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Abstract: Transient stability assessment (TSA) has always been a fundamental means for ensuring
the secure and stable operation of power systems. Due to the integration of new elements such as
power electronics, electric vehicles and renewable power generations, dynamic characteristics of
power systems are becoming more and more complex, which makes TSA an increasingly urgent
task. Since traditional time-domain simulations and direct method cannot meet the actual opera-
tion requirements of power systems, data-driven TSA has attracted growing attention from both
academia and industry. This paper makes a comprehensive review from the following four aspects:
feature extraction and selection, model construction, online learning and rule extraction; and then,
summarizes the challenges and prospects for future research; finally, draws the conclusions of this
review. This review will be beneficial for relevant researchers to better understand the research status,
key technologies, and existing challenges in the field.

Keywords: transient stability assessment; power systems; data-driven approach; feature extraction
and selection; model construction; review

1. Introduction

Transient stability assessment (TSA) is a fundamental means for ensuring the secure
and stable operation of power systems. Transient stability of power systems refers to the
ability of each generator in the system to maintain synchronous operation after a large
disturbance [1]. With the increasing penetration of new elements such as power electronics,
electric vehicles, and renewable power generations, dynamic characteristics of power
systems are becoming more and more complex. In this situation, accurate and rapid TSA
is increasingly urgent. With the rapid development of artificial intelligence techniques,
data-driven TSA approaches became a hot topic in recent years, and a large number of
research results were produced. Therefore, it is necessary to make a critical review of
existing data-driven TSA approaches so that relevant researchers can better understand
the research status, key technologies, and existing challenges in the field.

As summarized in Table 1, existing TSA methods can be roughly divided into three
categories: time-domain simulation method [2], direct method [3], and data-driven arti-
ficial intelligence (AI) method [4,5]. The basic idea of time-domain simulation methods
is to use a numerical integration algorithm to solve the differential-algebraic equations
(DAEs) describing the dynamic process of a disturbed power system, and then judge the
stability status of the system by the relative angle changes between generator rotors. Due to
good model adaptability and reliability, this method was widely used in the electric power
industry. Reference [6] proposes the application of the unsymmetric multifrontal method to
solve the DAEs encountered in the power system dynamic simulations. Reference [7] pro-
poses a time-domain simulation approach for power system dynamic simulations by using
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unsymmetric multifrontal method. Reference [8] proposes a distributed transient stability
simulation algorithm, which has a good, strong scalability. Using the above-mentioned
technologies, the existing transient simulation can realize super real-time simulations for
large-scale power systems.

Table 1. Principles, advantages, and disadvantages of different TSA methods.

Methods Principles Advantages Disadvantages

Time-domain
simulation

Solve
differential-algebraic
equations describing
the dynamic process

of a disturbed
power system

This method has
good scalability with

accurate and
reliable results.

The calculation results
depend on the accuracy

of the system model
and parameters.

Direct method

Construct an energy
function to describe

the transient stability
of a power system

This method has fast
calculation speed and

can provide a
stability margin.

The energy function is
difficult to construct,
and the calculation

result is conservative.

Data-driven TSA

Judge the stability
status of a disturbed

system using a
trained TSA model

The method has
strong learning ability

and fast
calculation speed.

It acts as a black box
with poor

interpretability and
weak adaptability to
topological changes

The direct method is a kind of TSA method that uses energy functions constructed by
Lyapunov theory [9] to analyze the transient stability of a power system. Reference [10]
reveals the role of the Koopman model in power system transient stability assessment.
Compared with the time-domain simulation method, this algorithm does not require
complex time-domain simulation of the system after a fault, and it can provide a measure
of the degree of system stability. References [11,12] propose a single machine equivalent
(SIME) method for transient stability assessment. Reference [13] proposes a method for
transient stability assessment of a multimachine system by using the extended equal area
criterion (EEAC). In addition, phasor measurement units (PMUs) [14] and dynamic state
estimator (DSE) [15] can collect online information in real time for TSA.

