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Abstract: Two design flows of the Petri net-based cyber-physical systems oriented towards imple-
mentation in an FPGA are presented in the paper. The first method is based on the behavioural
description of the system. The control part of the cyber-physical system is specified by an inter-
preted Petri net, and is described directly in the synthesisable Verilog hardware language for further
implementation in the programmable device. The second technique involves splitting the design
into sequential modules. In particular, adequate decomposition and synchronisation algorithms are
proposed. The resulting modules are further modelled within the Verilog language as the composi-
tion of sequential automata. The presented design flows are supported by theoretical background,
and templates of Verilog codes. The proposed techniques are illustrated by a real-life example of
a multi-robot cyber-physical system, where each step of the proposed flows is explained in detail,
including modelling, description of the system in the Verilog language, and final implementation
within the FPGA device. The results obtained during the verification and validation confirm the
proper functionality of the system designed by both design flows.

Keywords: Petri net; control part of cyber-physical systems; FPGA; Verilog HDL

1. Introduction

A cyber-physical system (CPS) integrates computational aspects with physical pro-
cesses [1–3]. Its behaviour can be defined by the control (cyber) and physical parts of the
system. In general, the first (cyber) part manages the objects and makes decisions, while
the physical part refers to the real world and is prone to environmental influences. CPSs
are widely used in various domains of human life and industry, including medical and
health-care systems [4,5], vehicular and transportation systems [6], marine industry [7],
smart building and cities [8–10], electric power grids and energy systems [11,12], and many
others [13]. Cyber-physical systems are often implemented as concurrent systems, which
allows the execution of multiple operations at the same time (simultaneously) [14]. Such
a feature, combined with the increasing complexity of the modelled systems, results in a
non-trivial challenge for design and verification of the modern CPS [2,15,16]. Among the
others, Petri nets are one of the specification methods of cyber-physical systems.

A Petri net is a directed bipartite graph with two types of nodes (vertices): places and
transitions [17–29]. A place is usually denoted by a circle, while transition is represented
by a rectangle. Nodes of a Petri net are connected by directed arcs. Places of a Petri net
may hold a token (or tokens), marked by black dots (or circles). If a place contains a token,
it is called a marked place. The set of simultaneously marked places results in a state of
the system, called marking. Changes to markings are executed during firing of transitions.
Finally, a transition may fire if every one of its input places contains a token. The main
advantage of the Petri net-based design is the possibility of the graphical specification of
a system [17–20]. Moreover, they are widely supported by validation, verification and
analysis methods [21–24]. Consequently, the designer is able to examine the reliability and
robustness of the design [25–28]. Moreover, a Petri net-based system benefits from the
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formal verification of the design at the early specification stage, which may significantly
reduce the time and costs of the modelled system [25–28]. Finally, a Petri net naturally
preserves concurrent relations in the modelled system [14,19,20,29]. Such a property is
crucial in further design stages, especially in the case of the implementation of the system
in hardware that supports concurrency. A field programmable gate array (FPGA) seems
to be the perfect target for the systems specified by a Petri net [10,14,30,31]. An FPGA is
composed of a matrix of programmable logic blocks. Its main advantage relies on high
performance, flexibility and the possibility of multiple reconfiguration of the device [32–36].
Moreover, due to their architecture, FPGAs are parallel by nature [14,37].

This paper is focused on the design methods of the control part of cyber-physical
systems specified by a Petri net and oriented towards implementation in the FPGA device.
The main aim of the presented techniques is to address the lack of strict and clear design
flows of the Petri net-based models oriented towards further implementation in an FPGA.
Therefore, the proposed techniques are presented as the step-by-step design flows, in order
to show the main ideas in as clear and simple a fashion as possible. Furthermore, the
proposed techniques permit resolving conflict in the modelled system (cf. Section 3 for de-
tails). In particular, two novel design flows of the Petri-net based systems oriented towards
further implementation in the FPGA are shown. The first method applies behavioural
description of the system and can be used in the general approach. The second technique is
more advanced since it applies decomposition of the system into sequential automata. This
concept can be especially useful in the case of systems where further optimisation is re-
quired, or advanced configuration is applied (for example dynamic partial reconfiguration
of FPGA).

The paper is organised as follows. Section 2 presents the related work and emphasises
the motivation of the proposed methods. Main notations and definitions are included
within Section 3. The presented design flows are shown in Section 4, while Section 5
illustrates their ideas with real-life examples. Finally, Section 6 summarises the paper,
presents the limitations of the proposed methods, and shows possible future works.

2. Related Work

There are several techniques that address the implementation of the Petri-net based
systems in the FPGA device. Let us now describe the most popular methods (including
low and high levels of realisations), by pointing out their advantages and weaknesses.
Moreover, we will expose the main problems and difficulties related to the implementation
of Petri-net based systems within FPGAs.

A low-level realisation technique of a Petri net-based system implemented in an FPGA
is shown in [38]. The proposed idea assumes splitting of the system into sub-components
that strictly refer to the structure (logic block) of the FPGA with further description of
the system in the VHDL (Very High Speed Integrated Circuit Hardware Description Language).
According to the authors, the approach permits the reduction of the utilisation of the FPGA
elements. Indeed, the presented results reduced the device resources (in comparison to the
other solutions). On the other hand, the proposed concept has several serious limitations.
First of all, the system ought to be divided into low-level elements, which can be very
difficult to achieve, especially in the case of larger designs. Furthermore, as pointed out
by the authors, due to the physical limitations of an FPGA (number of inputs and outputs
of the logic block) the adequate interconnections of signals ought to be assured. Finally, it
seems that the presented method addresses the particular FPGAs (or their families), since
only one type of logic block is considered.

