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Abstract: Forecasting renewable energy sources is of critical importance to several practical appli-
cations in the energy field. However, due to the inherent volatile nature of these energy sources,
doing so remains challenging. Numerous time-series methods have been explored in literature,
which consider only one specific type of renewables (e.g., solar or wind), and are suited to small-
scale (micro-level) deployments. In this paper, the different types of renewable energy sources are
reflected, which are distributed at a national level (macro-level). To generate accurate predictions, a
methodology is proposed, which consists of two main phases. In the first phase, the most relevant
variables having impact on the generation of the renewables are identified using correlation analysis.
The second phase consists of (1) estimating model parameters, (2) optimising and reducing the
number of generated models, and (3) selecting the best model for the method under study. To this
end, the three most-relevant time-series auto-regression based methods of SARIMAX, SARIMA,
and ARIMAX are considered. After deriving the best model for each method, then a comparison
is carried out between them by taking into account different months of the year. The evaluation
results illustrate that our forecasts have mean absolute error rates between 6.76 and 11.57%, while
considering both inter- and intra-day scenarios. The best models are implemented in an open-source
REN4Kast software platform.

Keywords: time-series; auto-regression; moving average; forecasting models; percentage of renew-
able energy sources

1. Introduction
1.1. Motivation

The increasing integration of renewable energy sources (RES) leads to a more sustain-
able and cleaner future. Despite the perceptible advantages with respect to the environment,
the integration of those RES into the power system should be realised with care. Renew-
ables are intermittent in nature, and their volatility could lead to an imbalance between
power generation and demand, which endangers the stability of the grid [1]. To circumvent
this situation, there was a paradigm change from traditional “supply follows demand”
to “demand-side management” (DSM) [2]. In this regard, the key aspect of DSM is to
carry out short-term (e.g., day-ahead) planning and scheduling (e.g., when and how much
power to feed-in from renewables or increase/decrease the demand) of the power sys-
tem. Consequently, this necessitates short-term forecasts of both power generation and
demand. In this paper, we focus on generating short-term forecasts for renewables, due
to thevlack of contributions in this respect on the one hand, and on the other forecasts for
demand have been extensively and exhaustively studied in the literature [3–8] (Some of
the recent publications).

Generally, there are two different groups which require forecasts for renewables:
energy market participants, and power system operators. The former deals with daily
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business activities such as the buying or selling of energy, whereas the latter is concerned
with maintaining the stability of the power system [9,10]. However, both require timely
and accurate forecasts of power generation from RES [11–13].

Basically, forecasting can be categorised into two groups: physical and statistical
models. The former generates forecasts based on the laws of physics (e.g., numerical
weather prediction [14], or power demand of processors [15,16]), whereas the latter deals
with developing predictions based on historical data [17]. Due to the complexity in gener-
ating physical models, usually statistical ones are more favorable when deriving forecasts.
Moreover, statistical models can be further decomposed into structural and time-series ap-
proaches. The former generates forecasts of the endogenous variable based on one or more
exogenous variables (e.g., linear-regression), whereas the latter uses the previous values of
the endogenous variable to forecast the future. The advantage of time-series forecasts is
that patterns and trends can be captured [18], which is an important requirement when
generating forecasts for RES.

1.2. Problem Statement and Research Questions

Time-series forecasting, which is the adopted method in this paper, has fundamen-
tal importance to various practical applications in the energy field [19]. Traditionally, it
has been tackled using conventional methods, such as exponential smoothing, smooth-
ing techniques, statistical analysis, and regression-based approaches [20]. Among those,
auto-regressive and moving average-based methods such as SARIMAX, SARIMA, and
ARIMAX [21] received considerable attention, owing to their ability to identify seasonality
as well as the impact of exogenous variables on the endogenous one. In the literature, the
three above-mentioned methods were used to generate time-series forecasts for the RES.
However, those contributions tackle only a single type of renewable sources: either solar
or wind energy. Furthermore, the proposed approaches consider a small-scale regional
deployment (e.g., solar farms) [22–25] of RES.

The problem considered in this paper is to generate time-series forecasts for renewable
energy sources, which are distributed at a national level (e.g., large-scale). As a matter
of fact, unlike the state-of-the-art contributions, which take into account only one type of
renewable at small-scale deployments, our goal is to generate forecasts by incorporating
different types of renewable energy sources at a large-scale deployment (e.g., nation).
Hence, the stated problem reveals the need for a holistic solution. As a contribution to the
body of research, the most relevant renewable energy sources of wind, hydro, solar, etc.,
are considered. Some of the key research questions are:

• Given the fact that power generation from renewables are dependent on weather
conditions, what is the minimum number of meteorology-related variables that are
required to forecast the generation from different types of renewables?

