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Abstract: Because lithium-ion batteries are widely used for various purposes, it is important to
estimate their state of health (SOH) to ensure their efficiency and safety. Despite the usefulness of
model-based methods for SOH estimation, the difficulties of battery modeling have resulted in a
greater emphasis on machine learning for SOH estimation. Furthermore, data preprocessing has
received much attention because it is an important step in determining the efficiency of machine
learning methods. In this paper, we propose a new preprocessing method for improving the efficiency
of machine learning for SOH estimation. The proposed method consists of the relative state of charge
(SOC) and data processing, which transforms time-domain data into SOC-domain data. According
to the correlation analysis, SOC-domain data are more correlated with the usable capacity than
time-domain data. Furthermore, we compare the estimation results of SOC-based data and time-
based data in feedforward neural networks (FNNs), convolutional neural networks (CNNs), and
long short-term memory (LSTM). The results show that the SOC-based preprocessing outperforms
conventional time-domain data-based techniques. Furthermore, the accuracy of the simplest FNN
model with the proposed method is higher than that of the CNN model and the LSTM model with a
conventional method when training data are small.

Keywords: data preprocessing; data-driven approaches; lithium-ion battery; neural network; state of
charge; SOH estimation

1. Introduction

The use of lithium-ion batteries has rapidly increased due to their low cost, high energy
densities, low self-discharge rate, and long lifetime compared to other batteries [1–4].
Therefore, lithium-ion batteries have become prevalent in a variety of fields, such as mobile
computing devices, aerospace devices, electric vehicles, and energy storage systems [5,6].
Even though lithium-ion batteries have notable advantages, a major downside is the
capacity fade on repeated use. Furthermore, it is essential to monitor and estimate the
capacity accurately, since an incorrect capacity estimation can cause permanent damage to
the battery by overcharging or over-discharging [7]. The state of health (SOH) of a battery
is a crucial indicator for evaluating the capacity fade of batteries. Therefore, it is essential
to accurately estimate the SOH of lithium-ion batteries for guaranteeing the safety and
reliability [8]. However, lithium-ion batteries are composed of complex chemical systems
and are affected by the environment, for instance, the ambient temperature, resulting in
complex calculations of their SOH [9]. Moreover, the nonlinear degradation of battery
capacity challenges the SOH estimation and the remaining useful life (RUL) prediction [10].

Many studies have been conducted to determine an accurate estimation of the SOH.
Generally, these studies can be classified into two categories: model-based methods and
data-driven methods [11].

Model-based methods estimate the SOH of a battery by modeling the battery and
considering the internal degradation process. Onori et al. [12] predicted the lifespan
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of a battery using a weighted ampere-hour throughput model of lithium-ion batteries
and a severity factor map, which is used to determine the amount of damage that can
occur to the battery. Plett [13] estimated the SOH of a battery using an equivalent cir-
cuit model and an extended Kalman filter, which automatically provides dynamic error
bounds. Goebel et al. [14] predicted the lifespan of a battery through a linear relationship
between the battery’s internal impedance and capacity using the particle filter approach.
Wang et al. [15] proposed a method to predict the battery SOH using a state-space model
depending on the discharge rate. Li et al. [16] estimated the SOH of a battery using an
advanced single-particle model with electrolyte physics, considering internal mechanical
and chemical battery degradation. Wang et al. [17] proposed a cell inconsistency evaluation
model based on real-world operation data of electric vehicles. Although these model-based
methods are useful for estimating the SOH of batteries, it is challenging to design an accu-
rate aging model for lithium-ion batteries due to the highly complex chemical reactions
inside the battery. Furthermore, the state of lithium-ion batteries is highly dependent on
environmental factors, such as working temperature, anode materials, cathode materials,
and others. Therefore, it is difficult to establish an exact aging model for lithium-ion
batteries [18].