Another low-level hardware implementation concept is shown in [39]. The proposed
idea is based on fuzzy Petri nets. Those structures extend the classical Petri nets by analogue
signals. The hardware implementation of the system involves application based on fuzzy
logic: fuzzy registers (fuzzy JK flip-flops) and fuzzy logic (fuzzy gates). The prototyping
flow is presented, which is illustrated by an example of the control system design. The
proposed method seems to be interesting and applicable, however it requires advanced
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(specialist) knowledge in regard to the fuzzy systems. Moreover, the modelled system
ought to be initially transformed into the fuzzy logic circuit (including fuzzy registers
and fuzzy gates), and finally converted into the synthesisable logic for the destination
hardware. An extended version of the above method, directly oriented towards the FPGA
is shown in [40]. The presented idea also applies fuzzy Petri nets; but it does not require
transformations into the fuzzy logic. The resulting system can be described, for example,
in the Verilog hardware description language (Verilog HDL). Unfortunately, the technique also
requires advanced knowledge of the fuzzy systems and fuzzy nets.

Modelling and implementation techniques of the cyber-physical systems oriented
towards the realisation in the hardware are shown in [30]. In particular, the paper describes
the design of the smart home system, which is initially modelled by a Petri net. Unfortu-
nately, the work lacks formal notations and definitions, and it seems that the presented
model ought to be safe (“token ( . . . ) can either be 1 or 0”). Moreover, the liveness of
the net is analysed. Finally, the system is described in the hardware description language
and implemented in the FPGA device. Additionally, realisation of the system within a
microprocessor is considered and compared with the FPGA-oriented implementation.
Although the idea seems to be interesting, the paper is strictly focused on the particular
example. Furthermore, it lacks important technical details (such as formal notations and
definitions, conversions techniques, etc.).

A high-level implementation technique is shown in [41]. The method is based on the
application of the PNML (Petri Net Markup Language [42]). The Petri net-based model is con-
verted to the synthesisable VHDL code, with the further possibility of the implementation
in the FPGA device. The technique is based on the modular approach by description of the
net components in the form of blocks. The behaviour of the system is controlled by a state
graph. The main weakness of the proposed method is that it relies on the transformations
of the PNML model into the synthesisable code, including construction of specialised
blocks, state graph, etc.

The PNML is also exposed in [31], where the set of tools designed to support the
modelling process of Petri net-based systems is shown. The presented methodology
permits for further implementation of the system in the hardware (microprocessors, FPGA).
To achieve this, the initial Petri net model ought to be translated into the intermediate code
(C or VHDL). The techniques are illustrated by the application examples.

Another modular approach of a Petri net-based system oriented on the implementation
in the FPGA device is proposed in [43]. The so-called “Petri Processor” (PP) is exposed as
an integration with the traditional processors in order to form a heterogeneous multi-core
processor. According to the authors, such a structure permits verification the system by
Petri net mathematical formalisms. Unfortunately, the presented technique is at a rather
initial stage, and the paper lacks experimental results.

The above papers [31,41,43] point out a very important problem that occurs during
modelling of the Petri net-based system intended for the further hardware implementation.
Such an issue is related to the conflicts among the transitions. Since this is a crucial issue
in the implementation of the Petri-net based systems in FPGAs, let us look closer at this
problem. Petri nets in their classical form (i.e., “ordinary Petri nets”) permit the modelling
of a system that may contain so-called “conflicts” among the transitions. Such a situation
occurs when two or more transitions have a common (unguarded) input place, and each of
those transitions can be enabled. Figure 1a shows an example of a conflict in a Petri-net
based system among transitions t1 and t2.
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Figure 1. Conflict in a Petri net (a), and its possible resolution by an interpreted Petri net (b).

Clearly, conflicts may lead to the nondeterministic behaviour of the system [44]. This
problem can be solved in various ways. There exist two main ideas that permit elimination
(or avoidance) of conflicts in the modelled design. The first one involves the transformation
of the structure of the net [45]. Obviously, such a modification can be a real challenge,
especially in the case of relatively complex systems specified by a Petri net. The second
solution is based on the application of the special classes of Petri nets (extensions of
the ordinary nets) [14,18,46], such as interpreted Petri nets (or just interpreted nets). Since
interpreted nets are used in this paper to model the control part of the cyber-physical
system, let us briefly discuss their main properties, starting with the resolution of conflicts
in the system (please refer to Section 3 for formal definitions and notations related to the
interpreted Petri nets).

In general, interpreted Petri nets utilise additional input and output signals, which
are associated with the transitions and places of the net, respectively. Those signals are
used for communication of the system with the environment, but can also be applied for
conflict resolutions in the net. Consider the part of the net shown in Figure 1b. The conflict
among transitions t1 and t2 is resolved by the binary input signal x, which is associated
to both transitions. Once x = 1, transition t1 is enabled and it can fire. In the opposite
case, when x = 0, transition t2 is enabled. Interpreted nets are widely used in modelling of
real-life systems, such as concurrent controllers, control systems or cyber-physical systems.
However, they are not standardised and there are various definitions of interpreted nets in
the literature [44,47,48].

In this paper we will follow interpreted Petri nets, shown in [49], that are live and safe,
with binary input and output signals (see Section 2 for details). Such nets are especially
applicable in the modelling of systems oriented on the hardware realisation, such as mi-
croprocessors [50] or field programmable gate arrays (FPGAs) [49]. Moreover, interpreted
nets can be used in the modelling of reconfigurable systems [51]. The latest FPGAs offer
a very interesting technique, called dynamic partial reconfiguration. In short, this method
permits for the modification of the functionality of the system without stopping the device.
Such a property is especially useful in the case of concurrent systems which execute tasks
that cannot be interrupted or stopped [51].

Finally, let us discuss the existing design methods of the control part of cyber-physical
systems specified by a Petri net and oriented towards implementation in the FPGA. A
technique shown in [10] proposes a Petri-net-based specification of cyber-physical systems.
In particular, the technique is dedicated to the control of the direct matrix converter
with space vector modulation (SVM) and transistor commutation. The presented method
utilises the main properties of Petri nets, including verification and analysis of the system.
Moreover, the adequate Verilog codes of selected modules are shown. The proposed
idea is oriented towards the implementation of the system in programmable devices (in
particular, Xilinx FPGA is used). Unfortunately, the technique is strictly oriented towards
the control of direct matrix converters and it cannot be applied to any other Petri net-based
cyber-physical systems. Moreover, ordinary Petri nets are applied, and the paper does not
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consider inputs and outputs in the Petri net-based specification of the system (they are
included in the further stages of the design).