• Among the three considered time-series regression-based methods, which one is more
suitable and under what seasonal conditions?

In order to give answers to the above-mentioned research questions, a methodology
consisting of two main phases is proposed, where each such phase comprises of several
steps. The main objective of this methodology is to derive the best model for each of the
three methods under study, while considering different months of the year. The accuracy
of those models are validated by regarding different performance metrics, where each
such metric demonstrates a specific characteristic of the derived model. It is important to
mention that the need for forecasts of the renewables was first initiated in this paper within
the practical application use case of electric-mobility (https://electrific.eu/ accessed on 5
November 2021) [9,10,26,27]. To this end, the electric vehicle (EV) drivers while planning
their trip from source to destination have three options to choose from: the fastest, greenest,
or cheapest routes. The greenest option requires the EV driver to charge his/her EV at
charging stations which are supplied with renewable energy sources. Consequently, in
order that the greenest route can be found and proposed to the EV driver, a short-term
forecast of the renewable energy sources is required.

https://electrific.eu/
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1.3. Contributions

In this paper, the problem of obtaining short-term time-series forecasts for the percent-
age of RES is considered. To this end, the percentage is calculated by taking the ratio of
electricity generated from renewables to the total generation of electricity, including both
conventional and renewable energy sources. It is important to mention that the RES are
considered at the national level (e.g., large-scale) by taking into account different sources
such as solar, wind, hydro, etc. Our work makes the following contributions:

• Derivation of a methodology whose main objective is to generate the best auto
regressive-based model for each month of the year;

• Identification of the minimum number of meteorology-related variables required by
the seasonal auto regressive-based models through correlation analysis;

• Optimisation of the model parameters and provision of the best auto regressive-based
model under study for each month of the year;

• Implementation of the best generated models in an open-source REN4KAST software
platform (https://github.com/ren4kast/REN4KAST accessed on 5 November 2021),
which provides a service to forecast the percentage of RES.

The rest of this paper is organised as follows: In Section 2, contributions related to the
forecasts of generation from RES are given. The proposed methodology with its constituent
phases and steps are presented in Section 3. The carried out Pearson’s correlation analysis
is discussed in Section 4. The evaluation results are given in Section 5, and the paper
is concluded in Section 6. In the Appendix, definition to time-series data is given in
Appendix A.1, the mathematical presentation of the three methods of SARIMAX, SARIMA
and ARIMAX are illustrated in Appendix A.2, and the different accuracy measuring metrics
are presented in Appendix A.3.

2. Related Work

Renewable energy sources are highly dependent on environmental-related data such
as meteorology and irradiation [28]. Hence, forecasting is important for operation and
management purposes [29]. To this end, time-series statistical methods of SARIMAX,
SARIMA, and ARIMA were proposed in the literature to forecast the power generation
from one type of RES (e.g., solar or wind). Alsharif et al. [22] conducted research to predict
solar radiation, since it affects power generation from renewables. They used 37 years
of solar radiation data to train the model based on the SARIMA method. The proposed
approach predicts daily and monthly solar radiation with RMSE (Root Mean Square Error)
of 104.26 and 33.18, respectively. Sharif Atique et al. [23] used ARIMA and SARIMA
methods to predict total daily solar energy generation. They observed seasonality in their
data, which is because of the natural monthly periods that affects solar energy generation.
The authors used AIC (Akaike’s Information Criterion) to select the best model and SSE
(Sum of Squared Errors) for validation. They showed that SARIMA outperforms ARIMA
in this context.

In [24], Vagropoulos et al. researched to compare models based on SARIMAX,
SARIMA, modified SARIMA, and ANN-based methods in solar energy generation fore-
casting context. The models were used to predict day-ahead and intra-day hourly PV
(photovoltaic) power generation. The results showed that SARIMAX performed better
when previous days show irregular production patterns with respect to the forecast day.
This occurs in months when there are weather changes. However, SARIMA performed
better in summer where the weather conditions are almost static for continuous days. In
intra-day forecasting, the results showed that SARIMAX performed better during April,
May, and November. For other months, the SARIMA method had an edge over SARIMAX.
Basmadjian et al. [30] used ANN-based methods to produce forecasts for the generation of
PVs. They showed that among the three methods of NEAT (Neuro Evolution of Augment-
ing Topologies), RBFN (Radial Basis Function Network), and FFNN (Feed Forward Neural
Network), NEAT generates the most accurate forecasts.

https://github.com/ren4kast/REN4KAST
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In [25] Hodge et al. used ARIMA to forecast wind power. In the training phase, they
trained 625 different models based on the ARIMA method (2 weeks training period) and
selected the 20 best models based on AIC. Then, these 20 models were used to forecast
2 weeks of hourly data, and then they compared and chose the best model based on its
improvement upon the persistence model. More precisely, such a model uses Xt to predict
Xt+1 similar to the one considered in [31].

