using the k-means clustering algorithm to classify historical working conditions during nor-
mal wind turbine operation. Liu et al. [14] proposed semi-supervised k-means clustering
with stream-wise distance as a similarity measure for analysing massive SCADA datasets
to classify wind turbine working conditions. Jin [15] and Liu et al. [16] selected working
conditions feature parameters and used the fuzzy C-means (FCM) clustering algorithm to
classify the operating conditions. Yin et al. [17] and Chen et al. [18] used a Gaussian mix-
ture model (GMM)-based clustering method to classify wind turbine operating conditions
based on condition monitoring data. Ma et al. [19] proposed the adaptive classification of
conditions using GMM. Wang et al. [20] selected three parameters—wind speed, generator
speed, and active power—and applied the GMM clustering algorithm to classify training
data into three sub-conditions. Han. [21] divided SCADA data by month and determined
the optimal interval length according to particle swarm optimization (PSO) and then car-
ried out interval clustering. Han et al. [22] proposed a clustering method for wind farms
based on correlation analysis and significance testing (CA-ST). Zheng et al. [23] proposed
a PSO optimization kernel principal element analysis (KPCA) method for classifying the
working conditions of offshore wind turbines. However, most of these studies are based
on the direct application of a clustering algorithm to data and do not consider the wind
turbines’ operating mechanisms. Hence, the correlations between wind turbine operating
parameters and operating conditions are unclear and lack theoretical support.

In the field of machine learning, clustering is a classical unsupervised learning method.
Commonly used clustering algorithms and their advantages and disadvantages are sum-
marised in Table 1.

Based on a comparative analysis of the clustering algorithms in Table 1, the k-means
clustering algorithm was selected to cluster the working conditions of the main transmis-
sion system of a wind turbine due to the large number of dimensions in the large amount of
SCADA data. The Calinski–Harabasz (CH) criterion was used to determine the number of
clusters in the k-means clustering algorithm, while the initial cluster centres were selected
by the k-means++ algorithm. The specific method is described in Section 3.1.2.
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The working conditions of a wind turbine’s main transmission system are relatively
complex. Figure 1 shows the variation in the vibrational acceleration of the main shaft of
a 2.5-MW wind turbine according to wind speed and power. As can be seen, even when
an operating parameter is fixed, the vibration still shows a very high variability [24]. In
classifying the main transmission system’s working conditions, there is a small number
of conditions after classification, and the vibrational acceleration may change drastically
within each condition. Therefore, it is not possible to determine whether the vibrational
acceleration changed drastically due to a fault in the main transmission system fault, and it
is difficult to make an accurate judgment of the system’s operating status.

Table 1. Commonly used clustering algorithms and their advantages and disadvantages.

Category Representative Algorithms Advantages Disadvantages

Partition-based clustering k-means [25]
Simple and fast. Scalable and

efficient for handling large
data sets.

k-values are difficult to
estimate. The choice of initial

centroids can affect the
clustering results to a

large extent.

Hierarchy-based clustering
Balanced Iterative Reducing

and Clustering Using
Hierarchies (BIRCH) [26]

No need to enter the
number of categories K.
Memory saving and fast

clustering. Noise points can
be identified, and the dataset

can be pre-processed for
initial classification.

Not suitable for clustering
data with high-dimensional

features. Complex adjustment
of key parameters has a large

impact on the final result.

Density-based clustering
Density-Based Spatial

Clustering of Applications
with Noise (DBSCAN) [27]

No need to determine
k-values in advance.

Arbitrarily shaped clusters
can be found. Outliers can be
identified. Initial centroids do

not affect clustering results.

Not suitable for clustering
high-dimensional data. Not
suitable for clustering data

with changing density.
Difficult to determine optimal

values for parameters.

Network-based clustering Statistical Information Grid
(STING) [28] Fast clustering

Parameter-sensitive, unable to
handle irregularly distributed

data. Low accuracy of
clustering results.