Another Petri net-based approach oriented towards implementation in the FPGA
is shown in [52]. The method also deals with direct matrix converters (as a case-study
example), but, contrary to the previously described idea, the detailed design flow is
presented. The technique heavily focuses on the verification aspects of the control part of
the Petri net-based cyber-physical system. Formal verification and analysis methods are
described in detail. Moreover, software simulation and hardware validation of the system
is considered. However, the presented descriptions are very general. The paper does not
deal with the algorithms that permit the splitting (decomposing) of the system, nor are code
templates presented or discussed. Moreover, the proposed technique is mainly oriented
towards implementation of the direct matrix converters (i.e., application of a coordinate
rotation digital computer, CORDIC method).

To summarise the discussion above, it can be noticed that there are three main issues
related to the implementation of the Petri net-based system in the FPGA device. The first
one is linked to the conflict resolution in the modelled net and the deterministic behaviour
of the system. The second problem refers to the additional conversions and modifications
of the specification of the system. The existing solutions often require transformations
of the model to other formats or notations. Finally, several techniques are limited to the
particular architecture or specification language (e.g., PNML). Therefore, proper modelling
of the Petri net-based system for the further realisation in the FPGA device seems not to be
a trivial task and very often requires advanced, specialist knowledge. The above issues
and limitations are the main motivation for the methods shown in this work.

This paper proposes two design techniques of the Petri-net based systems oriented
towards further implementation in the FPGA device. The first one is based on the be-
havioural description of the system, while the second one involves decomposition of the
design into the sequential automata. Both methods are based on the application of the
interpreted Petri nets. Such a choice has two main advantages: it permits for easy resolu-
tion of conflicts in the system, and additionally allows for the description of the external
input and output signals used for communication with the external blocks of the design.
Although the presented methodologies are mainly dedicated to the specification of the
control part of cyber-physical systems, they can be successfully applied in the modelling of
similar systems (such as concurrent controllers).

The main novelty and contributions of the paper can be summarised as follows:

• Proposition of the design flow that is based on the behavioural description of the
control part of the cyber-physical system, oriented towards implementation in an
FPGA.

• Proposition of the design flow that applies the modular description of the control part
of a cyber-physical system (based on the decomposition into sequential automata),
oriented towards implementation in the FPGA.

• Proposition of two novel decomposition and synchronisation algorithms for the con-
trol part of a CPS specified by an interpreted Petri net, oriented towards further
implementation of the system in the FPGA.

• Proposition of descriptions of both presented techniques with the Verilog hardware
description language with adequate templates and examples.

• Illustration of the proposed techniques by a real-life case study example of a multi-
robot cyber-physical system.

3. Main Notations and Definitions

This section introduces the main notations and definitions used in the
paper [14,16–20,22,23,29].
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Definition 1. Petri net: A Petri net is a tuple:

PN = (P, T, F, M0), (1)

where P is a finite set of places, T is a finite set of transitions, F ⊆ (P x T)
⋃
(T x P) is a finite set

of arcs, M0 is an initial marking.

Sets of input and output places of a transition are defined as: •t = {p ∈ P : (p, t) ∈ F},
t• = {p ∈ P : (t, p) ∈ F}, while sets of input and output transitions of a place are denoted
as: •p = {t ∈ T : (t, p) ∈ F}, p• = {t ∈ T : (p, t) ∈ F}.

Definition 2. Marking: a marking of a Petri net PN = (P, T, F, M0) is defined as a subset of its
places: M ⊂ P. A place that belongs to a marking is called a marked place. A marked place holds a
token.

Definition 3. Liveness: a Petri net is live if from any reachable marking it is possible to fire any
transition by a sequence of firings of other transitions.

Definition 4. Safeness: a place of a Petri net is safe if a place holds no more than one token at any
reachable marking.

Definition 5. Interpreted Petri net (interpreted net): an interpreted Petri net is a live and safe Petri
net, defined as a six-tuple:

IPN = (P, T, F, M0, X, Y), (2)

where is a finite set of binary inputs and is a finite set of binary outputs, X ∩ Y = ∅. Clearly,
(2) is an extension of (1), such that values from the set are associated with the transitions, while
outputs from the set are related to the places of IPN.

Definition 6. Enabled transition: a transition is enabled if all its input places contain a token.

Definition 7. Transition firing: a transition in the interpreted net is fired if and only if it is enabled,
and all its associated input values (from the set X) are fulfilled. The firing of a transition adds a
token to each of its output places, and removes a token from each of its input places.

Definition 8. State machine: a state machine is a Petri net for which every transition has exactly
one input place and exactly one output place, i.e., ∀t ∈ T : |•t| = |t•| = 1.

Definition 9. State Machine Component (S-component): a state machine component of an inter-
preted Petri net IPN = (P, T, F, M0, X, Y) is a subnet:

S =
(

P′, T′, F′, M0, X′, Y′
)

(3)

of IPN such that: S is a state machine, P′ ∈ P, T′ ∈ T, F′ ∈ F ∩ (P′ × T′) ∪ (T′ × P′), X′ ∈ X,
Y′ ∈ Y, and S has exactly one token in initial marking.

Definition 10. State machine decomposition (S-decomposition): a state machine decomposition of
an interpreted Petri net IPN = (P, T, F, M0, X, Y) is a set S = {S1, . . . , Sn} such that:

• each component Sj ∈ S is an S-component,
• each place pi ∈ P belongs to exactly one component Sj ∈ S .

If place pi ∈ P exists in more than one component, it is replaced in all remaining components
except one by a non-operational place, denoted as NOP.
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Definition 11. Incidence matrix: an incidence matrix of an interpreted Petri net IPN =
(P, T, F, M0, X, Y) with |P| columns and |T| rows is an A|T|×|P| of integers is given by:

aij =


−1,

(
pj, ti

)
∈ F

1,
(
tI , pj

)
∈ F

0, otherwise
(4)

Definition 12 . Place invariant (p-invariant, s-invariant): place invariant of an interpreted Petri
net IPN is a nonnegative integer vector

→
x such that:

A·→x = 0, (5)

where is an incidence matrix of IPN. Each value of
→
x corresponds to a place of the net. The set of

places I that refers to non-zero values of
→
x is called its support.