Eldali et al. in [32] proposed an approach using ARIMA to improve day-ahead wind
power forecasts. In the first step, they calculated the absolute error between the actual and
the forecasted values. In the next phase, 2 of 10× 10 matrices were created, generating
200 models, and the model with the lowest AIC among them was selected and used to fit
recent data points (last 30 days data) of the error. This model was used to predict 24 h of
future error values and these predicted error values were added to the original forecast
data for the same day. The results showed that MRE (Mean Relative Error) was lower in
comparison with the original forecast.

It can hence be concluded that the above-mentioned approaches in the literature
propose forecasting models by considering only one type of renewable energy sources
(e.g., either solar or wind). In this paper, we go one step further, and unlike the state-of-the-
art approaches, the problem of generating accurate short-term forecasts for the percentage
of renewable energy sources (e.g., solar, wind, hydro, etc.) is studied by considering
both meteorological and irradiation information at the national level. To achieve this,
a methodology is proposed and a comparison between the three time-series statistical
methods of SARIMAX, SARIMA, and ARIMAX is carried out.

3. Proposed Methodology

In this section, the methodology used to generate prediction models for the percentage
of renewables is described. As illustrated in Figure 1, the proposed methodology is based
on two phases, where each such phase consists of several steps. These phases are organised
in a sequential manner, such that each phase has a set of inputs and generates an output.

Figure 1. The two phases of the proposed methodology with their corresponding steps.
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3.1. Phase 1: Identification of Exogenous Variables

As the first phase of the methodology, the choice of the exogenous variables has an
important impact on the accuracy of the generated forecasting models. For this purpose,
the main goal of this phase is to identify the set of exogenous variables relevant for the
underlying model(s). Intuitively, a major aspect playing a role on the power generation of
renewables is the information related to the meteorology and irradiation.

The generated forecast for the percentage of renewables needs to be realised at a macro-
level (e.g., nation) instead of micro-level (e.g., region). This is because the percentage of
renewables incorporates all the sources of green energy distributed among the borders of
the largest administrative organisation, which is the country. Consequently, as the first step
of this phase, the whole geography of the country is divided into a grid structure of n rows
and m columns. Thus, this facilitates in specifying n ∗ m points such that each of those
points can be used as a reference to collect meteorological as well as irradiation-related
information. It is important to note that this information is re-sampled to 15-min resolution.

As a second step of this phase, this information (weather and irradiation) from the
n ∗m reference points is used to calculate their corresponding average values and standard
deviations. The third step of this phase is to gather information related to the generated
power with a resolution of 15 min. This information is used to calculate the percentage
of renewables at the country level in the fourth step. Note that the percentage of RES
is calculated as the ratio of power generated by RES to the total power produced by the
different sources (with and without renewables). The two datasets derived in Steps 2 and 4
are then merged into a single one in the fifth step.

The final step (e.g., Step 6) of this phase consists of identifying the most relevant
variables from irradiation and meteorological related information having influence on the
generation of renewable energy sources. To achieve this, a Pearson’s correlation analysis
(see Section 4) is carried out. Thus, the output of this phase is the set of exogenous variables
extracted from irradiation and meteorological information that show linear correlation with
respect to the percentage of renewable energy sources. This set of variables (see Section 4.3)
will serve as an input to exogenous variables for the models based on SARIMAX and
ARIMAX methods.

3.2. Phase 2: Generation of Accurate Model

The main objective of this phase is to generate the best accurate forecasting model
for the method under study. For this purpose, as in the previous phase, this one is also
composed of several sequential steps. The first step consists of estimating values of the
model parameters corresponding to the method under study (e.g., SARIMAX, SARIMA,
ARIMAX). Based on our literature review, the following range of values are defined:

• p, q ∈ [0, 4],
• P, Q and d ∈ [0, 2],
• D ∈ [0, 1].

Note that the detailed explanation of the model parameters as well as the mathematical
presentation of those methods can be found in Appendix A.2. While considering the
different values within the above defined ranges, this leads to the generation of 1350
different models for SARIMA and SARIMAX and 75 different models for ARIMAX. Those
ranges of values can generate models with the current hardware resources in a reasonable
amount of time (see Tables 1 and 2).