Data-driven methods have recently been drawing attention for SOH estimation due to
their flexibility and effectiveness in non-direct observability. Data-driven methods predict
the SOH of a battery using statistical or machine learning models. Hu et al. [19] introduced
sparse Bayesian predictive modeling with a sample entropy of short voltage sequences
to improve the accuracy of the estimation. Piao et al. [20] proposed a hidden Markov
model to estimate and analyze the SOH of a battery. Liu et al. [21] used Gaussian process
regression, which combines the covariance functions and mean functions to estimate the
SOH. Liu et al. [22] also proposed an optimized relevance vector machine algorithm to
estimate the RUL of a battery. Jin et al. [23] predicted the short-term SOH and long-term
RUL of lithium-ion batteries with indirect health indicators and the Gaussian process
regression model. Patil et al. [24] used a support vector machine as the battery SOH
estimator with critical features from battery cycling data. Khumprom and Yodo [25]
presented the data-driven prognostic using deep neural networks to predict the SoH
and the RUL of the lithium-ion battery. Xia and Abu Qahouq [26] proposed an adaptive
SOH estimation method utilizing a feedforward neural network (FNN) and online AC
complex impedance. She et al. [27] proposed a prediction method for a battery aging
assessment using a radial basis function (RBF) neural network with an incremental capacity
analysis. Eddahech et al. [28] showed that recurrent neural networks can be used to predict
performance decline in batteries. Tian et al. [29] proposed a deep neural network to estimate
charging curves of batteries from which SOH can be computed. Shen et al. [30] proposed
a method to predict the usable capacity of a battery using a deep convolutional neural
network (CNN) with current and voltage measurement data. Park et al. [31] combined
multichannel charging profiles and a long short-term memory (LSTM) model to improve
the accuracy of an RUL prediction. The data-driven method can predict the SOH of a
battery without electrochemical knowledge of the battery’s internal structure and aging
mechanisms. Therefore, these methods can be easily implemented without information on
the electrochemical characteristics of a battery and the environmental factors. Despite such
remarkable success, most studies have only focused on steps taken to develop a statistical
model or machine learning model—such as introducing a complex model and additional
parameters—to improve the estimation accuracy. Therefore, the primary limitation is the
inefficiency of training models and their inaccuracy in predicting the SOH because they do
not consider the characteristics of the battery.

In this work, we develop an efficient preprocessing method to improve the accuracy
and efficiency of SOH estimation in machine learning models, considering the fact that the
battery characteristics are affected by the battery’s energy level. The proposed preprocess-
ing method consists of a relative state of charge (SOC) and conversion, transforming the
time-domain data into SOC-domain data. This simple preprocessing method increases the
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accuracy and efficiency of the estimation in the same machine learning model. Further-
more, when training data are small, the proposed method improves the SOH estimation
accuracy of the simplest FNN model, which is higher than that of the complex models with
a conventional method.

The remainder of this paper is organized as follows: In Section 2, we provide a brief
description of battery datasets. In Section 3, we present a new preprocessing method for
SOH estimation and comparison with conventional time-based data processing methods.
In Section 4, we describe the machine learning process for SOH estimation using the
proposed preprocessing method. In Section 5, we compare the SOH prediction results of
preprocessing based on the constant time interval and preprocessing based on the SOC
basis. The conclusions are presented in Section 6.

2. Battery Dataset

In this study, the lithium-ion battery dataset for SOH estimation was obtained from the
NASA Prognostics Center [32]. As shown in Figure 1, we selected four batteries labeled #5,
#6, #7, and #18 that were widely used for SOH estimation [18,25,33]. This dataset consisted
of operating profiles and measured the impedance of 18,650 lithium-ion batteries when
charging and discharging at room temperature. The batteries were charged at a constant
1.5 A until the charging voltage reached 4.2 V and, then, continued to charge at a constant
4.2 V until the charging current dropped below 20 mA. The batteries were discharged at a
constant current of 2 A until the voltage of the battery dropped to 2.7 V, 2.5 V, 2.2 V, and
2.5 V for batteries #5, #6, #7, and #18, respectively.
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Figure 1. Lithium-ion battery degradation with respect to number of cycles.

Because each battery had a different initial capacity, as shown in Figure 1, the health
of batteries was evaluated using the SOH. There are several methods for calculating the
SOH; however, there are mainly two methods based on the battery’s impedance and the
battery’s usable capacity [34,35]. The method defined by the impedance of the battery is not
suitable for an online measurement because it requires instruments such as electrochemical
impedance spectroscopy. Therefore, in this study, we used the SOH of a battery based on
its usable capacity. This method can be expressed as follows [36]:

SOH =
Cusable
Crated

(1)
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where Cusable is the usable capacity which represents the maximal releasable capacity
when it completely discharged, while Crated is the rated capacity, which is provided by the
manufacturer. The usable capacity declines over time.