Model-based clustering
Self-Organized Maps
(SOM) [29], (Gaussian

Mixture Model) GMM [30]

The classification of “classes”
is expressed in probabilistic

form and the characteristics of
each class can be expressed in

terms of parameters.

Inefficient execution,
especially when the number
of distributions is large, and
the amount of data is small.

Fuzzy-based clustering Fuzzy c-means (FCM) [31]

Classification according to the
principle of maximum

subordination in fuzzy sets.
Better for clustering normally

distributed data.

Dependent on initial
clustering centres. Longer
clustering time for larger

data volumes. No guarantee
of convergence to an

optimal solution.

Graph-based clustering Spectral clustering [32]

Spectral clustering works well
when there are few clustering

categories. Suitable for
high-dimensional clustering.

Has the ability to cluster on an
arbitrarily shaped sample
space and converge to a

globally optimal solution.

Very sensitive to the choice of
clustering parameters. Only

applicable to balanced
classification problems.
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Figure 1. Variations in spindle vibrational acceleration with (a) 30-s average wind speed and (b) 30-s average power.

To address the above problems, this paper proposes a method for classifying a wind
turbine main transmission system’s conditions based on analysis of the wind turbine’s
operating characteristics and use of a k-means clustering algorithm. The main contributions
of this paper are as follows:

• A transmission system working condition classification based on wind turbine op-
erating characteristics and a k-means clustering algorithm is proposed. It can solve
the problems of traditional classification systems, such as classes being insufficient
in clarity or number and high false-alarm rates in the main drivetrain vibration
detection process.

• A method for selecting the status parameters of the main transmission system based
on correlation analysis is proposed. It avoids the influence of feature parameter
omissions in the process of selecting feature parameters and improves the validity of
SCADA data.

• During vibration monitoring, the false-alarm rate is used as an index to verify the
validity of the transmission system’s working condition classification.

The remaining parts of the paper are organized as follows. The main transmission
system’s status feature parameters are selected according to correlation analysis in Section 2.
Classification of the transmission system’s historical working conditions based on turbine
operating characteristics is combined with a clustering algorithm in Section 3. The false-
alarm rate in vibration detection is used as an index for the evaluation of classification
results in Section 4. A case study is used to validate the proposed method in Section 5.
Conclusions are drawn in Section 6. A flowchart of the working condition classification
system is shown in Figure 2.
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2. Selection of the Main Transmission System’s Status Feature Parameters

The main transmission system of wind turbine includes a hub, main shaft, bearings,
gearbox, and couplings. The SCADA system collects a large amount of data with a
large number of dimensions. The data contains many redundant variables, so in condition
assessment, it is necessary to eliminate variables that are unrelated to the main transmission
system. The Pearson correlation coefficient is used to select the characteristic parameters of
the main transmission system’s operating status from the original SCADA data.
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The Pearson correlation coefficient is used to measure the degree of linear correlation
between two random variables. Assuming the existence of variables X and Y, the Pearson
correlation coefficient between them is:

ρX,Y =
cov(X, Y)

σXσY
=

E((X− µX)(Y− µY))

σXσY
(1)

where cov(X, Y) is the covariance of X and Y, and σX , σY are their standard deviations.
If the total number of X and Y samples is n, then the correlation coefficient between X

and Y is:

r =

n
∑

i=1

(
Xi − X

)(
Yi −Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi −Y

)2
(2)

The Pearson correlation coefficient r quantifies the linear correlation between the
variables X and Y with the range [–1, 1]. Higher values indicate a stronger correlation.
In general, it is considered that |r| ≥ 0.5 is necessary to consider that two variables are
correlated [33].

The SCADA system collects a large amount of data with a large number of dimensions.
This includes some constant parameters, such as power factor, pitch standby supply voltage,
and grid-side voltage, which do not express the operating status of the wind turbine at the
site and therefore need to be eliminated. Based on expert experience [33], a total of 18 status
parameters related to the operating state of the main transmission system were selected
from the SCADA system, as shown in Table 2. Here, the average 30-s power is used as the
performance index. Status parameters with a strong relationship to the active power are
selected from the SCADA system and the Pearson correlation coefficient is calculated, as
shown in Table 2.

