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Abstract: Sensorless algorithms for Permanent Magnet Synchronous Motors (PMSM) have achieved
increasing interest in the technical literature over the last few years. They can be divided into active
methods and passive methods: the first inject high-frequency signals exploiting rotor anisotropy,
whereas the second are based on observers. Recently, a sensorless control based on a rotor flux
observer has been presented in the technical literature, which gives very accurate results in terms of
rotor position estimation and robustness. In this paper, the aforementioned observer is considered
and a procedure for choosing stabilizing gains of the observer is proposed. The contribution of the
paper is three-fold: the mathematical modelling of the rotor flux observer, the methodology for the
definition of the observer gains, and the presentation of the experimental results.

Keywords: Permanent Magnet Synchronous Motors (PMSM); sensorless control; speed control;
stability analysis; rotor flux observer

1. Introduction

Permanent Magnet Synchronous Motors (PMSMs) are today widely used in industrial
applications since they can offer many advantages such as high-power density, high relia-
bility, and efficiency. The field-oriented control (FOC) is one of the most used techniques in
order to obtain a good dynamic response [1]; position information is therefore a must-have
data for FOC of PMSMs. The main drawbacks arising from the use of position sensors such
as resolvers and encoders are the great noise vulnerability and the increasing cost and sizing
of the drive, especially for low-power drives [2]. Consequently, many sensorless algorithms
for PMSMs have been studied and proposed over the last few years [2–22] in order to
control the motor without any position sensor, offering significant advantages in terms
of reduction of costs, increase of reliability, and removal of wires [3,4]. Sensorless control
strategies can be mainly divided into two types: the active methods, using high-frequency
signal injection to obtain the information of the rotor position, and the passive methods,
consisting of model-based observers, which extract the rotor position by estimating the
back electromotive force (back-EMF) or the rotor flux. Since the active methods work well
in the low-speed region, while the passive methods guarantee a good performance in the
mid to high-speed region, a combination of the two techniques is often used.

Regarding the active methods, some of the possible solutions are the anisotropy-based
techniques proposed in [5], and the high-frequency algorithms in [6,7], whereas, among the
passive methods, many sensorless control strategies have been proposed, such as the direct
back-EMF disturbance observers analysed in [8–11]. As the back-EMF is proportional
to the rotor speed, the efficiency provided by these methods deteriorates at low speeds.
For this reason, other common strategies are the Kalman filter-based observers proposed
in [4,12], the linkage flux-based observer in [13], and the sliding mode-based observers
studied in [14–20].
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The preponderance of the observers proposed in the literature over the past few years
work properly under the condition that all electrical motor parameters are exactly known
and constant, but these parameters are usually time-varying and uncertain, hence, the de-
sign of a robust observer against parameters variation is currently a topic of interest. In [21],
Ortega et al. propose a new non-linear flux observer, which is then tested experimentally
in [22], and gives very accurate results in terms of rotor position estimation and robustness.
A similar observer is introduced by Bobstov et al. [23], and is improved by Choi et al. in [24]
by adding a feedback loop to surmount the effect of the permanent-magnet flux linkage
constant uncertainty. This robust adaptive observer is tested in different experimental
conditions [25].

None of the papers in which this observer is presented show a methodology for
the tuning of the two observer gains. Hence, in this paper, the authors are interested
in the problem of the design of the two gains of the observer proposed in [24] for a
Surface Permanent Magnet Synchronous Motor (SPMSM). Thanks to the linearization
of the system and the stability analysis, a satisfactory result is achieved and validated
through experimental results. The contents are organized as follows. Section 2 presents the
observer and its mathematical modelling, while simulation results are reported in Section 3.
Section 4 contains the linearization of the system and the stability analysis which lead
to the optimal gains definition. The experimental results are shown in Section 5. Finally,
conclusions are drawn in Section 6.