Unlike the above-mentioned time-domain simulation method and direct method, a
data-driven TSA method is model-free, which treats TSA as a pattern recognition problem.
In this method, an AI-based assessment model is built to reflect the input power system
operational parameters and the transient stability status of the system. This method has
the advantages of strong learning ability and fast evaluation speed, which has a good
performance in the field of power system transient stability assessment.

To facilitate analysis, the principles, advantages, and disadvantages of different kinds
of TSA methods are shown in Table 1.

2. Principles of Data-Driven Transient Stability Assessment

As a mode-free method, data-driven TSA regards transient stability assessment as
a pattern classification problem, which mainly includes the following aspects: feature
extraction and selection, model construction, online learning, and rule extraction. For ease
of description, a schematic diagram of data-driven TSA is shown in Figure 1.

In Figure 1, Xi (i = 1, . . . ,n) denotes input feature i, and all input features constitute a
feature vector as the input of TSA models. A TSA model can learn the mapping relation-
ships between input features and system stability status. After an assessment model is
trained, once a new input feature vector is sent to the TSA model, the stability status of the
system will be immediately predicted by using the mapping relationship obtained through
model training.
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Figure 1. Schematic diagram of data-driven TSA. Figure 1. Schematic diagram of data-driven TSA.

2.1. Feature Extraction and Selection

Feature extraction and feature selection are two important issues for TSA of power
systems. Feature extraction is to extract input features from initial set of measured data,
while feature selection refers to the process of choosing a subset of relevant features for use
in model construction. Especially, feature selection is a typical combination optimization
problem. Compared with that of traditional machine learning algorithms, deep learning
can automatically process all features, generate more complex combined features, and
eliminate possible omissions in feature extraction algorithms and the subjective factors
of researchers.

Based on the structural risk minimization principle, support vector machines (SVMs)
can achieve accurate classification in a small sample space. Reference [16] adopts feature
selection methods to determine the input variables best suitable for training an ANN-based
TSA model. Reference [17] presents an SVM-based two-stage feature selection method:
in the first stage, the original feature set is sorted by the SVM recursive feature selection
method, and the unimportant features are eliminated to obtain a reduced feature subset; in
the second stage, the SVM with radial basis function kernel is used as the classifier to select
approximate optimal feature subsets. Reference [18] proposes a TSA method based on
enhanced feature selection and least square SVM. Considering the postfault measurement
information provided by PMUs, reference [19] proposes a feature selection method based
on the improved maximal-relevance and minimal redundancy criterion (mRMR) and SVM
for transient stability assessment. In [20], the feature selection algorithm based on random
forest and recursive feature elimination is used to extract the key feature subset for TSA.

With the rapid development of AI technology, deep learning was successfully applied
to the feature extraction and selection of power system transient stability assessment in re-
cent years. Reference [21] proposes a Fisher linear discriminant function method combined
with feature selection technology. Fisher discriminator is used to determine the goodness
score of each feature, and then to rank the features according to their scores. Reference [22]
proposes a temporal feature selection method for a time adaptive TSA method, which can
extract the crucial temporal features by calculating the feature importance. In [23], en-
hanced feature selection and extraction methods are developed for reducing input features
to a probabilistic neural network-based TSA model.

In addition, there are other previous works that develop different feature selection
methods for data-driven TSA. Reference [24] proposes an mRMR-based mutual information
criterion for feature selection. A TSA approach based on the ensemble of OS-extreme
learning machine (EOS-ELM) is put forward by using the binary Jaya algorithm to select
the optimal feature subset [25]. Reference [26] presents an artificial neural network (ANN)-
based TSA approach and points out that proper feature selections make this approach a
candidate for addressing a topologically independent assessment process.

2.2. Model Construction

For general pattern classification problems, constructing an appropriate assessment
model is the key to ensuring a proper balance between complexity and generalization,
which can avoid the problem of under-learning or over-learning and improve the model’s
classification performance. Accordingly, model construction is a critical issue for data-
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driven TSA methods since an appropriate classifier design plays an important role in the
performance of the used method.