Table 2. Pearson correlation coefficients between transmission system status parameters and the average 30-s power.

Status Parameter Pearson Correlation
Coefficient Status Parameter Pearson Correlation

Coefficient

Average spindle speed 0.8072 Average wind speed 0.9256
Average torque 0.9953 30-s average wind speed 0.9263

Average wind direction 0.0396 600-s average wind speed 0.9171
Average outdoor temperature −0.1739 600-s average power 0.9822
Average 30-s wind direction 0.0403 Average cabin temperature −0.2198

Average gearbox oil
temperature 0.4117 Average cabin cabinet

temperature −0.1544

Average gearbox high-speed
end-bearing temperature 0.7873 Average main bearing

temperature 0.6464

Average gearbox oil
distributor outlet pressure 0.7491 Average gearbox low-speed

end bearing temperature 0.6206

Average gearbox oil filter inlet
pressure 0.8267 Average spindle vibration

acceleration 0.8133

From the correlation analysis, the state parameters in Table 2 with correlation coef-
ficients |r| ≥ 0.5 were selected as the status parameters of the main transmission system.
Among the average wind speed, 30-s average wind speed, and 600-s average wind speed,
the 30-s average wind speed had the highest correlation with the active power and so was
selected as the wind speed status parameter. The 30-s average power was selected as the
power parameter rather than the 600-s average power. The average main shaft speed, 30-s
average wind speed, 30-s average power, average torque, average main bearing tempera-
ture, average gearbox high-speed end-bearing temperature, average gearbox low-speed
end-bearing temperature, average main shaft vibration acceleration, average gearbox oil
filter inlet pressure, and average gearbox oil distributor outlet pressure were selected as
the 10 status parameters of the main transmission system.
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3. Classification of the Working Conditions of the Main Transmission System
3.1. Introduction to the Principles of the k-Means Clustering Algorithm

The k-means clustering algorithm is a clustering method based on the similarity
between samples. The objective is to minimize the sum of squares of the distances between
all samples and their corresponding cluster centres.

Assuming an input sample set X = {x1, x2, · · · , xn}, the number of clusters is k.
k-means clustering can be expressed as the sum of squared errors (SSE) of convergence.

SSE =
k

∑
j=1

∑
µi∈ϕj

‖µi − µj‖2 (3)

where ϕj is the first j cluster; µi is the sample point in ϕj; and µj is ϕj the centre of mass.

3.1.1. The k-Means Clustering Algorithm Process

The k-means clustering algorithm process is as follows:

1. Generate k initial centre-of-mass points using the k-means++ algorithm: {µ1, µ2, · · · , µk}.
2. Calculate the distance between each sample point and the centre-of-mass points.
3. Assign sample points to the class nearest to them.
4. Calculate the centre of mass of each class using the sample points that have just been

grouped: calculate the mean value of each cluster coordinate as the centre of mass.
5. Repeat steps 3–5 until its centre of mass no longer changes, or the maximum number

of iteration steps is reached.
6. Output the cluster division C = {C1, C2, · · · , Ck}.

3.1.2. The k-Means++ Algorithm Process

The k-means++ algorithm for generating the initial cluster of centre-of-mass points
flows is as follows:

1. Create an empty set S for storing the k prime points of the cluster.
2. Select a random instance from the sample set X called µ1, and add it to the first cluster

S as the centre of mass.
3. For each instance xi in the dataset X, calculate the square of the distance to the centre

of mass of each cluster within dataset S, the smallest of which is the square of the
distance xi to S:

d(xi, S)2 = min
µj∈S
‖xi − µj‖2 (4)

4. The probability of each sample being selected as the next cluster centre is calculated
as follows. The next cluster centre point µi is selected by the roulette wheel method
and added to S.