4. The Proposed Design Flows

Two design techniques of the Petri net-based control part of cyber-physical systems
are proposed in this section. The first one is based on the behaviour of the system, while
the second involves decomposition of the Petri net into sequential automata (state machine
components) [53]. Let us underline that both methods permit for implementation of the
system in the FPGA device [51,54]. The selection of the particular technique is strictly
dependent on the assumptions and aims of the prototyped design. For example, the first
method permits relatively easy description and implementation of the system in the FPGA,
but it does not allow for modifications, nor further re-configuration of the device. On the
contrary, the second technique involves decomposition of the system, but also permits
for optimisation of the achieved sequential automata, or even for partial reconfiguration
of the implemented system (under certain assumptions, e.g., additional splitting of the
decomposed net into static and dynamic part, see [51] for details).

4.1. Design Flow Based on the Behaviour of the System

The first of the proposed techniques is based on the behavioural description of the
system. The proposed design flow consists of the following steps:

1. Specification (modelling) of the control part of CPS by an interpreted Petri net.
2. * Verification of the Petri net-based model at the specification stage (optional).
3. Behavioural description of the Petri net-based system in Verilog HDL.
4. * Validation (software simulation) of the design (optional).
5. Logic synthesis, logic implementation, and physical implementation in an FPGA.

Let us briefly present each of the above steps, paying special attention to the essential,
third step of the flow. Note that two of the above steps (verification and validation of the
control part of the CPS) are marked as optional, however it is highly recommended to
perform verification and validation of the system. Let us also point out that the design
example based on the above flow is shown in Section 5.

4.1.1. Specification of the Control Part of CPS by an Interpreted Petri Net

At the beginning, the control part of the CPS is formally specified by an interpreted
Petri net [55–59]. Such a model is created based on the informal description of the system.
The control part of the CPS is specified by places and transitions of the net, according to
the Equation (2). Additionally, an interpreted Petri net permits for binary input and output
signals that are associated with the transitions and places, respectively. Those signals
permit for communication of the control part with the remaining elements of the cyber-
physical system. Moreover, (if needed) input signals can be used for conflict resolution in
the net (recall Figure 1b).
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4.1.2. Verification of the Petri Net-Based Model at the Specification Stage

Once the system is specified, it can be formally verified at the early specification stage.
In particular, liveness and safeness are crucial properties, since the modelled control part of
the CPS should fulfil all the conditions of interpreted Petri nets. There are several methods
and tools that permit verification and analysis of Petri net-based systems [22,24,60–63].
The most popular are based on the linear algebra technique or involve computation of
the reachability tree. Moreover, advanced analysis of the sequentiality and concurrency
relation in the Petri net can be performed [16].

4.1.3. Behavioural Description of the Petri Net-Based System in Verilog HDL

This is an essential step of the presented design flow. The behaviour of the Petri net-
based specification of the control part of the CPS is described in the Verilog language [64,65].
This process can be divided into four stages:

• description of the main module;
• description of transition firings;
• description of places;
• description of outputs.

At the beginning, the initial structure of the main module is described. Based on
the system specification, the names of module, input and output signals are defined.
Moreover, the set of transitions and places are defined. Listing 1 shows the template of
such descriptions.

Listing 1. Template of the module description in Verilog.

The first line specifies the name of the module, as well as declaring the input and
output signals. Such values are strictly related to the explicit declarations of outputs and
inputs (lines 2–4). The value Y refers to the number of binary output signals, while X
denotes the number of binary input signals in the interpreted Petri net. Note that such
ports can be named explicitly (i.e., start, stop, etc.) however to clarify the presentation we
will follow traditional notations Y and X. Also declared are two additional input ports
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clk and reset. These signals are necessary due to the realisation of the system in an FPGA.
The first one refers to the clock oscillator, while the second permits a reset of the system
to its initial state. Furthermore, the sets of transitions and places of the interpreted Petri
net are declared within lines five and six, respectively. Value T refers to the number of
transitions (|T|), while P means the number of places (|P|) in the net. Three subsequent
sections (description of transitions, places, and outputs) remain empty at this moment. The
description of the module is finalised by the endmodule statement.

At the next stage, the transition firings are described. The behaviour of each transition
is outlined as a logical conjunction of its input places (set P) and related conditions (set X).
This description is realised by a continuous assignment (assign statement). Let us illustrate
it by an example. Consider the interpreted Petri net shown in Figure 2.

Figure 2. Exemplary interpreted Petri net N1.

There are five transitions in the presented interpreted Peri net. Listing 2 shows the
description of transition firings for this Petri net. Note that there is a conflict between
transitions t4 and t5, that is resolved by an input signal x. Furthermore, there are two input
places of t2, therefore a logical conjunction of those places is assigned to this transition.

Listing 2. Description of transition firings in Verilog.

The third step includes the behavioural description of places. The presented solution
is based on the procedural assignments within always block. It is assumed that the system
is oscillated by a positive (rising) edge of the clock (clk) signal. Moreover, the asynchronous
reset signal allows for zeroing the system and returns it to the initial state (initial marking).
The description of each place is formed as a logical disjunction of conditions that permit
holding a token at the particular place, and all input transitions of this place. In particular,
the condition that allows keeping a token is formed as a conjunction of the place together
with negations of all its output transitions. Let us explain the above by an example shown
in Figure 2. Listing 3 presents the description of places for this net.

There are five places in the net. The description of place p1 (line 6) is outlined as a
logical disjunction of a condition that permits holding a token at this place (in particular, it
is formed as a conjunction of p1 and negation of t1) with all its input transitions (in this
case there is only one, transition t4). Places p2 and p3 are described in a very similar way.
However, place p4 has two input and two output transitions. Therefore, the description of
this place includes the conjunction of variables that allow the token to be kept with two
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input transitions (t1, t2). Note that active signal reset permits the return of the system to
the initial marking.