3. Proposed Preprocessing Method

We proposed a new preprocessing method that consisted of a relative SOC and data
processing that transforms time-domain data into SOC-domain data. The time-domain
data of batteries are among the most widely used data for SOH estimation because they are
typically measured at constant intervals. However, battery characteristics are dependent
not on time intervals, but on their internal energy, which is related to the SOC.

3.1. Relative State of Charge

The typical SOC of a battery is related to its stored energy and was calculated based
on the design capacity [37] as follows:

SOCtypical(t) =
C(t)
Crated

(2)

where Crated is the design capacity and C(t) is the current capacity at time t. However,
complex calculations or measurements were required to estimate the typical SOC accurately.
The purpose of our study was to improve machine learning models of SOH estimation
using the data preprocessing that can be simply computed based on the relationship
between battery characteristics and its energy level. It was not essential to use a typical
SOC, and we needed indicators related to the energy level of the battery. Consequently, we
introduced a relative SOC—simply called SOC—which was correlated with the battery’s
energy level. The relative SOC was calculated simply by the usable capacity during the
charging process as follows:

SOCk(t) = SOCk(t0) +
1

Ck
usable

∫ t

t0

Icdt (3)

where t0 is start time, t is current time, Ck
usable is the usable capacity computed, and Ic is the

charging current at the k-th cycle. The usable capacity could be computed by integrating
the current as follows [38] :

Ck
usable =

∫ tcuto f f

t0

Iddt (4)

where t0 is the discharging start time, tcuto f f is the time when the battery voltage is below
the cutoff voltage, Id is the discharging current from the battery at k-th cycle, and C0

usable is
set to Crated. The relative SOC was easily computed during the battery charging and had a
value between 0% and 100%, even if the battery was degraded. Therefore, in this paper, we
discussed how to process data based on the relative SOC.

3.2. Time-Based Data Sampling

Many studies have used the time-based data sampling, in which data are collected by
constant time interval [31,33,39]. Their approach seemed reasonable, as typical equipment
is measuring data at constant time interval. For comparison with the proposed SOC-
based method, we generated data using the same elements based on time-based data
sampling. The dataset sampled by a constant time interval consisted of time, voltage,
current, temperature difference, and cycles, as follows:

Dk
timebase #n =


tk
1 tk

2 ... tk
s

Vk
1 Vk

2 ... Vk
s

Ik
1 Ik

2 ... Ik
s

∆Tk
1 ∆Tk

2 ... ∆Tk
s

k k + 1
s−1 ... k + 1

 (5)
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where tk
m, Vk

m, Ik
m, and ∆Tk

m are the m-th sampling points of time, voltage, current, and
temperature difference at the k-th cycle in the n-th battery dataset, and s is the total number
of sampling points during one charge cycle. The temperature difference was calculated
as follows:

∆Tk
m = Tk

m −min(Tk) (6)

where k is number of cycles, m is m-th sampling points, and Tk is a collection of temperature
measured at k-th cycle.

Figure 2 shows the sampling data of voltage, current, and temperature difference
by constant time interval during charging of battery #5 with a total of 20 sampling points
during one charge cycle. Figure 2a shows that the voltage of the aged battery reached 4.2 V
faster than newer ones. However, regardless of their health condition, the battery’s voltage
maintained the same 4.2 V after 4000 s. Therefore, almost 65% of voltage data had the same
values. Similarly, a significant difference was not found in the current value in less than
4000 s or over 6000 s. The change in temperature difference of battery #5 was also slightly
different after 6000 s. This result showed that the preprocessing based on time-domain
features was insufficient to indicate the battery’s health state.
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Figure 2. Data sampled by constant time intervals during charging of battery #5.