P(xi) =
d(xi, S)2

∑
j

d(xj, S)2 (5)

5. Repeat steps 3–4 until k clusters of centre-of-mass points have been selected.

3.1.3. Determination of the Number of Clusters k

In cluster analysis, the number of clusters k needs to be obtained first, which deter-
mines the effectiveness of clustering. If the k value is too small, the range of each condition
interval is too large. This can easily lead to the classification of the optimal working interval
range being too large or there being no working conditions that satisfy the minimum
support and minimum feasible degree in the classification results, resulting in failure
of classification. If k is too large, the interval of each parameter is too detailed, which
increases the dimensionality of the parameters and increases the intermediate data of the
mining process, resulting in a reduction in mining speed. Therefore, this paper adopts the
Calinski–Harabasz (CH) criterion to determine a reasonable number of clusters k.
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The CH criterion, also known as the variance ratio criterion, assesses the effect of
clustering using the degree of denseness within clusters and the degree of dispersion
between clusters, which is calculated as follows:

S(k) =
tr(Bk)

tr(Wk)
× m− k

k− 1
(6)

where m is the total number of samples in the training set, k is the number of clusters, Bk is
the covariance matrix between categories, Wk is the covariance matrix of the data within
categories, and tr is the trace of the matrix.

After the clustering is completed, the smaller the covariance of the data within cat-
egories and the larger the covariance between categories (i.e., the tighter the classes are
themselves and the more dispersed the classes are), the better the clustering effect will
be, and, accordingly, the higher the CH score will be. Therefore, the optimal number of
clusters can be determined by calculating the CH scores at different k values.

3.2. Main Transmission System Working Conditions Classification Based on the k-Means
Clustering Algorithm

Most traditional working conditions are classified directly by clustering algorithms
after selecting the working parameters, without taking into account the operating charac-
teristics of the wind turbine. In different wind speed ranges and under different working
conditions, wind turbines are adjusted by different control methods, so it is necessary to
analyse their control strategies and classify the working conditions in different stages.

Current mainstream doubly-fed wind turbines have a variable-speed and constant-
frequency control strategy; i.e., the wind turbine speed varies with the wind speed to
maintain the best blade-tip-speed ratio and maximum wind-energy conversion efficiency.
Figure 3 shows the relationships between the power of a variable-speed, constant-frequency
wind turbine, and wind speed and wind turbine speed. According to the wind turbine’s
power characteristics and wind speed variation, the operation can be theoretically divided
into five phases as follows [34]:

1. Shutdown phase (OA and E+): Wind speeds are less than the cut-in wind speed vcut_in
or greater than the cut-out wind speed vcut_out;

2. Start-up phase (AB): Wind speeds are greater than the cut-in wind speed vcut_in and
less than the wind speed v1. The wind turbine speed is limited to the minimum
speed ωmin;

3. Maximum wind-energy tracking phase (BC): Wind speed is between v1 and v2, the
wind turbine speed is between the minimum speed ωmin and the rated speed ωrate,
the wind turbine tip speed ratio remains optimal, and the wind energy utilization
coefficient remains at the maximum;

4. Constant speed phase (CD): Wind speeds are between v2 and the rated wind speed
vrate, and the wind turbine speed remains at the rated speed ωrate;

5. Constant power phase (DE): Wind speeds are between the rated wind speed vrate and
cut-out wind speed vcut_out, the wind turbine speed is at the rated speed ωrate, and
the wind power utilization coefficient is adjusted by adjusting the pitch angle β so
that the wind power output is kept at the rated power Prate.