Thus, the second step of this phase is to perform optimisations and reduce the number
of models generated in Step 1 for each method under study. To this end, first the different
models obtained in Step 1 are trained with three weeks of data. AIC (Akaike’s Information
Criterion) [33] is used in order to select the best 10 out of those different models (e.g., 1350
for SARIMA(X) and 75 for ARIMAX). To this end, AIC is an estimator that shows how
good the model is trained, which is expressed as:

AIC = 2k− 2 ln(L̂), (1)
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where k is the number of estimated parameters and L̂ is the maximum value of the like-
lihood function for the model. Then using the first 10 minimum AIC values from a set
of candidate models, the 10 preferred ones are identified. After identifying the preferred
10 candidate models, Step 2 of this phase also consists of (1) training those models with a
5 week period of data and (2), testing them for a 30-days period using the walk-forward
validation [25,32,34]. The reason for choosing a 30-day period is to generate forecasts for
each month of the year.

In Step 3, the performance of the 10 models (coming out of Step 2) is compared
using the mean absolute (MA) of the mean percentage error (MPE) obtained for each
day (i.e., X in Equation (A13) is set to MPE). By the end of this phase, the most accurate
model is obtained together with its optimal parameter sets (e.g., p, q, P, Q, d and D) for the
configured time-series method (e.g., SARIMAX, SARIMA, or ARIMAX) under study.

3.3. Comparison Among Models

The above-mentioned methodology is used in order to carry out a comparison between
the three methods of SARIMAX, SARIMA, and ARIMAX. Thus, the exogenous variables
identified in Phase 1 of our methodology are used in SARIMAX and ARIMAX methods.
Furthermore, Phase 2 is performed in three different iterations, such that each iteration
implements one specific method of SARIMAX, SARIMA, and ARIMAX. The three best
models each corresponding to the different methods of SARIMAX, SARIMA, and ARIMAX
are then compared (see Section 5) to identify the best fitting one based on the considered
assumptions and scenarios.

Table 1. Execution times of the three time-series methods for Step 2 of Phase 2.

Method Execution Time Number of Models

SARIMAX 4 h and 30 min 1350
SARIMA 3 h 1350
ARIMAX 5 min 75

Table 2. Execution times of the three time-series methods for Step 3 of Phase 2.

Method Execution Time Number of Models

SARIMAX 3 h 10
SARIMA 1 h and 30 min 10
ARIMAX 1 h and 15 min 10

4. Correlation Analysis of the Features

In this section, first the mathematical definition of the Pearson’s correlation is given,
then the used data is described, and the results of the carried-out analysis are presented.
The obtained results give a clear indication of the exogenous variables—for the derived
models using SARIMAX or ARIMAX methods—that can be used to predict the percentage
of renewable energy sources.

4.1. Definition

Pearson’s correlation [35] is a measure of the linear correlation of two random vari-
ables, X and Y. It is calculated as the ratio of the covariance of those two variables to the
product of their standard deviations:

ρX,Y =
cov(X, Y)

σXσY
(2)

It ranges between −1, representing a total negative linear correlation, and 1, which is total
positive linear correlation. A zero value indicates no correlation at all. Note that a linear
correlation does neither indicate nor mean causality.
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For this correlation analysis, the value of ρX,Y needs to be found, such that X is the
%RES (percentage of renewable energy sources), whereas Y can be any of the 15 variables
from Tables 3 and 4. Consequently, the input parameters for Equation (2) are X and Y,
whereas the output is a value between −1 and 1 as explained above.

4.2. Data Sources

As mentioned above, the main objective of this analysis is to identify meteorology as
well as irradiation-related variables that are positively correlated with the percentage of
renewable energy sources that are distributed nation-wide . For this purpose, the geography
of a nation is divided into n-by-m (e.g., Step 1 of Phase 1) grid. In our case, the percentage of
renewables in Germany is considered. Thus, a 3-by-4 grid is specified and 12 representative
cities (see red-colored regions in Figure 2) were selected, from which meteorological as
well as irradiation related data were collected. It is important to mention that the selection
of those representative cities is realised based on the following two constraints:

• The distance between any two points in the grid should not exceed 250 km. This is
because, within a circular range of 250 km, the cities in this region have very similar
weather conditions;

• Points as cities are chosen which have the least missing data from the collected sources,
as well as preferably at the center of the circular region.

Figure 2. The distribution of the reference points (cities) used to gather meteorological and irradiation
related data.