Listing 3. Description of places behaviour in Verilog.

Finally, outputs of the control part of the CPS are described. Since they are related to
the particular places of the net, continuous assignments are applied. Listing 4 shows an
exemplary description of outputs for the net shown in Figure 2. Note that assignments
for all outputs are combined in one line, but alternatively, they can be explicitly written
(within three lines, each for a single output).

Listing 4. Description of outputs in Verilog.

4.1.4. Validation of the System (Software Simulation)

Once the control part of the cyber-physical system is described in Verilog HDL, it
can be validated. Such an operation is usually performed within the tool that permits the
description of the system in the hardware description language. The particular inputs are
stimulated by user-defined values, while the outputs are obtained based on the functionality
of the design.

It should also be noted that validation is often confused with verification of the system
(the second step of the presented design flow). In the presented considerations, we followed
the IEEE standard 1012–2016 [66], according to which validation permits the evaluation of
whether the design satisfies the specified requirements. In contrast, verification refers to
the examination of the design, which determines whether it is properly modelled.

4.1.5. Logic Synthesis, Logic Implementation, and Physical Implementation in an FPGA

Finally, the system is ready for realisation in the FPGA. The final implementation is
strictly connected with the vendor of the destination device. In the presented flows, we
will follow Xilinx guidelines [67], however this process is very similar for other vendors.
Firstly, the design is logically synthesised and logically implemented. The first operation
permits translation of the Verilog-based description into the gate level representation, while
logic implementation translates, maps and adjusts the system to the particular device. The
physical device can be configured with the configuration file (called bit-stream). Once the
FPGA is programmed, the designer is able to validate the control part of the CPS in the
real environment. Since a field programmable gate array is a reprogrammable device, any
detected errors and malfunctions may be easily corrected and implemented again. Note
that in such a situation the complete design path ought to be repeated.
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4.2. Design Flow Based on the Decomposition of the System

The second technique involves decomposition of the control part of the CPS into state
machine components. Each component is further described as a sequential automaton in
the Verilog HDL. The proposed design flow consists of the following steps:

1. Specification of the control part of the CPS by an interpreted Petri net.
2. * Verification of the Petri net-based model at the specification stage (optional).
3. Decomposition of the model into state machine components.
4. Synchronisation of decomposed components (for further implementation in FPGA).
5. * Optimisation of components (optimisation of sequential automata).
6. Description of the decomposed automata in Verilog HDL.
7. * Validation (software simulation) of the design (optional).
8. Logic synthesis, logic implementation, and physical implementation in an FPGA.

The presented design flow includes eight main steps. Similar to the technique shown
in the previous subsection, there are optional stages. However, besides verification and
validation of the design, there is a possibility of additional optimisation (or modification)
of the decomposed components. Let us explain the above flow in more detail. Since steps
1, 2, 7 and 8 are very similar to the stages shown in Section 4.1, we mainly focus on the
remaining points of the flow.

4.2.1. Specification of the Control Part of the CPS by an Interpreted Petri Net

This step is executed in the same manner as in the behavioural description of the
system. The control part of CPS is specified by an interpreted Petri net. Inputs of the model
are assigned to transitions, while outputs to places of the net.

4.2.2. Verification of the Petri Net-Based Model at the Specification Stage (Optional)

The model of the control part of the CPS can be formally verified at the specification
stage. Since Petri nets are widely supported by various verification methods and tools, this
process may involve several aspects, depending on the designer needs.

4.2.3. Decomposition of the Model into State Machine Components

This is the crucial step of the flow. Decomposition divides the system into the smaller
components. In particular, the proposed design flow is based on the S-decomposition of
the system. According to Definition 10, such an operation splits the interpreted Petri net
into state machine components. There exists several decomposition algorithms, based on
the linear algebra technique (place invariant computation), reachability graph analysis, or
concurrency graph (or hypergraph) exploration [14,44,49]. Furthermore, the techniques
shown in [68] seem to be applicable. However, the ideas are based on the tool chain (which
additionally uses third-party software), and a certain conversion of the specification to
the required formats is needed. The authors conducted experimental research but did not
provide information about the applied resources (processors, memories, etc.; there is just a
mention about “a 9-year old laptop”). It should be also noted that the comparison to the
external tools and systems was done “as is”, without considering their technical properties
and applied internal mechanisms.

The method shown in this paper is based on linear algebra, however any other S-
decomposition technique can be used instead. The method searches for the invariants
that fulfil Equation (5), and additionally form proper SMCs, according to Equation (3). In
particular, the proposed decomposition algorithm consists of the following operations:

1. Initialisation:

(a) form the set S of S-components that form S-decomposition of the interpreted
Petri net IPN = (P, T, F, M0, X, Y) (initially empty);

(b) form the unit matrix Q = [D|A] , where D is initially an identity matrix, and
A is an incidence matrix of IPN, formed according to (4);

(c) set counter variable c of non-operational places to zero: c = 0.
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2. For each transition tj (column of matrix A):

(a) find row pairs that annul the j-th column of A and append it to matrix Q;
(b) delete rows of Q whose intersection with the j-th column is not equal to 0;
(c) reduce redundant rows of Q (i.e., rows that binary cover to the other ones).

3. For each row r of A whose all elements contain 0:

(a) obtain support Ir of invariant from matrix D;
(b) construct subnet Sr = (Ir, Tr, Fr, M0r, Xr, Yr) of IPN such that:

• Tr = {t ∈ T : ∃ p ∈ Ir : (t, p) ∈ F ∨ (p, t) ∈ F},
• Fr = {(p, t) : p ∈ Ir ∧ t ∈ Tr ∧ (p, t) ∈ F} ∪ {(t, p) : p ∈ Ir ∧ t ∈ Tr∧

(t, p) ∈ F},
• M0r= M0;
• Xr = {x ∈ X ∧ x is associated to any t ∈ Tr};
• Yr = {y ∈ Y ∧ y is associated to any p ∈ Ir};

(c) if Sr forms a proper S-component (according to Definition 9 and Equation (3)):

• for each place p ∈ Ir such that p belongs to the other S-component Si ∈ S :

- replace p ∈ Ir or p ∈ Si by a non-operational place NOPc;
- for all y associated to p ∈ Ir: Yr = Yr\{y};
- increase the counter of non-operational places: c = c + 1;

• add S-component to the S-decomposition: S = S ∪ Sr;

(d) remove row r from Q.