Existing model construction methods of data-driven TSA mainly include the following
categories: ANN, SVM, ensemble learning (EL), and deep learning (DL). These four types
of TSA model construction methods are summarized in Table 2.

Table 2. Comparison of different TSA model construction methods.

Categories Algorithms Features Introduction Reference

ANN

Long short-term
memory network

(LSTM)

Voltage phasor and
maximum angle deviation

It proposes a temporal self-adaptive scheme,
it aims to balance the trade-off between
assessment accuracy and response time.

[27]

Spatial-temporal
graph convolutional

network

Voltage magnitude, active
power injection, and reactive
power injection time series

It utilizes graph convolution to integrate
network topology information and adopts

one-dimensional convolution to exploit
temporal information.

[28]

Convolutional
neural network

(CNN)
Bus voltage

It can not only assess whether the system
will be stable or unstable, but also predict

the instability mode for the unstable status.
[29]

Recurrent graph
convolution neural

(RGCN)

Bus voltage magnitude, the
bus relative phase and the
rotor speeds of generators

It aggregates both the GCN and the LSTM
unit to form the RGCN. [30]

SVM

SVM
Generator rotor angles,

generator speeds,
voltage magnitudes

It can be early predicted based on the
measured postfault values of the generator

voltages, speeds, or rotor angles.
[31]

Aggressive SVM
(ASVM) and

conservative SVM
(CSVM)

Active power, reactive power,
phase angle of bus voltage,

generator information

It proposes a strategy combining grey
region and two SVMs to deal with the

problems of false alarms and
false dismissals.

[32]

Core vector machine
(CVM)

Load condition, rotor angle,
speed and acceleration

It builds a TSA model based on core
vector machine. [33]

Multi-layer SVM
(MLSVM)

Reactive and active power of
generators, bus voltage and
angle, Reactive and active

power of reload

It uses genetic algorithm for a
MLSVM-based TSA model to identify
valued feature subsets with varying

numbers of features.

[34]

Ensemble
learning

A denoising stacked
autoencoder and a
voting ensembler

Frequency
It uses cross-entropy to evaluate the fitting
performance of base learners and to set the

weight coefficient in the ensembler.
[35]

Variational Bayes
multiple kernel

learning

Voltage/current phasor,
active and reactive power,

power factor and
system frequency

It uses the post disturbance PMU data to
predict the system and calculate the stability

margin for a given emergency.
[36]

Mahalanobis Kernel Network topology

It makes efficient use of data under different
network topologies, and thus enhances the
estimation accuracy and reduces the need

for training samples.

[37]

Adaptive ensemble
decision tree (DT)

Voltage magnitudes,
active/reactive power flows
and current flows, voltage

phase angle differences

It proposes an adaptive ensemble DT
learning based TSA approach considering

operating condition variations and
topology changes.

[38]
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Table 2. Cont.

Categories Algorithms Features Introduction Reference

Deep
learning

Deep belief network
Steady-state features,

transient features,
fault removal features

It initializes with unsupervised learning
using unlabeled samples, and then

fine-tune with supervised learning using
labeled samples.

[39]

Stacked
autoencoder (SAE)

Static features, system-level
classification features,

system-level
classification features,

It proposes a SAE based feature reduction
method for TSA. [40]

CNN and LSTM Voltage phasor
measurements

It presents a unified deep learning
prediction model for small signal and

transient stability.
[41]

2.2.1. ANN-Based TSA

ANN is a widely used AI algorithm for addressing transient stability assessment
problems. In such kind of data-driven TSA method, ANN is utilized to build a TSA model
reflecting the mapping relationships between power system operational parameters and
the system stability status.

In [26], artificial neural network is used to construct a TSA model for the first time.
Reference [27] develops a temporal self-adaptive TSA system by using long short-term
memory network (LSTM), which can learn the time dependence of the input temporal
sequences. A spatial-temporal graph convolutional network is put forward for TSA of
power systems in [28]. Reference [29] proposes a TSA and instability mode prediction
model based on convolutional neural network (CNN). A multitask TSA framework is
proposed for power systems by using recurrent graph convolutional networks (RGCN) [30].