For the case of meteorology-related data, the Meteostat (https://dev.meteostat.net/
api/ accessed on 5 November 2021) online service API was used to get historical data.
For the irradiation, the open interface provided by SoDa-Pro (http://www.soda-pro.com/
help/cams-services/cams-radiation-service/automatic-access accessed on 5 November
2021) was utilised together with the Copernicus Atmosphere Monitoring Service (CAMS)
to fetch all data related to sky irradiation. Note that the observations of meteorology are
in 1-h time intervals. However, due to the fact that the data related to renewable power
generation are specified in 15-min time intervals, then the up-sampling technique [36] was
used to increase the frequency of the weather data up to 15-min time intervals. Furthermore,
the spline method [37] was utilised for the interpolation process. Regarding the percentage
of renewables, the open API provided by European Network of Transmission System
Operators for Electricity (ENTSOE) [38] was used. As mentioned above, this dataset is
specified in the resolution of 15-minutes intervals. Finally, it is worthwhile to note that the

https://dev.meteostat.net/api/
https://dev.meteostat.net/api/
http://www.soda-pro.com/help/cams-services/cams-radiation-service/automatic-access
http://www.soda-pro.com/help/cams-services/cams-radiation-service/automatic-access
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collected data spanned from the period of 30 December 2017 until 10 July 2020. It consists
of 88,702 data points and has a size of 10.3 MB (e.g., almost 2.5 years of information).

4.3. Correlated Variables

For the purpose of our modeling, two different features were considered to predict
the percentage of renewable energy sources: irradiation and meteorology.

Regarding data related to irradiation, it contains 10 different variables, which are
described in Table 3. Most of those variables are associated with the Horizontal Irradiation
(HI), however, also taking into account different situations such as global, beam, diffuse,
and their clear-sky counterparts. BNI and Clear-sky BNI denote respectively the beam
irradiation at normal incidence and its clear-sky counterpart. ToA (Top of Atmosphere)
denotes the atmospheric radiation received by a horizontal surface. All of those variables
are expressed in terms of Wh/m2. Reliability variable is a factor between 0 and 1, which
indicates the predictability that data exists (e.g., 1 showing 100% probability).

With respect to the data related to meteorology, it consists of five different variables,
which are summarised in Table 4. Temperature describes the ambient temperature ex-
pressed in Celsius. The speed and direction of the wind are presented by the variables
Wind-speed (in km/h) and Wind-direction (in degrees) respectively. The concentration
of water vapor present in the air is given by the variable Humidity (in %). Dew-point
describes the amount of moisture in the air (in mm2).

The percentage of the renewable energy sources is indicated by the variable %RES. To
calculate its value, the following renewable sources are taken into account: biomass, hydro
run-of-river and poundage, hydro water reservoir, geothermal, waste, other renewable
sources, solar, hoffshore wind, and onshore wind. Consequently, the %RES is the ratio of
the sum of generated power from those renewable sources to the total generation at the
national level.

Table 3. Variables and their explanations for irradiation related information.

Variable Explanation and Unit

GHI Global irradiation on a horizontal plane (Wh/m2)
BHI Beam irradiation on a horizontal plane at ground level (Wh/m2)
DHI Diffuse irradiation on a horizontal plane at ground level (Wh/m2)
BNI Weather Beam irradiation on a mobile plane following the sun at normal incidence (Wh/m2)
ToA Atmospheric radiation received by a horizontal surface outside the atmosphere (Wh/m2)

Reliability Proportion of reliable data (0–1)
Clear-sky GHI Clear-sky global irradiation on a horizontal plane at ground level (Wh/m2)
Clear-sky BHI Clear-sky beam irradiation on horizontal plane at ground level (Wh/m2)
Clear-sky DHI Clear-sky diffuse irradiation on horizontal plane at ground level (Wh/m2)
Clear-sky BNI Clear-sky beam irradiation on a mobile plane following the sun at normal incidence (Wh/m2)

Table 4. Variables and their explanations for meteorology related information.