3.3. SOC-Based Data Sampling

The relative SOC is correlated with the battery’s energy, and the characteristics of the
battery are affected by the battery’s energy level. For this reason, we introduced SOC-based
data sampling. The SOC-based data sampling is the method by which data are collected by
constant relative SOC interval, considering the battery’s energy. The dataset sampled by
a constant relative SOC interval consisted of relative SOC, voltage, current, temperature
difference, and cycles, as follows:

Dk
socbase #n =


SOCk

1 SOCk
2 ... SOCk

s
Vk

1 Vk
2 ... Vk

s
Ik
1 Ik

2 ... Ik
s

∆Tk
1 ∆Tk

2 ... ∆Tk
s

k k + 1
s−1 ... k + 1

 (7)

where SOCk
m, Vk

m, Ik
m, and ∆Tk

m are the m-th sampling points of the relative SOC, voltage,
current, and temperature difference at the k-th cycle in the n-th battery dataset, and s is the
total number of sampling points during one charge cycle. The temperature difference was
calculated as Equation (6).

Figure 3 shows data sampled by constant relative SOC interval of battery #5 with
a total of 20 sampling points during one charge cycle. Compared to Figure 2, the data
preprocessed based on SOC basis differed for the aged battery and the new battery. Notably,
the battery’s voltage sampling values had a significant difference between 0% and 70%. This
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value was 40% higher than the time-based preprocessing, showing only a 30% difference
in voltage data between the old and new batteries. Figure 3 also shows that current and
temperature variation in preprocessing based on SOC values was highly correlated with
the SOH of the battery.
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Figure 3. Data sampled by constant SOC intervals during charging of battery #5.

3.4. Correlation Analysis

Figure 4 shows the heatmap of the Pearson correlation coefficient between the usable
capacity and sampling data. In Figure 4, the data in SOC-based datasets correlated highly
with capacity compared to time-based datasets. In particular, the voltage data in SOC-based
datasets were more correlated with the usable capacity than the voltage data in time-based
datasets. Furthermore, the correlation coefficient between the usable capacity and the
temperature difference in SOC-based datasets was higher than in time-based datasets.
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Figure 4. Heatmap of the Pearson correlation coefficient for the data processing method between the
usable capacity of the battery and the sample data of current, voltage, and temperature difference
during charging.

Table 1 represents the average absolute values of the correlation coefficient and the
ratio of highly correlated variables, whose magnitude was between 0.7 and 1.0, accord-
ing to various battery datasets and data processing methods. Table 1 shows that the
ratio of highly correlated variables in SOC-based datasets was higher than in time-based
datasets. In addition, the average absolute values of the correlation coefficient in SOC-based
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datasets were higher than in time-based datasets. This result established that the SOC-
based data processing was more correlated with the usable capacity than the time-based
data processing.

Table 1. Average absolute values of the Pearson correlation coefficient and the ratio of highly correlated variables according
to the data processing method (sampling number = 20).

Battery #5 Battery #6 Battery #7 Battery #18

Preprocessing Method Timebase SOCbase Timebase SOCbase Timebase SOCbase Timebase SOCbase

Average absolute value 0.39 0.54 0.44 0.55 0.38 0.46 0.33 0.40
Ratio of highly correlated variables * 35% 55% 37% 55% 33% 42% 23% 30%

* The magnitude of the correlation coefficient was between 0.7 and 1.0.

4. Machine Learning Process

As shown in Figure 5, the proposed process for battery’s SOH estimation consisted
of three stages: data preprocessing, model training, and a performance evaluation. The
missing and abnormal values were removed from the batteries’ raw data during the data
preprocessing stage. After data cleaning, the time-based data were transformed into SOC-
based data, and the features of the battery were extracted. The feature data were split into
a training dataset and test dataset. In the model training stage, the training dataset was
split into training data and validation data. We trained FNNs, CNNs, and LSTMs using the
training data. The hyper-parameters of the architecture were adjusted using the validation
data. In the performance evaluation stage, the trained model was tested using the test
dataset, and its performance was evaluated using the mean absolute error (MAE), mean
absolute percentage error (MAPE), and mean squared error (MSE).
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SOC-based 

feature 

engineering

Raw data Features
Split data

Training

dataset
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dataset

Model Training

FNN

Model building & training

Model validation

Performance 

Evaluation

Trained model
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Figure 5. Overview of the proposed process for battery capacity estimation.
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4.1. Data Preprocessing

Data preprocessing was performed to obtain data suitable for a machine-learning
model. Data cleaning was performed because the raw data contained abnormal and
missing values. The raw data, based on time series, was transformed into SOC-based
data after data cleaning, and features were extracted from SOC-based data. The feature
format was expressed in Equation (7). The SOC-based dataset did not have the same
scale. Therefore, we normalized the SOC-based dataset using min–max normalization [40]
as follows:

zk
nm =

xk
nm −min(xn)

max(xn)−min(xn)
n ∈ {1, . . . , 5}, m ∈ {1, . . . , s} (8)

where k is the number of cycles, m is m-th sampling point, and xn is a collection of the n-th
row in Equation (7) of all charging cycles. Furthermore, we normalized the capacity using
min–max normalization, as follows:

ck =
Ck −min(C)

max(C)−min(C)
(9)

where k is the number of cycles and C is a collection of capacities for all charging cycles.
After normalization, we split the data into the training dataset, to fit the model parameters,
and the test dataset, to test the final models.