2. RFO Algorithm and Mathematical Modelling

As mentioned in the Introduction, the rotor flux observer (RFO) presented in [23,24]
is considered in this paper. Hence, the theoretic description of this algorithm is carried
out more deeply in the following. Firstly, the observer proposed in [23] is introduced,
and secondly, the feedback loop developed in [24] in order to avoid DC disturbances
is explained.

2.1. Observer without the Feedback Loop to Avoid DC Disturbances

If one considers the model of a SPMSM in the stationary α − β frame, the stator

flux derivative (
.
λαβ = [

.
λα,

.
λβ]

T
) can be defined as in Equation (1) and the stator flux

(λαβ = [λα, λβ]
T) as in Equation (2), being ϕm the Permanent Magnet flux linkage constant

and Cαβ(θ) = [cos θ, sin θ]T , while θ ∈ S := [0, 2π] is the rotor flux angle.

.
λαβ = vαβ − Riαβ (1)

λαβ = Liαβ + ϕmCαβ(θ) (2)
.
θ = ω (3)

The rotor flux (xαβ = [xα, xβ]
T) of a SPMSM can be given by Equation (4). If one

differentiates both sides of Equation (4), one obtains Equation (5), where J is given by
Equation (6) and p ≡ d

dt represents the differential operator.

xαβ ≡ λαβ − Liαβ = ϕmCαβ(θ) (4)
.
xαβ = vαβ − Riαβ − Lpiαβ = −ϕmω JCαβ(θ) (5)

J =
[

0 1
−1 0

]
(6)

Since the sensorless algorithm aims to estimate the rotor position, one can calculate
such a quantity taking into account Equation (7).

θ̂ = tan−1
( x̂β

x̂α

)
(7)
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In [23] an observer with zero initial value is proposed; the state observer qαβ is defined
as in Equation (8).

.
qαβ(t) = vαβ − Riαβ − Lpiαβ, q(0) = [0, 0]T (8)

Please note that qαβ and xαβ have the same dynamics, but different initial conditions.
If one defines ξαβ = λαβ(0)− Liαβ(0), it follows Equation (9).

xαβ(t) = qαβ(t) + ξαβ (9)

Since ‖qαβ + ξαβ‖2 = ‖xαβ‖2 and ‖xαβ‖2 = ϕ2
m, one can obtain from Equation (9) the

relation in Equation (10)

− ‖qαβ‖2 = 2qT
αβ ξαβ + ‖ξαβ‖2 − ϕ2

m (10)

In order to obtain a linear regression form, it is necessary to differentiate Equation (10).
However, a pure derivative is always associated with noise amplification in real applica-
tions, therefore a high-pass filter αp

p+α can be applied to both sides of Equation (10). Indeed,
αp

p+α = p · α
p+α , i.e., it is a derivative for low-frequencies but with a low-pass filter form.

Applying the high-pass filter to Equation (10) one obtains Equation (11), where y(qαβ) and
Ωαβ(qαβ) are defined in Equations (12) and (13).

y(qαβ) = Ωαβ(qαβ)
Tξαβ + ε(t) (11)

y(qαβ) =
−αp
p + α

(
‖qαβ‖2

)
(12)

Ωαβ(qαβ) =
2αp

p + α
(qαβ) (13)

Since ‖ξ‖2 − ϕ2
m is a constant, one obtains Equation (14) for some C > 0.

ε(t) =
pα

p + α

(
‖ξ‖2 − ϕ2

m

)
= αCe−αt (14)

Equation (11) represents a linear regression equation with an unknown parameter ξ.
Indeed, it is a product of a known vector Ωαβ(qαβ), by ξαβ. Therefore, a parameter estimator
can be derived using the descent gradient method, obtaining Equations (15) and (16), where
Γ is a gain matrix. The derived sensorless control scheme is shown in Figure 1.