2.2.2. SVM-Based TSA

Compared with that of traditional ANNs, SVM has better generalization ability and
stability. Reference [31] introduces a SVM based TSA model and compares it with the
common multilayer perceptron models. A real-time TSA approach is presented for power
system based on improved SVMs in reference [32]. The improved SVMs include aggres-
sive support vector machine (ASVM) and conservative support vector machine (CSVM).
By using big data and the core vector machine (CVM), a TSA method is established in
reference [33]. A multilayer SVM (MLSVM) optimized by genetic algorithm (GA) is put
forward for transient stability assessment of power systems in reference [34]. The results
show that the MLSVM is able to reduce the possibility of misclassification of transient
stability assessment.

2.2.3. Ensemble Learning-Based TSA

The key idea of ensemble learning is to combine multiple learners into an algorithm
model with stronger generalization performance by combining strategies. To analyze
transient stability problems, a complete machine learning-based TSA model is proposed
for TSA by using a denoising stacked autoencoder and a voting ensemble classifier [35].
A variational Bayes multiple kernel learning (VBpMKL)-based TSA model is built using
multi-feature fusion through combining feature spaces corresponding to each feature
subset, it can improve the accuracy and reliability of classification [36]. Reference [37]
proposes a data-driven TSA model based on Mahalanobis kernel regression and ensemble
learning taking into account network topology changes. In [38], an adaptive ensemble
learning model based on decision tree (DT) is established to adapt to the changes of system
operating conditions and line topology in dynamic security assessment. By this means, the
ensemble learning solves the problem of accuracy fluctuations of a single prediction model
and greatly improves the reliability of the evaluation results.
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2.2.4. Deep Learning-Based TSA

Due to the powerful feature learning and data mining capabilities, deep learning was
widely used to build power system stability assessment models in recent years. In [39],
a TSA method based on deep belief networks is proposed, and test results show that the
presented method performs very well with insufficient training samples or redundant
features. Reference [40] puts forward a transient stability assessment method based on deep
learning, which constructs three parts of the original feature set and utilizes the stacked
autoencoder (SAE) to extract multilevel features. Test results verify that the presented
approach is able to reduce the training burden of the assessment model and improve the
model’s accuracy. Reference [41] proposes a unified deep learning prediction model for
analyzing small signal and transient stability of power systems. It uses a CNN-based
classifier to determine the transient stability of the system, and then adopts LSTM network
to capture low-frequency oscillatory response of a predicted stable system. These studies
demonstrate that deep learning has great potential in the field of power system stability
assessment [42].

2.3. Online Learning

Since that power system is a time-varying system and training samples generated by
offline simulations cannot cover all the operating conditions of the system, the TSA model
obtained through offline training may not have good applicability in practical applications.
For this reason, it is of great significance to study the online learning ability of TSA models.

Research shows that online support vector regression (SVR) is an effective online learn-
ing algorithm for super short-term load forecasting of power systems [43]. Furthermore,
reference [44] presents a comprehensive transient stability classifier based on improved
SVM, which can speed up the training speed by decomposing large-scale training into
parallel small-scale training. Reference [45] proposes a TSA method based on the online
sequential extreme learning machine (OS-ELM), which can update the assessment model
on-line by partial training. A hierarchical deep learning machine (HDLM)-based TSA
model is presented to achieve quantitative and qualitative stability prediction in refer-
ence [46]. Reference [47] presents a TSA method based on dual cost-sensitivity factors,
which can achieve online updating of the model by using incremental learning. In refer-
ence [25], an EOS-ELM based TSA model is presented to implement online model updating
by using OS-ELM as a weak classifier and the online boosting algorithm as ensemble
learning algorithm. In future work, it can use the proposed model as a trigger for wide-area
protection. However, it does not take into account the possible PMU failures and commu-
nication delays of wide area measurement systems (WAMS) that may occur in real-world
power systems, which is shown in Figure 2.