From the main transmission system status parameters selected by correlation analysis,
operating parameters are selected to classify the main transmission system’s operating
conditions. According to Figure 3, it can be seen that the stages of wind turbine operation
are closely related to wind speed, wind turbine speed, and power. The control strategy
for each stage is different. Firstly, according to the relationships between power and wind
speed and wind turbine speed, there are five categories because the constant speed stage
includes the constant power stage. Then, the two stages are combined into one category and
collectively referred to as the constant speed stage, making a total of four major categories.
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The purpose of the condition classification is to improve the accuracy of later condition
assessment by subdividing the operating conditions of the wind turbine. The maximum
wind-energy tracking stage and constant speed stage are the normal working stages of
the wind turbine and produce a large amount of data, so it is necessary to subdivide the
working conditions according to their operating characteristics. In the maximum wind
energy tracking stage, the power varies with wind speed and wind turbine speed, so the
k-means clustering algorithm is used to subdivide the working conditions at this stage
according to wind turbine speed, wind speed, and power. In the constant speed stage, the
wind turbine speed is constant, so the k-means clustering algorithm is used to subdivide
the working conditions according to wind speed and power. Finally, we can obtain the
final working condition classification results.

4. Determination of Alarm Thresholds

In the process of wind turbine SCADA system detection, the vibrational acceleration
of the main transmission system can be detected by sensors to reflect the operating status.
A vibrational acceleration alarm is mostly an over-limit alarm; i.e., as long as the threshold
is exceeded, the alarm will be generated; otherwise, it will not [35]. The data used in this
paper refer to normal wind turbine operation without failure. Theoretically, the detection
system should not issue an alarm; however, during actual state monitoring, false alarms
are difficult to avoid, which requires adjustment of the alarm threshold to reduce the
false-alarm rate as much as possible.

Figure 4 shows the frequency distribution of the average spindle vibrational accel-
eration from SCADA data. The frequency distribution of Figure 4a contains all vibration
data of the wind turbine. In addition, when the wind turbine is running, the vibration
acceleration frequency distribution is shown as Figure 4b. Comparing the two graphs, we
can see that the peak on the left side of Figure 4a, which appears in the shutdown phase of
the wind turbine, we do not consider.

We choose its arithmetic mean µ and standard deviation σ as the basis for the threshold
and set the alarm threshold C according to the 3σ criterion.

C = µ + 3σ (7)
If the vibrational acceleration value exceeds the threshold C, an alarm is generated.

To evaluate the reasonableness of this classification, a definition of the false-alarm rate
is introduced.
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If the vibrational acceleration value exceeds the threshold C , an alarm is generated. 
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Figure 4. Frequency distribution of vibrational acceleration. (a) All vibration data of the wind turbine; (b) the vibration data
during the wind turbine operation.

In the SCADA historical dataset, it is assumed that the main transmission system
has n different working conditions corresponding to n alarm thresholds relating to the
characteristic value of vibrational acceleration. For the i-th normal operating conditions, the
total number of samples is Bi, and the number of samples exceeding the alarm threshold is
Ai. Then, the false-alarm rate Ri for the i-th working conditions is:

Ri = Ai/Bi (8)
Therefore, the false-alarm rate is used as an index of the merit of the classification

system. The lower the rate, the better the classification.

5. A Case Study
5.1. Wind Turbine Overview and SCADA Monitoring Parameters

As a case study, we considered a double-fed wind turbine with a single capacity of
2.5 MW located in a wind farm in northern China. The turbine has been operating normally
since its commissioning, with a cut-in wind speed of 3 m/s, a cut-out wind speed of 25 m/s,
and a rated wind speed of 9.5 m/s. Its theoretical power curve is shown in Figure 5.
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The SCADA system of this unit is stored using 5-min sampling, and the real-time
operating status parameters collected include: wind speed, spindle speed, power, volt-
age, current, vibration, oil pressure, and torque. In this example, operating data from
1 September–9 October 2020 was selected for analysis, with a total of 10,683 data records.
The original SCADA data is shown in Table 3.

Table 3. Raw SCADA data.