4.2. Model Training

In the model training stage, we split the training dataset into training data and
validation data. We applied the SOC-based dataset to three different machine learning
models: FNN, CNN, and LSTM architectures. The model structures are summarized in
Table 2.

Table 2. Structure and parameters of neural networks.

Model Structure Number of Sampling Points Number of Parameters

FNN Input → Hidden (Neurons: 40) → Output

20 4081
40 8081

100 20,081
200 40,081

CNN

Input → 20 8441
Conv1d (Channel:20/Kernel:3) →MaxPool1d (Kernel:2/Stride:2) → 40 16,441
Conv1d (Channel:40/Kernel:4) →MaxPool1d (Kernel:2/Stride:2) → 100 40,441

FC (Neurons: 40) → Output 200 80,441

LSTM
Sequence: 4

Number of recurrent layers: 1
Hidden Size: 60

20 38,941
40 62,941

100 134,941
200 254,941

4.2.1. System Configuration

The training dataset was divided into training data and validation data, and the ratio
of the training data to the validation data was two to one. The simulation was implemented
using PyTorch 1.7, and calculated using GeForce GTX 1080Ti. The loss function for training
was expressed as the MSE as follows:

MSE =
1
N

N

∑
i=1

(Ci − Ĉi)
2 (10)

where Ci is the actual capacity, Ĉi is the estimated capacity, and N is the number of datasets.
We adopted the AdamW optimizer [41], and the initial learning rate was 10−3 for the FNN
and 10−4 for the CNN and the LSTM.
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4.2.2. Feedforward Neural Network (FNN)

The FNN is an artificial neural network, which is an acyclic graph, and is the simplest
neural network. The FNN, which is essential for machine learning to form the basis of
many architectures, consists of multiple layers of perceptrons with a nonlinear activation
function [42]. We employed the simplest structure of the FNN, which had a three-layer
structure, consisting of an input, hidden, and output layers. The input layer had neurons of
the same size as the matrix in Equation (7). The hidden layer contained 40 hidden neurons,
and the hyperbolic tangent function was used as an activation function. The dropout rate
for regularization was set to 20%.

4.2.3. Convolutional Neural Network (CNN)

The CNN, which employs a mathematical convolution operation, is a specialized type
of FNN for processing gird-like data. A layer of convolutional networks consisted of three
stages. In the first stage, the convolution operation, in a 1-D discrete case, was performed
in parallel [42] as follows:

s(t) = (x ∗ w)(t) = ∑
a

x(a)w(t− a) (11)

where x is an input matrix, w is a kernel matrix, and ∗ is the convolution operator. In
the second stage, each result of the convolution operation was run through a nonlinear
activation function, namely, the hyperbolic tangent. In the third stage, a max-pooling
function was performed on the results. Two layers of convolutional networks and fully
connected layers with 40 hidden neurons were required, as shown in Table 2. The dropout
rate for regularization was set to 20%.

4.2.4. Long Short-Term Memory (LSTM)

The LSTM is a special kind of recurrent neural network (RNN) that allows outputs at
each time step to be used as inputs for processing sequential data. The difference between
LSTM and simple RNN is that the weight on the self-loop is conditioned on the context
rather than fixed [42]. Cells in LSTM are connected recurrently to each other. Input values
calculated with a regular neuron unit can be accumulated in the state if the input gate
allows it. The state unit has a self-loop controlled by the forget gate, and the output gate
can block the output of the LSTM cell. The LSTM was calculated [43] as follows:

ft = σ(W f xt + U f ht−1 + b f ) (12)

it = σ(Wixt + Uiht−1 + bi) (13)

ot = σ(Woxt + Uoht−1 + bo) (14)

c̃t = tanh(Wcxt + Ucht−1 + bc) (15)

ct = ft ◦ ct−1 + it ◦ c̃t (16)

ht = ot ◦ tanh(ct) (17)

where xt is the input vector, ft is the activation vector of the forget gate, it is the activation
vector of the input and update gates, ht is the hidden state vector, c̃t is the activation vector
of the input of the cell, ct is the cell state vector, W/U is the weight matrix, and b is the
bias; the initial values were c0 = 0 and h0 = 0, and the operator ◦ denoted the Hadamard
product, which was an element-wise product.
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4.3. Performance Evaluation