Variable Explanation and Unit

Humidity The ratio of partial to equilibrium pressure of water vapor at a given temperature (%)
Dew-point Describes the amount of moisture in the air (mm2)

Temperature Weather temperature (ºC)
Wind-speed Wind flow speed (km/h)

Wind-direction The direction from which the wind is coming from (degrees)

Figure 3 demonstrates the results of the Pearson’s correlation carried out on the
variables of the two information of irradiation and meteorology given in Tables 3 and 4
respectively, on the predictions of the renewable energy sources. Dark red color (between
0.7 and 1) shows a strong positive relationship, mild red color (between 0.3 and 0.7) presents



Energies 2021, 14, 7443 9 of 23

a moderate positive relationship, and light red color (between 0 and 0.3) indicates a weak
positive relationship. The dark, mild, and light blue colors are used to demonstrate the
same behavior as the red ones, however for inverse correlation relationships. From the
set of 15 observed variables, the carried out analysis indicates that this set of variables
can be reduced to 2. More precisely, Wind-speed and %RES have a strong correlation of
0.7. On the other hand, among the irradiation related variables, apart from Reliability, all
of them (9 variables from ToA till BNI) have a moderate positive correlation with %RES.
Furthermore, GHI has a strong positive correlation with all other irradiation variables and
also a weak positive correlation of 0.2 with Wind-speed. Hence, it could be argued that GHI
is a suitable irradiation-related variable to predict %RES.

Figure 3. Results of the Pearson’s correlation analysis regarding the exogenous variables of irradiation
and meteorology on the percentage of renewable energy sources.

From the above given clarification on the carried-out Pearson’s correlation analysis, it
can be concluded that both Wind-speed as well as GHI are identified as the two exogenous
variables that can be served as input to the models (e.g., SARIMAX and ARIMAX) of
Phase 2. As a side note, it is worthwhile to mention that during the performed analysis,
it was observed that the amount of generated power from hydro water reservoir is low.
However, the amount of generated power from hydro run-of-river and poundage is high. The
wind speed indeed increases the water flow, which justifies our choice of Wind-speed for
water-related renewable sources. Moreover, our analysis show that for the two identified
exogenous variables of Wind-speed and GHI, there are always both historical (5 weeks back)
as well as day-ahead forecasts.

5. Evaluation

In this section, the first details related to the considered hardware characteristics and
the corresponding execution times for the different methods under study are given. Then,
the obtained results of the carried-out experiments are presented by considering both intra-
and inter-day scenarios.
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5.1. Implementation

To generate the corresponding models, Phase 2 is executed on a machine with the
following hardware characteristics:

• NVIDIA Tesla P100 GPU: base and maximum frequencies of 1190 MHz and 1330 MHz
respectively;

• DRAM of 28 GB capacity: minimum and effective frequencies of 715 MHz and
1430 MHz respectively.

With the above-mentioned hardware characteristics, Tables 1 and 2 summarise the
execution times of the three time-series methods of SARIMAX, SARIMA, and ARIMAX for
Steps 2 and 3 of Phase 2, respectively. It can be argued from those results that ARIMAX
is the fastest because there is no seasonal parameter, whereas SARIMAX is the slowest
one. Note that those execution times are needed only when a new model is generated.
Once a suitable model is obtained, it takes around 2 min to generate day-ahead forecasts
independent of the adopted method. To carry out statistical tests and perform statistical
data exploration (e.g., calculation of AIC), we used Python’s statsmodel (https://www.
statsmodels.org/stable/index.html accessed on 5 November 2021) library.

Furthermore, in this research, a Flask web service (Available at https://github.com/
ren4kast/REN4KAST accessed on 5 November 2021) [39] was developed, which forecasts
the percentage of renewable energy sources for the day ahead. The main service internally
calls different services (the sources are mentioned above) to gather historical irradiance
and meteorological data for the last 35 days starting from the previous day. Moreover, it
collects real-time data for the current day as well as forecast data for the next day. It also
gathers power generation data for the previous 35 days, and calculates the percentage of
renewable energy sources. Sometimes, it happens that due to communication latency or
error from sensors, some data points could be missing. To circumvent this problem, the
developed service uses the last available data points. It is important to mention that this
service is recommended to be used at the end of the current day as the most data points
are available at this time of the day. Afterward, the best model for the current month (the
best models for all months are given in Table 5) is used to train it with the collected data,
and forecast the percentage of renewable energy sources for the next day. This process can
be executed very fast, and hence can generate results within minutes, as mentioned above.

Table 5. Summary of the best ARIMA-based model for each month of the year. Table A1 reports the
full results for different considered models.