4. Break if all places p ∈ P are covered by S-components Si ∈ S , otherwise repeat the
procedure from the step 2.

5. Finish with information that the interpreted Petri net cannot be decomposed.

The above algorithm permits the obtaining of the S-decomposition of the interpreted
Petri net, and is based on the classical method initially shown in [69]. However, let us
emphasise the point that the algorithm presented in [69] computes place invariants, and
does not permit the obtaining of S-decomposition, nor S-components of the net. Therefore,
additional transformations, sub-net constructions and verifications are required (steps 3–5).
Moreover, the presented method stops computation once the decomposition is found. Note
that there is a possibility that the particular interpreted Petri net cannot be decomposed. In
such a case, the behavioural design flow ought to be applied.

4.2.4. Synchronisation of Components (for Further Implementation in FPGA)

Once the control part of the CPS is decomposed, it should be properly synchronised.
Initially (that is, after the decomposition) each of the obtained S-components forms an
independent system. Therefore, proper synchronisation between transitions ought to be
assured. In general, such an operation is not a trivial task, especially in case of distributed
systems. However, the proposed technique is strictly designed for the FPGA device, and
therefore synchronisation of components can be solved by internal signals. Note that the
presented solution assumes that the whole control part of the CPS (all the decomposed
components) is oscillated by the same clock signal.

The proposed synchronisation algorithm consists in the following steps:

1 Initialisation:

(a) form the set Z of synchronisation signals (initially empty);
(b) set counter variable c of applied synchronisation signals to one: c = 1.

2 For each transition tj ∈ T such that tj is shared by two or more Ss ∈ S :

(a) for each input place pi of transition tj (pi ∈ •tj):

• if there is already assigned synchronisation signal z to pi: Z = Z ∪ {z};
• otherwise:

- add new synchronisation signal zc and assign it to pi;
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- Z = Z ∪ {zc};
- increase the counter of synchronisation signals: c = c + 1;

(b) for each component Ss = (Ps, Ts, Fs, M0, Xs, Ys) that contains tj:

• obtain current logical condition xs that is assigned to tj ∈ Ts;
• for each zk ∈ Z:

- if zk is assigned to •tj ∈ Ps: add zk to the set Ys: Ys = Ys ∪ {zk};
- otherwise:

- add zk to the logical condition xs: xs = xs & xj;
- add zk to the set Xs = Xs ∪ {zk}.

Let us briefly describe the behaviour of the above method. Firstly, the algorithm
searches for the transitions shared among components. For each input place of such
transition, a synchronisation signal is added (step 2a). Moreover, this synchronisation
signal is assigned to each transition in the other S-components (step 2b). Additionally, sets
of binary input and output signals for each S-component are updated.

4.2.5. Optimisation of Obtained Components (Optional)

The decomposed and synchronised control part of the cyber-physical system is ready
for description in the Verilog language. However, there is a possibility for additional modi-
fications of obtained modules since each of the S-components form a sequential automaton.
Therefore, it can be transformed and optimised (for example, into a microprogrammed
control unit). The advanced methods of optimisation of sequential automata designed for
implementation in an FPGA can be found in [35,70–72].

4.2.6. Description of the Decomposed Automata in Verilog HDL

The proposed description of the decomposed control part of the CPS utilises a modular
approach. Each of the S-components is outlined as a finite state machine (Moore automaton).
The top-level module (at the highest level of hierarchy) includes instantiations of all
decomposed components. The process is split into two main steps:

• description of the top-level module;
• description of the decomposed S-components.

Firstly, the top-level module is described. Besides declarations of input and output sig-
nals of the control part, this module contains instantiations of decomposed S-components.
Moreover, synchronisation signals among the SMCs are declared, as well. Listing 5 shows
the template of the top-level description in Verilog HDL.

Next, each S-component Ss = (Ps, Ts, Fs, M0, Xs, Ys) is specified as an independent
Verilog module. The description of the S-component can be divided into six main blocks:

• declaration of the module;
• * declaration of automaton registers;
• * encoding of register states;
• * description of the functionality of Moore automaton;
• description of transition functions;
• description of outputs.

Three of the above steps (marked with an asterisk) are almost the same for each
component; only the size of registers may vary. Let us explain the description of an S-
component by example. Recall the interpreted Petri net N1 (Figure 2). Figure 3 shows the
decomposed and synchronised control part of this CPS.
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Listing 5. Template of the top-level module description in Verilog.

Figure 3. Decomposed and synchronised interpreted Petri net N1.

The presented control part was decomposed according to the algorithm shown in
Section 4.2.3 into two S-components (S1 and S2). Further synchronisation resulted in
supplementation of components by two additional signals (z1, z2). Listing 6 presents
the description of the first S-component (S1). Let us briefly describe each block of the
above description. It should be pointed out that the general rules applied in the proposed
description of Moore automaton are strictly based on the Xilinx guidelines [73].

To begin, the module name, input and output ports are declared. Note that z1 is
declared as an output, since it is associated to place p2 (input place of shared transition).
Analogously, z2 is specified as an input and it is assigned to the shared transition t2.

At the subsequent block of the description automaton registers for the current and
next state are declared. The number of required registers q is strictly related to the number
of places in the component, and can be simply expressed as:

q = log2|Ps|, (6)

where |Ps| is the number of places in the particular S-component.
The next block refers to the encoding states of the component. Note that the proposed

flow strictly follows the initial names and notations, thus states of automaton refer to
the places of the S-component. In the presented example, there are three states (places):
Ps = {p1, p2, p4}. The designer is able to encode states according to need.