To evaluate the performance of the models, the MSE was calculated from the test data.
In addition, the MAE and MAPE were computed for a performance evaluation as follows:

MAE =
1
N

N

∑
i=1
|Ci − Ĉi| (18)

MAPE =
100%

N

N

∑
i=1
|Ci − Ĉi

Ci
| (19)

where Ci is the actual capacity, Ĉi is the estimated capacity, and N is the number of datasets.

5. Experiment Results
5.1. Sampling Size

There were various methods to choose sampling points for charging. As the number of
sampling points increased, more information was contained within the sample. However,
the machine learning models would require more parameters, and not all sampling points
were essential for predicting the SOH of the battery, as shown in Figure 4. To identify a
reasonable number of sampling points, various numbers of sampling points were experi-
mented with in FNN, CNN, and LSTM. The maximum number of sampling points was set
to 200, considering the number of model parameters that affected the learning time.

As shown in Table 3, the FNN with 20 sampling points would perform better than
the 200 sampling points. These results showed that overfitting occurred as the number of
sampling points increased. Moreover, the loss of SOC-based datasets was lower than that
of time-based datasets, which showed that the SOC-based preprocessing improved the
capacity estimation in the FNN. The CNN had the lowest MSE value when the sampling
points were 40, as shown in Table 3. When the number of samplings was small, the loss of
SOC-based data was lower than that of time-based data, whereas the loss of SOC-based
data was larger than that of time-based data as the number of samples increased. The
SOC-based data had the smallest loss when the sampling points were 20 in the LSTM,
and the time-based data had a similar MSE. Therefore, the SOH was estimated using 20
samplings in the FNN, 40 samplings in the CNN, and 20 samplings in LSTM.

Table 3. The MSE loss dependency on the number of sampling points in FNN, CNN, and LSTM.

MSE

Sampling Processing Method FNN CNN LSTM

20 SOCbase 0.0017 0.0017 0.0034
Timebase 0.0021 0.0046 0.0033

40 SOCbase 0.0021 0.0015 0.0034
Timebase 0.0028 0.0042 0.0036

100 SOCbase 0.0048 0.0027 0.0038
Timebase 0.0059 0.0044 0.0031

200 SOCbase 0.0095 0.0042 0.0055
Timebase 0.0102 0.0040 0.0053

5.2. Estimation Results and Discussion

To validate the proposed method, the SOH estimation results of time-based sampling
and SOC-based sampling were compared in this Section. To compare and infer which one
performed better under limited training conditions, the SOH estimation was conducted
in two cases: models trained with 72-cycle training and models trained with 120-cycle
training without battery #18. In battery #18, one was a model trained with 72-cycle training,
and the other was a model trained with 96-cycle training. In addition, all machine learning
models were performed five times, and the average value of the results was used. Figure 6
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shows SOH estimation results using the FNN in various batteries with 20 sampling points.
The FNN with SOC-based datasets outperformed with the time-based datasets in 72-cycle
training, as shown in Figure 6a–d. There was a significant difference in SOH estimation
between SOC-based preprocessing and time-based preprocessing in SOH estimation results
of Battery #5 and Battery #7, as shown in Figure 6a,c. However, the results of the two
groups were similar on more training data, as shown in Figure 6e–h.
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Figure 6. SOH estimation results using FNN.

The SOH estimation results of the CNN showed a trend similar to those of the FNN,
as shown in Figure 7. In 72-cycle training, the CNN with SOC-based datasets estimated
the SOH more accurately than with the time-based datasets, as shown in Figure 7a–d.
However, in 72-cycle training, the CNN with SOC-based datasets showed more errors
than the FNN with SOC-based datasets. Similarly, the CNN with time-based datasets
showed more errors than the FNN with time-based datasets. In the late stage, SOC-based
and time-based datasets showed similar SOH estimation results in the CNN, as shown in
Figure 7e–h.