Month Model

January SARIMA(2, 0, 2)(2, 1, 1, 4)
February ARIMAX(2, 0, 4)

March ARIMAX(4, 0, 3)
April SARIMAX(4, 1, 3)(2, 0, 2, 4)
May ARIMAX(4, 1, 4)
June SARIMA(4, 1, 3)(2, 0, 2, 4)
July SARIMAX(4, 1, 4)(1, 0, 1, 4)

August SARIMA(3, 1, 3)(2, 0, 2, 4)
September SARIMAX(3, 1, 1)(2, 0, 2, 4)

October SARIMA(4, 1, 3)(2, 0, 2, 4)
November SARIMA(3, 1, 3)(2, 0, 2, 4)
December SARIMA(3, 1, 4)(2, 0, 2, 4)

5.2. Obtained Results

In this section, the evaluation results of the methodology proposed in Section 3 are
presented by considering a 30-day period in summer and autumn. This is because in
summer there are longer sequential days with stable weather conditions, whereas in
autumn more variations in meteorological data can be observed, which impact the power

https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://github.com/ren4kast/REN4KAST
https://github.com/ren4kast/REN4KAST
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generation from renewables. Hence, both cases of varying and static weather conditions
are studied. Readers interested in the whole months of the year can look at Table A1.

After selecting the top 10 candidates for each method, a set of 5-week periods of data
was used to train the models and they were tested for the next 30 days (e.g., Step 2 of
Phase 2). The walk-forward approach was used for testing: in each iteration, the model
predicted the day ahead, and then this day was added to the training set to forecast the
day after recursively.

For all the evaluation methods of the inter-day analysis, first the corresponding error
metric (see Equations (A9)–(A12)) for each test day (intra-day) is calculated. Then, the mean
absolute of the errors and MPE (which can be positive or negative) as well as the mean
absolutes of RMSE and MAE (which are always positive numbers) for the 30 testing days
(see Equation (A13)) are computed. Note that an MPE close to zero cannot be inferred as a
very good model. Therefore, other evaluation metrics have been used to comprehensively
evaluate and compare the models. On the other hand, intra-day analysis is performed by
calculating the corresponding error metrics for one single day and considering 96 data
points (e.g., 24 h and 15-min intervals). Finally, similar to [31], back-to-back similarity
assumption (e.g., tomorrow’s forecast is the same as today) is considered as a baseline
benchmark to provide a means of comparison with the derived three models of SARIMAX,
SARIMA, and ARIMAX. Such a model is denoted as “persistence” and presented as dotted
light orange line in the Figures 4–7.

Figure 4. Forecasts for a one month period in summer 2019.

Figure 5. Forecasts for a one month period in autumn 2019.

Figure 6. Forecasts for a one month period between late spring and early summer 2019.
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Figure 7. Forecasts for a one month period between late spring and early summer 2020.

5.2.1. Inter-Day Analysis

Forecasting results for a period of one month in summer and autumn 2019 are depicted
in Figures 4 and 5, respectively. The first considerable difference is that in autumn, sharp
changes could be observed by all models. However, all of these three models could not
adapt themselves to the sharp changes happening during the day. This was detected when
that day was added to the train data to predict the day after. In Figure 4, it could be
observed that most of the time the SARIMAX forecast is between ARIMAX and SARIMA
forecasts, which leads to a better mean absolute of MPEs (by considering the day and
night changes).

It could be noted from Table 6 that for both experiments in summer and autumn, SARI-
MAX performed better in terms of the mean absolute of the errors (i.e., X in Equation (A13)
is set to ME). Furthermore, in summer and autumn on average every day, the predicted
percentage of renewables could differ by 4.76% and 7.07% from the actual values, respec-
tively. In general, the mean absolute of the errors in autumn is higher than in summer for
all methods. This is due to detecting the sharp changes, however, with lags (as explained
above). One interesting remark is that the means of the RMSEs and MAEs have slight
differences between summer and autumn for all models (i.e., SARIMAX, SARIMA, and
ARIMAX). However, those of MPE and ME have noticeably large differences. It implies
that in summer, the intra-day errors (e.g., errors happening within one day) are distributed
between positive and negative, so they cancel each other. However in autumn, since the
model is lagged in detecting the changes (see Section 5.4.2 for reasons), the errors tend
to be mostly in the same direction (positive or negative) so their effect is canceled less.
The results for autumn show that SARIMAX is better than SARIMA in terms of the mean
absolutes of the errors and MPEs (Columns 2 and 3 in Table 6). However, SARIMA is better
in terms of the mean absolutes of the RMSEs and MAEs. This is because there are larger
intra-day errors in SARIMAX forecasts that are canceling the effect of each other (for mean
absolute of the errors and MPEs), whereas in SARIMA the errors are smaller.

Table 6. Comparison between ARIMA-based and persistence models for the case of two different seasons of the year, and
reporting the results of the inter-day scenario. The choice of the seasons is based on almost static (summer) vs. fluctuating
(autumn) weather conditions.