The fourth part of the description outlines the behaviour of the Moore automaton.
The clock signal is used for changing states (according to the transition functions), while
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asynchronous reset allows returning to the initial marking. This block remains unchanged
for each S-component.

Transition functions are specified in the fifth block of the description. This section
involves procedural always block. The sensitivity list contains state variable and all input
signals from the set Xs (that is, a list of all inputs assigned to transitions in this S-component,
including synchronisation signals). The selection of the next state is expressed by the case
statement, and simply describes the behaviour of Moore automaton.

Finally, the last block outlines outputs of the module, including synchronisation
signals associated with the places of the S-component. This description is realised by the
continuous assignments.

Listing 6. Template of the module description in Verilog.

4.2.7. Validation of the Design (Optional)

The decomposed control part of the CPS can be validated by the software simulation.
Moreover, each S-component can be checked as an independent module. Since all compo-
nents are oscillated by the same clock signal, the obtained results should be the same as in
case of the behavioural validation of the design (cf. Section 4.1.4).

4.2.8. Logic Synthesis, Logic Implementation, and Physical Implementation in an FPGA

This step is executed in exactly the same manner as is presented in Section 4.1.5. The
decomposed system is logically synthesised and logically implemented. The resulting
bit-stream is further sent to the destination FPGA device.
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5. The Case-Study Example of the Proposed Design Flows

This section illustrates the proposed design flows by a real-life example of the control
part of the CPS. Consider the interpreted Petri net shown in Figure 4 that describes the cyber
(control) part of a multi-robot assembly system. The specification is a slightly modified
version of the system initially presented in [74]. In particular, the net was supplemented by
the input and output signals (sets X and Y). There are six transitions and nine places in the
net. Its behaviour is additionally controlled by two input signals: X = {x1 , x2}. Moreover,
there are four output signals: Y = {y1 , . . . , y4}. Let us briefly describe the functionality of
the system. Two robot arms perform tasks inside and outside the common workspace. In
particular, the operations related to the first arm are specified by places p1,. . . , p3, while
places p4,. . . , p6 are related to the second arm. Outputs y1 and y2 are associated with
actions executed outside the common workspace, thus both arms can perform them at
the same time. However, operations related to outputs y3 and y4 are realised inside the
common workspace, and they cannot be executed simultaneously.

Figure 4. Specification of the cyber (control) part of a multi-robot assembly system.

The collision-free movements of robot arms are assured by mutual exclusion. In
particular, places p7, p8, p9 are used in order to secure the proper functionality of the
control part, by adequate distribution of a token. The first arm of the robot may access
the common workspace if place p8 is marked. Otherwise, place p9 holds a token, and the
second arm of the robot is able to perform tasks in the common workspace.

The presented Petri net is live and safe. This means that there are no deadlocks in the
system, and each place holds no more than one token (at any reachable marking). Note
that the above properties are crucial, since liveness and safeness are necessary conditions
for interpreted Petri nets.

Since specification and verification of the Petri net is already done, let us now proceed
to the remaining steps of the proposed design flows, starting with the behavioural descrip-
tion of the system. Listing 7 shows the Verilog description of the presented control part of
the CPS. According to the method presented in Section 4.1.3, initially the module, together
with input and output signals is specified (the first four lines of the code). Moreover,
9 places and 6 transitions are declared (lines 5–6).
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Listing 7. The behavioural description of the control part of a multi-robot system in Verilog.

The transition firings are realised by six continuous assignments (lines 7–12). Each
transition is described as a logical conjunction of its input places and associated input
signals (if any). For example, transition t1 is outlined as a conjunction of input place p1
and input x1 (which is associated to t1), while t2 is described as a conjunction of three of its
input places: p2, p7, p8.

The description of places (lines 13–28) is based on the procedural assignments realised
by the always block. The asynchronous reset zeroes the control part of the CPS to its initial
state (marking). Each place is outlined as a logical disjunction of conditions that either
allows holding a token at its current place (that is, output transitions of this place are not
enabled), or firing input transitions from this place. For example, place p7 is described
as a logical disjunction of the conditions: p7& ∼ t2& ∼ t5 (all output transitions are not
enabled), t3, t6. It means that p7 is active if either a token is already within this place,
or transition t3 is enabled, or transition t6 is enabled. Similarly, the remaining places are
described.

Finally, the output signals are outlined, as continuous assignments of places. There
are four outputs in the presented example. In this particular case, the single assignment
was used (line 29), however each output can be outlined separately.

The subsequent step of the proposed design flow involves validation of the control
part. The simulation was performed within Xilinx Vivado 2021.1 [75]. Figure 5 shows the
obtained validation result.
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Figure 5. Simulation of the behavioural description of the control part of a multi-robot system.

The values for input signals were stimulated (the clock signal was set to 40 MHz =
25 ns), while the output signals were obtained according to the functionality of the design.
The performed validation confirmed proper functionality of the control part. It can be
noted that all of the outputs behave according to the assumed informal specification of the
multi-robot system.

Once the validation confirms proper functionality, the control part of the CPS was
implemented in an FPGA. In the presented example the Xilinx device xc7a100T (Artix7
family) was used. The logical synthesis and logical implementation finished with success,
confirming the proper behavioural description of the control part in the Verilog language.
Table 1 shows the utilisation of the FPGA resources. It can be noticed that the implemented
control part of the multi-robot system consumes just a fraction of the FPGA area. Moreover,
the results achieved confirm the described system. Nine places of the specified system
directly refer to the number of declared registers in the Verilog code and–finally-utilised
registers of the device. Similarly, the number of input/output blocks is exactly as expected
(in total eight: four inputs and four outputs). Finally, the logic of the control part (including
description of transitions and equations of places) was implemented within seven look-up
tables (LUTs).

Table 1. Utilisation of the FPGA resources by the behavioural realisation of the system.

Resource Utilisation Available

Number of look-up tables (LUTs) 7 63,400
Number of flip-flops (FFs) 9 126,800

Number of input/output (IO) blocks 8 210

Let us now move on to the second of the proposed flows. The control part of a
multi-robot system will be decomposed, synchronised, and described in Verilog HDL, and
implemented in the FPGA device.