Energies 2021, 14, 7238 6 of 13 
 

 

studies demonstrate that deep learning has great potential in the field of power system 

stability assessment [42]. 

2.3. Online Learning 

Since that power system is a time-varying system and training samples generated by 

offline simulations cannot cover all the operating conditions of the system, the TSA model 

obtained through offline training may not have good applicability in practical applica-

tions. For this reason, it is of great significance to study the online learning ability of TSA 

models. 

Research shows that online support vector regression (SVR) is an effective online 

learning algorithm for super short-term load forecasting of power systems [43]. Further-

more, reference [44] presents a comprehensive transient stability classifier based on im-

proved SVM, which can speed up the training speed by decomposing large-scale training 

into parallel small-scale training. Reference [45] proposes a TSA method based on the 

online sequential extreme learning machine (OS-ELM), which can update the assessment 

model on-line by partial training. A hierarchical deep learning machine (HDLM)-based 

TSA model is presented to achieve quantitative and qualitative stability prediction in ref-

erence [46]. Reference [47] presents a TSA method based on dual cost-sensitivity factors, 

which can achieve online updating of the model by using incremental learning. In refer-

ence [25], an EOS-ELM based TSA model is presented to implement online model updat-

ing by using OS-ELM as a weak classifier and the online boosting algorithm as ensemble 

learning algorithm. In future work, it can use the proposed model as a trigger for wide-

area protection. However, it does not take into account the possible PMU failures and 

communication delays of wide area measurement systems (WAMS) that may occur in 

real-world power systems, which is shown in Figure 2. 

PMU   PMU

Communication Network 

  

Phasor Data Concentrator

Control Center

GPS

PMU

Communication Network 

PMU  

Phasor Data Concentrator

An area

 

Figure 2. Structure of WAMS. 

As shown in Figure 2, WAMS is a measurement system for a power system including 

multiple areas, and it typically consists of three components: PMUs, communication sys-

tem, and control system. 

2.4. Rule Extraction 

The traditional research on transient problems starts from the physical mechanism, 

and mainly includes the numerical integration method based on mathematical modeling 

and the direct method of analyzing the energy conversion of the system. Different from 

time domain simulation or energy function methods, data-driven TSA approaches regard 

the power system as a “black box” system to fit the relationship between input and output. 

Figure 2. Structure of WAMS.



Energies 2021, 14, 7238 7 of 13

As shown in Figure 2, WAMS is a measurement system for a power system including
multiple areas, and it typically consists of three components: PMUs, communication
system, and control system.

2.4. Rule Extraction

The traditional research on transient problems starts from the physical mechanism,
and mainly includes the numerical integration method based on mathematical modeling
and the direct method of analyzing the energy conversion of the system. Different from
time domain simulation or energy function methods, data-driven TSA approaches regard
the power system as a “black box” system to fit the relationship between input and output.
Rule extraction is an important problem of the “black box” machine learning system, and
its purpose is to express the knowledge learned in the learning machine in an easy-to-
understand way.

There are already some previous works in the field of TSA rule extraction. For example,
a method for extracting transient stability rules based on linear decision trees is proposed
in reference [48], which screens the support samples near the stable boundary as the
input samples of the decision tree and reduces the number of samples to obtain safe and
stable operation rules based on combined attributes. However, the evaluation results
are sensitive to sample composition and the extension ability and robustness of decision-
making knowledge are poor. Furthermore, reference [49] proposes a method for extracting
power grid transient stability rules based on multiattribute decision trees. A decision tree-
based TSA model is constructed after the discretization of the transient stability margins
under some specified faults, then the general rule for evaluating the stability of the system
is achieved. However, this reference does not consider economic factors. A method for
extracting transient stability assessment rules based on extreme learning machine (ELM)
and improved ant-miner (IAM) algorithm is proposed in [50], which has important research
value for improving the comprehensibility and interpretability of TSA methods. However,
it is necessary to ensure that the generated samples fully reflect the response characteristics
of the training model and cover the entire sample space with a uniform distribution.
Reference [51] proposes a power system stability assessment and rule extraction approach
based on pattern discovery. However, this method only analyzes a single fault and does
not extend to cascading faults.