.
ξαβ = ΓΩαβ(qαβ)(y(qαβ)−Ωαβ(qαβ)

Tξαβ), ξαβ(0) ∈ <2 (15)

ξαβ(0) = ϕm[cos(θ0); sin(θ0)] (16)
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2.2. Feedback Addition to Avoid DC Disturbances

A non-linear feedback loop was added in [24] in order to avoid the problems connected
to DC disturbances, as highlighted in blue in Figure 2.
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Adding the feedback containing Γ1 gain, the observer defined by Equation (17)
is obtained.

.
qαβ = vαβ − Riαβ − Lpiαβ + Γ1

(
‖ξαβ‖2 − ϕ2

m

)
, qαβ(0) = [0, 0]T

.
ξαβ = Γ2Ω(qαβ)

(
y(qαβ)−Ωαβ(qαβ)

Tξαβ

)
, ξαβ(0) ∈ <2

y(qαβ) =
−αp
p+α‖q‖

2, y(0) = 0

Ωαβ(qαβ) =
αp

p+α 2qαβ, Ωαβ(0) = [0, 0]T

xαβ = qαβ + ξαβ

θ̂ = atan2
( xβ

xα

)
(17)

3. Simulation Results

In this section, some simulation results are reported in order to better understand the
working principle of the RFO considered in this study. Both simulations for the observer
proposed in [23] and for the one with the addition of the feedback loop to eliminate DC
disturbances [24] are shown below, respectively, as similarly shown in Section 2 for the
theoretical description.

3.1. Observer without the Feedback Loop to Avoid DC Disturbances

The RFO proposed in [23] has been built in MATLAB/Simulink environment, and
some simulation results are shown in the following. Since qαβ is initialized at zero, the two
vector components are affected by a bias error. This bias is related to the real initial rotor
angle. For simplicity, one can consider the case in which θ0 = −90◦ and ξαβ is correctly
initialized, i.e., as in Equation (18). In this condition, qαβ is given by Equation (19) and xαβ

is given by Equation (20). Indeed, the bias of qβ is corrected by ξβ, as shown in Figure 3,
where simulation results in this particular condition are shown and qβ, ξβ, and xβ are
plotted. In this case, the bias is corrected from the beginning because ξαβ is initialized
correctly, otherwise, the estimator loop provides the correct bias correction. Please note
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that the bias of qβ is inherent in the observer definition; indeed both Equations (18) and
(19), and simulation results of Figure 3 are obtained in ideal conditions.{

ξα = ϕm cos(θ0) = 0
ξβ = ϕm sin(θ0) = −ϕm

(18)

{
qα =

∫
vα − Riα = ϕm cos(θ)

qβ =
∫

vβ − Riβ = ϕm + ϕm sin(θ)
(19)

{
xα = ϕm cos(θ)
xβ = ϕm sin(θ)

(20)
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The observer proposed in [23] is straightforward and easy to implement. However, it
is sensible to DC disturbances, due to the presence of a pure integrator. As an example,
one can consider the previous case, with a negative DC error on iα measure. In this case, qα

is given by Equation (21) and therefore it diverges. The same simulation results of Figure 3
are shown for this case in Figure 4.
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Please note that the observer diverges even if ξαβ is correctly initialized, as it can be
shown more easily in the simulation plot with time enlargement in Figure 5.

qα =
∫

vα − R(iα − iαDC) = ϕm cos(θ) +
∫

RiαDC (21)
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3.2. Observer with the Addition of the Feedback Loop to Avoid DC Disturbances

The simulation with iα DC disturbance was carried out with the sensorless algorithm
defined in Equation (17) and the results are shown in Figure 6. One can note that with
the addition of the feedback containing Γ1 gain, has a null average value and qα does not
diverge anymore; hence, a more robust result is achieved.
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4. Definition of Γ2 Gain

From the results shown in the previous section, one can note that the feedback loop
containing Γ1 gain aims at increasing the robustness of the system avoiding qαβ divergence.
Since it does not directly affect the estimator inner loop (containing Γ2 gain), its influence
on the estimator dynamic is limited. On the contrary, the estimator loop containing Γ2 gain
is the core of the RFO observer, therefore an appropriate tuning of such a parameter is
fundamental to achieve a good drive dynamic response.