Time Average Spindle
Speed (rpm)

Average Wind
Direction (◦)

Average Wind
Speed (m/s)

Average Power
(kW) · · · Cumulative Power

Generation (kW·h)

1 September
2020 0:00 7.1 12.9 4 317 · · · 4,994,446

1 September
2020 0:05 7.7 14.1 5.1 523.5 · · · 4,994,491

1 September
2020 0:10 8.5 8 5.8 781.5 · · · 4,994,552

1 September
2020 0:15 7.1 6 4.7 397.6 · · · 4,994,584

1 September
2020 0:20 7.1 −10 4.1 323.6 · · · 4,994,609

...
...

...
...

...
...

...

5.2. Data Pre-Processing
5.2.1. Data Cleaning

The raw data collected by the SCADA system described the status of the equipment
throughout its lifecycle, including normal operations, failures, shutdowns, maintenance,
and other states. Therefore, the SCADA data contains some “dirty data”, which is mean-
ingless to the analysis and could directly or indirectly affect it. Therefore, the SCADA data
requires cleaning, as follows:

1. Removal of records with status variable values that are missing or recorded as “0”.
2. Referral to maintenance records to remove data recorded when the wind turbine was

down for maintenance.
3. Referring to the method described in [36]: the DBSCAN-based density clustering

method is used to eliminate outlier anomalies, and the truncation method is used to
eliminate points where the wind speed is greater than the cut-in wind speed, but the
power is still 0.

Figure 6 compares the wind speed vs power scatterplots before and after cleaning.
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Figure 6. Scatterplots of wind speed vs. active power using (a) raw data and (b) cleaned data.
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Figure 6 shows that after data cleaning, its wind speed power graph is consistent with
the power curve of the wind turbine in Figure 5, and some outliers and 0-power stacking
points are removed from the raw data. Hence, the data cleaning effect is achieved.

5.2.2. Data Normalization

The amount of data recorded by the SCADA system is huge, and the magnitudes
of each type of operating data differ. The maximum and minimum values of different
operating parameters also differ, which will affect the accuracy of the model. Therefore,
the historical data needs to be normalized and mapped to the range of 0–1 to eliminate the
influence of scale.

Maximum-minimum normalization is used according to the formula:

xij
′ =

xij −min(xj)

max(xj)−min(xj)
(9)

where xij is the first i data point corresponding to variable j; max(xj) and min(xj) are the
maximum and minimum values of variable j, respectively; and xij

′ is the normalized value.
After normalization, data containing the 10 characteristic parameters of the main

transmission system (selected according to the correlation analysis in Section 2) were
obtained, as shown in Table 4.

Table 4. Normalized data.

Time Average
Spindle Speed

30-s Average
Wind Speed

30-s Average
Power

Average Main Bearing
Temperature · · · Average Spindle

Vibration Acceleration

1 September
2020 0:00 0.6514 0.2516 0.1217 0.7977 · · · 0.2165

1 September
2020 0:05 0.7064 0.3082 0.2010 0.8006 · · · 0.2921

1 September
2020 0:10 0.7798 0.3711 0.3 0.8064 · · · 0.1890

1 September
2020 0:15 0.6514 0.2956 0.1526 0.8064 · · · 0.2027

1 September
2020 0:20 0.6514 0.2642 0.1242 0.8064 · · · 0.2405

...
...

...
...

...
...

...

5.3. Clustering of Main Transmission System Working Conditions

Through the above analysis of the SCADA historical data, the normalized data was
selected, and the main transmission system’s working conditions were classified.

5.3.1. Direct Clustering of Working Conditions

To compare the effects of the working conditions before and after the method im-
provement, the three characteristic parameters of average spindle speed, 30-s average
wind speed, and 30-s average power were selected using the k-means clustering algorithm
to directly cluster the SCADA data of the wind turbine during normal operation, i.e., to
remove data recorded during shutdown phases. The CH values of samples with different
numbers of clusters from 2 to 10 were calculated, as shown in Figure 7, which shows that
the CH value was largest with five clusters. Together with the shutdown phase operating
conditions, there are six categories in total.
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Figure 7. CH values at different number of clusters.