2.5. Overall Flowchart of Data-Driven TSA

For ease of presentation, an overall flowchart of a typical data-driven TSA approach is
shown in Figure 3.

As shown in Figure 3, the overall process of a typical data-driven TSA can be roughly
divided into two stages: offline training and online application. In the stage of offline
training, feature extraction and selection are performed to provide appropriate input
features, and then an assessment model is constructed to find the right balance between
complexity and generalization during the classification process. The assessment model
will be trained continuously until its performance meets the expected requirement. In the
stage of online application, once an input feature vector obtained from the measured data
reaches a trained TSA model, the stability status will be predicted. If the predicted result is
unstable, control measures will be initiated at once; otherwise, the evaluation process will
continue into the next monitoring cycle. Note that, besides offline data, historical archives
of power system operation and new samples generated online can be incorporated into
training databases to train/update the assessment model.
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3. Future Challenges and Prospects
3.1. Impact of Renewable Energy Integration

At present, today’s power system is in a transitional stage toward a hybrid power
system with high penetration of renewables. In recent years, the proportion of renewable
energy resources in power systems was increasing [52]. As a result, the dynamic character-
istics of power systems are becoming more and more complex. As an important form of
renewable energy integration, microgrids were vigorously promoted in power systems [53].
Taking into account the uncertainties of load and renewable power generation, a chance
constrained programming based optimal dispatch model of isolated microgrids with en-
ergy storage is proposed in reference [54]. However, as a kind of clean energy, renewable
energy has inherent uncertainties [55,56], which will affect the secure operation of power
systems. With the grid connection of large wind farms, the power flow of the power system
will also change and interact with synchronous generators to affect the small signal angle
stability of the power system [57]. Reference [58] considers the impact of different types
and capacities of wind power generators on the power grid, and then investigates the
influence of large-scale renewable integration on the transient stability of a power system.
Reference [59] studies the equivalent modelling of hybrid renewable energy source plants
for TSA. A probabilistic TSA method is proposed for power systems with renewables in
reference [60].

The above comprehensive analysis shows that power systems are becoming increas-
ingly complex due to the integration of renewables. Therefore, the stability analysis of
power grid operation gradually shifted to online analysis, which is an inevitable result
of the development of power grid systems. However, there are still many challenges and



Energies 2021, 14, 7238 9 of 13

difficulties in the analysis process. Therefore, the development process of analysis methods
is relatively slow. The relevant theories for system large interference problem analysis are
mature, and there are relatively many types of software that can be used for calculation.
However, the application of software and the limited control of stable operation of the
power grid is relatively difficult, and in-depth exploration by relevant industry personnel
is required.

3.2. Stability Assessment of AC/DC Systems with VSC-HVDC

Voltage source converter-based high-voltage direct current transmission (VSC-HVDC)
is a new type of direct current transmission technology. Wind farms are connected to
the grid through the VSC-HVDC system, and the voltage stability, power quality, and
penetration power can be significantly improved. Especially in some areas where the
development of wind power is encountering difficulties, the use of VSC-HVDC provides
an effective way to address the technical problems of long-distance and large-capacity
wind power transmission. However, when the voltage drops, the active power sent by
a high-voltage direct current (HVDC) converter station is greatly reduced, which will
cause the power imbalance between the receiving and sending ends of the converter
station [61]. In some severe cases, the devices will be damaged or even the HVDC lines
will be tripped, leading to the system instability and the failure of low voltage ride-through
(LVRT). Therefore, how to assess the stability of AC/DC systems with VSC-HVDC has
become a hot topic in the field of electrical engineering.