Even if this sensorless technique was proposed in [23,24], none of these papers show
a methodology for Γ2 tuning, which is proposed in this paper. If one considers the loop
shown in Figure 7, the inputs of the loop are u1 = y(qαβ) and u2 = Ωαβ(qαβ).
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2
2 2 1CA u Tλ λ− = −Γ + −  (28)

2
2 2 1Cu Tλ = −Γ +  (29)

If one approximates the output of the observer as a sinusoidal function, as in Equa-

tion (30), and neglects the low-pass filter of ( )qαβ αβΩ  function, Equation (31) is derived. 

Neglecting the stator resistance and the stator inductance, i.e., considering vψω = , 
where v  represents the peak phase voltage value (e.g., 310 V for a 380 V motor), since 
the α−β  domain is used, one can define the eigenvalues as in Equation (32). 

[ ]cos( ), sin( ) T
m mq t tαβ ϕ ω ϕ ω=  (30)

Figure 7. Γ2 loop of estimator proposed in [24].
.
ξαβ is defined in Equation (22). Please note that for notation simplicity, the αβ sub-

scripts are omitted in the following Equations and complex number notation is exploited.
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Since the function f1 is non-linear, a linearization process should be carried out, as shown in
Equation (23). Moreover, since motor drives are discrete systems, Equation (23) is linearized
as in Equation (24), obtaining the linearized and discretized Equation of the loop in (27)
after the algebraic simplifications of Equations (25) and (26). Evaluating the eigenvalues as
in Equation (28), one obtains Equation (29), where Tc is the sampling time.

.
ξ = f1 = Γ2u2(u1 − u2ξ) (22)

.
ξ =

[
∂ f1

∂ξ̂

]
[ξ] +

[
∂ f1

∂u1

∂ f1

∂u2

][
u1
u2

]
(23)

ξ(k + 1)− ξ(k)
TC

=
∂ f1

∂ξ̂
ξ(k) +

[
∂ f1

∂u1

∂ f1

∂u2

][
u1(k)
u2(k)

]
(24)

ξ(k + 1) =
∂ f1

∂ξ̂
ξ(k)TC + ξ(k) +

[
∂ f1

∂u1

∂ f1

∂u2

][
u1(k)
u2(k)

]
TC (25)

ξ(k + 1) =
[

∂ f1

∂ξ̂
TC + 1

]
ξ(k) +

[
∂ f1

∂u1
TC

∂ f1

∂u2
TC

][
u1(k)
u2(k)

]
(26)

ξ(k + 1) = A ξ(k) + B
[

u1(k)
u2(k)

]
, A = −Γ2u2

2TC + 1 (27)

A− λ = −Γ2u2
2TC + 1− λ (28)

λ = −Γ2u2
2TC + 1 (29)

If one approximates the output of the observer as a sinusoidal function, as in Equa-
tion (30), and neglects the low-pass filter of Ωαβ(qαβ) function, Equation (31) is derived.
Neglecting the stator resistance and the stator inductance, i.e., considering ‖ψω‖ = ‖v‖,
where v represents the peak phase voltage value (e.g., 310 V for a 380 V motor), since the
α− β domain is used, one can define the eigenvalues as in Equation (32).

qαβ = [ϕm cos(ωt), ϕm sin(ωt)]T (30)

u2 = 2pq = [−2ϕω sin(ωt), 2ϕω cos(ωt) ]T (31)

λ = −4Γ2v2TC + 1 (32)

Since, according to the classical control theory, a discrete system is stable if the eigen-
values are inside the circle with a centre in the axis origin and a unitary radius, it follows
that the loop of Figure 7 is stable if the condition in Equation (33) is verified. Imposing null
eigenvalue, the gain Γ2 can be defined as in Equation (34).