Figure 8 shows the results after clustering using the k-means clustering algorithm. It
can be seen that after direct clustering of the SCADA data, the distribution of the working
conditions is not obvious. The three stages of start-up, maximum wind-energy tracking,
and constant speed are not clearly divided, and the working conditions are mixed.
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When the turbine is shut down, the turbine does not, and its data are not considered
in the condition assessment. Therefore, data from the shutdown phase (condition 1)
were removed, and 2000 test samples were randomly selected from the normal operating
conditions to calculate the false-alarm rate. The test samples were categorized by working
condition. The working condition to which the sample belonged was determined, and the
alarm threshold for each condition was determined according to the method in Section 4.
The false-alarm rates were then calculated (Table 5).



Energies 2021, 14, 7043 14 of 18

Table 5. Alarm thresholds and false-alarm rates for different working conditions.

Working Condition
Category (i) Threshold (Ci)

Number of Samples Exceeding the
Alarm Threshold (Ai)

Total Number of
Samples (Bi)

False-Alarm Rate
(Ri)

2 0.0127 27 512 5.27%
3 0.0144 21 419 5.01%
4 0.0142 11 327 3.36%
5 0.0136 15 373 4.02%
6 0.0142 6 369 1.63%

Total 80 2000 4.00%

5.3.2. Improved Working Condition Classification Method

The above analysis with the direct use of clustering algorithms improved the clas-
sification of working conditions. Firstly, according to the wind turbine output power
control principle and the relationships between power and wind speed and wind turbine
speed, four categories were initially defined: shutdown phase, start-up phase, maximum
wind-energy tracking phase, and constant-speed phase. The results are shown in Figure 9.
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Figure 9. Preliminary working condition classification. (a) 30-s average wind speed vs. 30-s average power; (b) average
spindle speed vs. 30-s average power.

After the initial classification, the third and fourth categories of conditions were
subdivided using the k-means clustering algorithm. Firstly, for the third category, 30-s
average power, 30-s average wind speed, and average spindle speed were used as the
characteristic variables for clustering. The optimal number of clusters was four according to
the CH criterion. For the fourth category, 30-s average power and 30-s average wind speed
were used, and the optimal number of clusters was four according to the CH criterion.
After aggregating the clusters, the final 10 classes of conditions were obtained, as shown
in Figure 10.

To more clearly demonstrate the division of the historical working conditions, the
clustered results were plotted three-dimensionally with axes representing wind speed,
spindle speed, and power and are shown in Figure 11.

Figure 11 shows that, based on the analysis of operating characteristics, it is possible
to divide the various phases of wind turbine operation into 10 working conditions after
clustering analysis of the maximum wind-energy tracking phase and constant-speed phase.
This can solve the problems of an unknown distribution of working conditions and a small
number of working conditions resulting from direct clustering.



Energies 2021, 14, 7043 15 of 18

Energies 2021, 14, x FOR PEER REVIEW 15 of 19 
 

 

  
(a) (b) 

Figure 9. Preliminary working condition classification. (a) 30-s average wind speed vs. 30-s average power; (b) average 
spindle speed vs. 30-s average power. 

After the initial classification, the third and fourth categories of conditions were sub-
divided using the k-means clustering algorithm. Firstly, for the third category, 30-s aver-
age power, 30-s average wind speed, and average spindle speed were used as the charac-
teristic variables for clustering. The optimal number of clusters was four according to the 
CH criterion. For the fourth category, 30-s average power and 30-s average wind speed 
were used, and the optimal number of clusters was four according to the CH criterion. 
After aggregating the clusters, the final 10 classes of conditions were obtained, as shown 
in Figure 10. 

 
(a) (b) 

Figure 10. Results after subdivision of working conditions using the k-means clustering algorithm. (a) 30-s average wind speed vs. 
30-s average power; (b) average spindle speed vs. 30-s average power.  

To more clearly demonstrate the division of the historical working conditions, the 
clustered results were plotted three-dimensionally with axes representing wind speed, 
spindle speed, and power and are shown in Figure 11. 