As a type of direct current transmission technology, voltage source converter based
high voltage direct current transmission (VSC-HVDC) has received extensive attention
from researchers due to its flexible and fast adjustment capabilities. Reference [62] proposes
a two-stage solution method combining multiobjective optimization and decision support
by using the nondominated sorting genetic algorithm II (NSGA-II). Reference [63] proposes
a two-stage AC/DC system multi-objective optimal power flow (MOPF) method that
integrates decision analysis into the optimization process. Reference [64] presents a con-
trolled islanding model for AC/DC systems with VSC-HVDC to minimize the source-load
imbalance by using semi-supervised spectral clustering, which uses VSC-HVDC links for
power exchanges between islands. Reference [65] puts forward a black-start strategy based
on VSC-HVDC for passive networks and carries out a number of simulation tests. The
test results shows that VSC-HVDC can improve the system stability during the recovery
process and shorten the system recovery time.

3.3. Stability Assessment Considering Network Topology Changes

Deep neural networks completely changed machine learning tasks. Although convo-
lution neural networks are widely used, they have limitations in processing non-Euclidean
spatial data. Graph neural network plays an important role in the application of non-
Euclidean data in deep learning, especially the use of graph structures that can be explained
on traditional Bayesian causal networks. It is of great significance to define the inferable
and causal interpretable problems of deep neural network relationships. Therefore, how
to use deep learning technology to analyze and reason about graph structure data has
attracted widespread attention from scholars.

A large number of existing studies showed that transient instability of power systems
exhibits certain spatial distribution characteristics. A TSA approach based on ensemble
learning and kernel regression was presented taking into account topology changes in
reference [37]. An energy margin analytical sensitivity method is developed for TSA of
power systems considering topology changes in [66]. A TSA method based on ANN
is presented with consideration of topology changes in [67]. Reference [68] verifies the
influence of topology on power system transient and frequency stability, by studying the
four network topologies: random graph, small-world graph, nested small-world graph,
and lattice graph. Based on a message transfer graph neural network, a fast transient
stability assessment method based on steady-state data is proposed for power systems
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in reference [69]. In this method, a TSA model that can describe power system topology
changes can be trained by using graph data processing and topological modeling.

3.4. Limitations in Applications and Prospects

Currently, data-driven transient stability assessment methods face some challenges.
First, it is tough and expensive to obtain large-scale, balanced data with accurate labels
in real-world applications [70,71]. Then, existing data-driven TSA methods act as a black
box with poor interpretability [72,73], which also limits their application in actual power
systems. Finally, most of data-driven TSA methods generally lack the adaptability to
topological changes.

At the same time, some emerging techniques are beneficial for developing advanced
data-driven TSA methods. Firstly, data augmentation-based deep generative learning is a
promising technique for addressing complex data analysis issues such as class imbalance
and missing data [74,75]. Secondly, cutting-edge artificial intelligence techniques are helpful
to build a powerful TSA model. For example, use of automated reinforcement learning can
automatically determine the optimal model parameters of an assessment model [76]. It is
also an interesting topic to balance accuracy and response speed by using multiobjective
optimization [77,78]. Thirdly, the rapid improvement of software and hardware technology
provides powerful computing power for data-driven TSA methods [79–81].

4. Conclusions

With the integration of power electronic equipment and renewable energy resources,
today’s power systems are evolving towards a new generation of power systems with
high-penetration renewable energy and power electronics. These changes pose huge
challenges for transient stability assessment of power systems. Unlike traditional time
domain simulation and energy function methods, data-driven TSA methods establish
the relationship between the system operational parameters and the stability status, and
then directly determine the stability results, which do not require the physical model and
parameter information of a power system.

Fast and accurate transient stability assessment plays a crucial role in ensuring the
secure and stable operation of power systems. This review article summarizes data-
driven transient stability assessment methods from four aspects, i.e., feature extraction and
selection, model construction, online learning, and rule extraction. Then, it discusses main
challenges and the future development direction in the field. This review will be helpful for
relevant researchers to better understand the research status, key technologies, and existing
challenges in the area of data-driven transient stability assessment of power systems.
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