The first two steps of the design flow are exactly the same as in case of the behavioural
flow. Decomposition and synchronisation of the control part were executed according
to the algorithms shown in Sections 4.2.3 and 4.2.4, respectively. Figure 6 presents the
decomposed and synchronised control part of the multi-robot assembly system.
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Figure 6. Decomposed control part of the multi-robot assembly system.

The presented system was decomposed into four S-components: S = {S1, . . . , S4}.
Three components (S1, S2, S4) contain three places, while the remaining one (S4) consists of
two places. Note that S4 contains two non-operational places: NOP1 replaces p3 (which
already belongs to S1), and NOP2 replaces p6 (which is included within S2).

Further synchronisation of the system resulted in five signals: Z = {z1, . . . , z5}, which
are used for proper synchronisation of two shared transitions: t2 and t5. The first one (t2) is
shared among three components: S1, S3, S4, while t5 exists in S2, S3, S4.

Listing 8 illustrates the description of the top-level module in the Verilog language.
Declarations of input and output ports (lines 1–4) are exactly the same as in the case of
the behavioural description. Synchronisation signals are declared within line 5, while
instantiations of particular S-components are invoked in lines 6–9.

Listing 8. Description of the top-level module of the decomposed control part of a multi-robot.

Description of the S-component S1 is presented in Listing 9. There are three output
and five input signals in the module. Three of them refer to the synchronisation signals,
one output (z1) and two inputs (z2, z3). Component S1 consists of three places, therefore
q = 2 registers which are used for encoding states. Descriptions of transition functions
simply set the values of the next state, according to the possible conditions. Finally, outputs
are generated depending on the current state of the automaton.
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Listing 9. Description of S1 of the decomposed control part of a multi-robot system.

The descriptions of the remaining three components are executed in exactly the same
way. The complete Verilog code of all decomposed S-components can be found in the
Appendix A. Figure 7 shows the validation results of the decomposed control part of the
multi-robot system. Additionally, the simulation results include the behavioural description
of the system. Therefore, the functionality of both descriptions can be easily compared.
In particular, signals “y“ are generated by the behavioural description, while signals ”v”
are the result of the modular (decomposed) description of the system. It can be seen that
results from both models (behavioural and decomposed) are exactly the same.

Figure 7. Simulation and comparison of both descriptions of the control part of a multi-robot.
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Finally, the decomposed control part of the multi-robot system was implemented in
the FPGA. In particular, the same device was applied as in the case of the behavioural flow.
Table 2 displays the utilisation of the FPGA device. It can be seen that the decomposed
system used a very similar portion of the device as the behavioural description. An
interesting fact is related to the number of utilised logic elements (LUTs) and registers
(flip-flops). Both descriptions lead to almost the same results (7/8 LUTs, 9 FFs). However,
optimisation of the S-components obtained during the SM-decomposition (cf. Section 4.2.5)
may result in decreasing the utilised resources.

Table 2. Utilisation of the FPGA resources by the decomposed multi-robot assembly system.

Resource Utilisation Available

Number of look-up tables (LUTs) 8 63,400
Number of flip-flops (FFs) 9 126,800

Number of input/output (IO) blocks 8 210

6. Conclusions

This paper proposes two design flows for the control part of a cyber-physical system
intended for implementation in the FPGA device. The first technique is based on the
behaviour of the system, while the second method applies decomposition into sequential
automata (S-components). Both ideas involve synthesisable descriptions in the Verilog
language. The presented design flows are explained by the real-life example of the multi-
robot assembly system. Let us underline that both design techniques shown in the paper
are novel. Obviously, notations or descriptions may be similar to the existing solutions, but
general concepts, including particular Verilog design styles, are the result of the author’s
years of experience with Petri nets and FPGAs. The first of the presented methods applies
a direct description of the control part of the cyber-physical system in the Verilog language,
with the possibility of further implementation in the FPGA. The second technique is based
on the splitting of the initial model into state machine components. Adequate decomposi-
tion and synchronisation algorithms (strictly oriented towards the further application in
the programmable device) are proposed. Both presented design flows are supplemented
by the code templates. Moreover, detailed explanation by a real-life multi-robot assem-
bly system is presented. It should be noted that the obtained validation results of the
system designed by both flows are exactly the same. Furthermore, the utilisation of the
FPGA device is similar. However, modules obtained during the SM-decomposition of the
system can be optimised in order to reduce the number of utilised logic elements (LUTs,
flip-flops). Moreover, obtained sequential automata are applicable in the dynamic partial
reconfiguration of the system (cf. [51] for details).

The scope of the proposed techniques covers a wide range of cyber-physical systems
where FPGA devices are applicable, including concurrent control systems [14,31,56], power
grids and energy systems [10,52], manufacturing and production systems [49,51], and
others. On the other hand, the main limitation of the proposed techniques is related to the
applied specification formalisms. Both design flows are based on Petri nets and Verilog
language, thus the presented solutions can be embarrassing for designers that are not
familiar with this methodology and/or this hardware language. On the other hand, the
presented design flows are presented in detail (with templates of Verilog codes). Moreover,
Petri nets are widely supported by analytic methods and tools, which makes possible
verification at the early (specification) stage. Finally, the presented methodology can be
easily adopted to other hardware languages (for example VHDL).

Further research includes optimisation of the decomposed S-components in order
to reduce the utilisation of the FPGA resources. Moreover, development of alternative
decomposition techniques is considered.

Funding: This work is supported by the National Science Centre, Poland (grant number 2019/35/B/
ST6/01683).
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Appendix A

Listings A1–A3 present the Verilog source codes of S-components S2, S3, S4 of the
decomposed control part of the multi-robot assembly system shown in Section 4.

Listing A1. Description of S2 of the decomposed control part of a multi-robot system.

Listing A2. Description of S3 of the decomposed control part of a multi-robot system.
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Listing A3. Description of S4 of the decomposed control part of a multi-robot system.
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