However, the SOH estimation results for the LSTM differed slightly from those for the
FNN. As shown in Figure 8a–d, the SOH was estimated similarly for both SOC-based and
time-based datasets in 72-cycle training, and the LSTM had a higher estimation accuracy
than FNN and CNN. In 120-cycle training, LSTM had a higher estimation accuracy in both
SOC-based and time-based datasets. Because LSTM is an appropriate model for series-type
data, these results were obtained.

To make a more straightforward comparison, we calculated the MAE, MASE, and
MAPE of the SOH estimation, as shown in Table 4. All the machine learning models
showed a lower number of estimation errors on SOC-based datasets than on time-based
datasets, as shown in Table 4. These results showed that the preprocessing based on the
SOC was more suitable for machine learning than preprocessing based on the time intervals
in the raw data of lithium-ion batteries.
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Figure 7. SOH estimation results using a CNN.
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Figure 8. SOH estimation results using LSTM.
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Table 4. Estimation errors in various models and training cycles.

Model Training Processing MAE MSE MAPE

FNN
72-Cycle SOCbase 0.0396 0.0023 2.03

Timebase 0.0611 0.0068 2.56

120-Cycle SOCbase 0.0225 0.0010 1.25
Timebase 0.0253 0.0010 1.31

CNN
72-Cycle SOCbase 0.0449 0.0040 2.23

Timebase 0.0729 0.0131 3.10

120-Cycle SOCbase 0.0193 0.0008 1.03
Timebase 0.0239 0.0011 1.09

LSTM
72-Cycle SOCbase 0.0411 0.0039 1.92

Timebase 0.0465 0.0042 2.12

120-Cycle SOCbase 0.0229 0.0009 1.18
Timebase 0.0257 0.0011 1.29

The LSTM model trained using SOC-based datasets had the lowest MAPE of 1.92
among models trained with less data. However, even when a simple FNN model with
SOC-based datasets was used, the MAPE showed the second lowest value at 2.03, which
was lower than any model using time series data. Table 2 shows that the total number of
parameters in FNN, CNN, and LSTM was 4081, 16,441, and 38,941, respectively. As a result,
the total number of parameters in the FNN was only 25% of that in the CNN and 10% of
that in the LSTM. On small training data, these results showed that FNN with SOC-based
datasets outperformed complex models, such as CNNs and LSTMs. In models trained
with large data, the CNN trained using SOC-based datasets had the lowest MAPE at 1.03.
However, there was no significant difference in MAPE between SOC-based data processing
and time-based data processing, as shown in Figure 9. The results of this study indicated
that a simple FNN model with SOC-based data preprocessing could be used to predict
the SOH accurately, similar to complex models, such as CNN and LSTM. Consequently,
these results showed that the preprocessing method proposed in this study could improve
the accuracy of the FNN model, which was 10% of the parameters of the LSTM model, as
much as LSTM.
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Figure 9. MAPE in various models and training cycles.
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6. Conclusions

We proposed a new preprocessing method for machine learning models to improve
the SOH estimation of batteries. The proposed preprocessing was based on the relative
SOC, which could be easily calculated during charging using the current integration
method. To compare the proposed method with the general preprocessing method based
on constant time intervals, the correlation coefficient between datasets and usable capacities
was calculated. The correlation results showed that SOC-based datasets processed using
the proposed method had a higher correlation with usable capacity than general time-based
datasets. Furthermore, we tested various machine learning models such as the FNN, CNN,
and LSTM using SOC-based and time-based datasets. Our results showed that the simplest
FNN model using the proposed method predicted the battery SOH with as much accuracy
as complex models such as CNNs and LSTMs. Furthermore, the MAPE value of the FNN
model with SOC-based datasets was 2.03, which was lower than 3.10 of the CNN model and
2.12 of LSTM model with time-based datasets tested on small training data. Our findings
suggest that the proposed method could be used to improve the accuracy of devices with
limited computing resources. Therefore, our findings can be applied to SOH estimation
in resource-constrained hardware platforms. In future work, we intend to integrate the
proposed method into embedded devices and apply it in tiny machine learning.
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