0 2 4 6 8 10 12
Average spindle speed

0

500

1000

1500

2000

2500

3000

Figure 10. Results after subdivision of working conditions using the k-means clustering algorithm. (a) 30-s average wind
speed vs. 30-s average power; (b) average spindle speed vs. 30-s average power.
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The alarm thresholds and false-alarm rates for each condition are calculated in the
same way and are shown in Table 6.

Table 6. Alarm thresholds and false-alarm rates under different operating conditions.

Working Condition
Category (i) Threshold (Ci)

Number of Samples Exceeding the
Alarm Threshold (Ai)

Total Number of
Samples (Bi)

False-Alarm Rate
(Ri)

2 0.0147 7 420 1.67%
3 0.0182 3 219 1.37%
4 0.0182 0 220 0
5 0.0169 5 177 2.82%
6 0.0172 1 196 0.51%
7 0.0164 4 209 1.91%
8 0.0161 0 200 0
9 0.0159 0 200 0

10 0.0166 3 159 1.89%
Total 23 2000 1.15%
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The traditional method in Figure 8 is used to classify the wind turbine operation
phases into five categories, while the proposed method in Figure 11 is used to classify
into nine categories. Comparing the figures, it can be seen that the various phases of
the wind turbine operation can be divided based on the analysis of the wind turbine
operation characteristics, and there is a clear distinction between the wind turbine start-
up phase, the maximum wind energy tracking phase, and the constant speed phase. In
addition, comparing the alarm thresholds and false-alarm rates derived from the 2000
test samples in Tables 5 and 6, it can be concluded that the false-alarm rates calculated
directly using the k-means clustering algorithm basically range between 3% and 6% for each
condition, with a total false-alarm rate of 4.00%. Meanwhile, the false-alarm rates derived
from the proposed method are basically 0–3% for each condition, with a total false-alarm
rate of 1.15%, which is an improvement compared to that of direct clustering. Therefore,
the working condition classification method proposed in this paper can reasonably and
effectively classify the operating conditions of a wind turbine’s main transmission system
and reduce the false-alarm rate in its vibration-detection process.

6. Conclusions

This paper addresses the engineering reality of the un-known real-time dynamic
loads and multi-state dynamic behaviour of the main transmission system of a wind
turbine, which can lead to the early onset of abnormal working conditions. A transmission
system historical working condition classification method based on wind turbine operating
characteristics analysis and a k-means clustering algorithm was proposed. The proposed
method is based on the data collected using the SCADA acquisition system. This is
oriented toward the division of working conditions for the later main transmission system
condition assessment.

The selection method of state parameters based on correlation analysis is proposed. In
order to avoid the omission of relevant state parameters and the interference of irrelevant
variables to the results, the redundant variables are eliminated by using Pearson correla-
tion coefficient. Finally, 10 state characteristic parameters of main transmission system
are selected.

Most traditional working conditions are classified without taking into account the
operating characteristics of the wind turbine. An improved method of working conditions
classification is proposed. The working conditions are initially divided into four stages.
Then, the k-means clustering algorithm is used to subdivide the maximum wind-energy
tracking stage and constant speed stage, which account for a relatively large number of
operating conditions. This provides more accurate working conditions for the subsequent
condition assessment of the main transmission system.

The method was applied to a real case study of a wind turbine. To test its effective-
ness, the false-alarm rates during vibration detection was calculated. Furthermore, the
false-alarm rates were significantly reduced by compared with working conditions classifi-
cation using the direct k-means clustering algorithm. The results show that the proposed
classification method can solve the problems of unclear condition classification, too-few
condition categories, and high false-alarm rates that could occur with direct clustering
classification based on vibration detection.

The working condition classification method can be applied to the real-time moni-
toring of the wind turbine main transmission system at a later stage. In the process of its
condition monitoring, it can reduce the false-alarm rates, improve the accuracy of main
transmission system condition assessment, reduce maintenance costs, and ensure the safety
and economy of wind turbines operating.
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