− 2 < −4Γ2v2TC < 0 (33)

λ = 0 → Γ2 =
1

4v2TC
(34)

In Equation (31) the low pass filter is neglected, i.e., the condition in Equation (35)
is imposed. Indeed, the high-pass filter can be seen as a combination of a low-pass filter
with the derivative operation, as specified in Equation (36). It is interesting to note that
when the frequency of the stator voltage is higher than the cut-off frequency of the filter,
the eigenvalue is defined as in Equation (37). Since this condition in Equation (38) is
verified, it follows that, from a stability point of view, neglecting the low-pass filter is a
conservative hypothesis.

u2 =
pα

p + α
2q ∼= 2pq (35)
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sα

s + α
= s

α

s + α
(36)

ω � α→ λ = −4Γ2(ψα)2TC + 1 (37)

4Γ2(ψα)2TC < 4Γ2v2TC (38)

As mentioned above, the gain Γ1 is not critical and its design does not affect signif-
icantly the stability of the system compared to Γ2; hence, in the following, the relation
Γ1 = Γ2 has been imposed.

5. Experimental Results

Some experimental tests have been carried out in order to evaluate the performance
of the gain definition analysis presented in the previous section. The observer was imple-
mented in DSpace Microlab Box (dSPACE GmbH, Paderborn, Germany) control platform
and the test bench is reported in Figure 8. Tables 1 and 2 show, respectively, the motor
parameters and the observer gains, which are selected with the methodology presented in
the previous section.
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Table 1. Motor data.

Parameter Value

Rated output power 5600 W
Rated phase voltage RMS 380 V

Pole pairs 4
Rated speed 2000 rpm
Rated torque 27 Nm
Rated current 11.9 A

Flux constant ϕm 0.335 Wb
Stator resistance Rs 0.68 Ω
Stator inductance Ls 5.0 mH

Sampling time Tc 200 µs

Table 2. Observer gains.

Parameter Value

Gain Γ1 0.013
Gain Γ2 0.013

The DSpace system outputs were sent to a PWM inverter (rated current: 300 A, DC
link voltage: 550 V) connected to the SPMSM. Both the sampling frequency and the PWM
switching frequency were set to 5 kHz. The inverter nonlinearities were non-compensated
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and the deadtime was 4 µs. A 27 Nm SPMSM was coupled with the test motor and used to
provide the load torque when needed. The two tests performed are listed as follows:

Test 1: a speed reference variation between 180 rad/s and −180 rad/s with linear load
torque (rated torque at rated speed);

Test 2: a speed reference variation between 180 rad/s and 5 rad/s with no-load.
Figure 9 shows measured and estimated speed during a reference variation between

180 rad/s and −180 rad/s (Test 1), while in Figure 10, the results of Test 2 are reported. It
can be noted from Figures 9 and 10 that the speed reference is correctly followed both with
and without the starting load torque.
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Figure 10. Reference, measured and estimated speed during Test 2 (speed step from 180 rad/s to
5 rad/s with no-load).

6. Conclusions

A robust sensorless algorithm for a SPMSM is considered. It is based on the rotor flux
observer proposed in [21–23], and it was improved with a non-linear feedback loop in [24].
The mathematical modelling of the observer is presented in Section 2, while Section 3
contains some simulation results. None of the papers in which this observer is analysed
show a methodology for an optimal design of the two observer gains.

This paper discusses the architecture of the observer and the effects of the gains Γ1
and Γ2 on the system. In particular, since the feedback loop containing Γ1 gain aims at
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increasing the robustness of the system with DC disturbances, but it does not directly
affect the estimator inner loop (containing Γ2 gain), its influence on the observer dynamic
is limited. Hence, the contribution of Γ1 can be neglected, while the procedure used to
define an optimal solution for Γ2 is proposed in Section 4. The linearization of the non-
linear discrete system and the stability analysis are achieved and validated through the
experimental results presented in Section 5. The two tests reported in Figures 9 and 10
show that the speed reference is correctly followed both with and without the starting load
torque, with the gains selected with the methodology presented.
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