Model Mean Absolute Mean Absolute Mean Absolute Mean Absolute
of the Errors [%] of the MPEs [%] of the RMSEs [%] of the MAEs [%]

SARIMAX(2, 1, 2)(2, 0, 2, 4) (summer) 4.76 9.97 10.51 8.30
SARIMA(3, 1, 2)(2, 0, 2, 4) (summer) 5.09 10.32 11.41 8.93

ARIMAX(2, 1, 4) (summer) 4.78 10.25 10.54 8.31
Persistence (summer) 6.08 15.67 8.71 7.67

SARIMAX(2, 1, 2)(0, 0, 2, 4) (autumn) 7.07 19.46 10.35 8.58
SARIMA(2, 1, 3)(2, 0, 2, 4) (autumn) 7.23 19.56 9.57 8.15

ARIMAX(3, 1, 4) (autumn) 7.36 20.14 10.48 8.74
Persistence (autumn) 9.35 23.92 12.88 11.63
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5.2.2. Intra-Day Analysis

The best and the worst days of the testing period are depicted in Table 7 for both
summer and autumn based on MAE. The best MAE in autumn is 2.44%, which is better
than the best MAE of 4.5% in summer. However, the worst MAE of summer is considerably
better than the counterpart in autumn. On the worst day of autumn, a sharp change could
be observed, and the model could not detect that. The SARIMAX model could not detect
the changes during the day and is relatively predicting the average of the day. As a result,
MAE is greater than the mean error, except for the worst day of the autumn experiment,
where due to the sharp changes all the errors are in the same direction.

Table 7. A detailed analysis of the SARIMAX model for the best and worst days in summer. SARIMAX model is evaluated
because it is shown in Table 6 that it has the best performance based on the Mean Absolute of the Errors (MAE) metric.

Model Testing Date Mean Error [%] MPE [%] RMSE [%] MAE [%]

SARIMAX(2, 1, 2)(2, 0, 2, 4) (summer) 11 July2019 −0.40 −6.30 5.36 4.50
SARIMAX(2, 1, 2)(2, 0, 2, 4) (summer) 21 July 2019 8.39 2.57 19.47 16.82
SARIMAX(2, 1, 2)(0, 0, 2, 4) (autumn) 29 October 2019 −1.65 −8.41 3.25 2.44
SARIMAX(2, 1, 2)(0, 0, 2, 4) (autumn) 14 October 2019 −23.03 −63.23 25.05 23.03

5.3. Sensitivity Analysis

The two methods of SARIMAX and ARIMAX require exogenous variables. It was
shown in Section 4.3 that GHI and wind-speed can be used as the two exogenous variables
for the two above-mentioned methods. To confirm the suitability of those variables as well
as to evaluate the contribution of those exogenous variables to the methods, a sensitivity
analysis is performed. The methodology in carrying out the corresponding analysis is
to drop one of the two exogenous variables (e.g., GHI or wind-speed) and to generate the
corresponding new model with one exogenous variable. After generating two different
models, we compared the obtained forecasts using the performance metrics of the mean
absolute of the errors, MPEs, RMSEs and MAEs, with the obtained models having both
GHI and wind-speed as the two exogenous variables.

Table 8 illustrates the results of the carried-out sensitive analysis. The first column
“Model” indicates the corresponding model for each month of the year. The second column
“Exogenous Variable(s)” shows the used variables for the different models. “Both” indicate
that the corresponding model takes into account both “GHI” and “wind-speed”, whereas
“GHI” or “Wind-speed” denote that the model is generated using only one of them. It is
worthwhile to note that the models are generated using the ARIMAX method and the data
from the year 2019. Overall, looking at the results, it can be noticed that for most months of
the year (except for November and December), models using both the GHI and wind-speed
as exogenous variables have lower RMSE than when considering only one of them. Hence,
the choice of both the GHI and wind-speed as exogenous variables for the two models of
SARIMAX and ARIMAX can be justified.

5.4. Other Observations

In this section, building on the results demonstrated in Section 5.2, the results of
another set of experiments are presented. Those observations were carried out in order to
further state the theories derived previously.
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Table 8. Sensitivity Analysis of contribution of each variable. “Both” indicates GHI and wind-speed
used together.

Model Exogenous Variable(s) Mean Error % MPE RMSE MAE

January
Both 8.33 23.07 10.60 9.19
GHI 8.36 21.73 10.80 9.25

Wind-speed 8.27 22.78 10.57 9.15

February
Both 6.03 14.78 9.01 7.39
GHI 6.51 18.00 9.27 7.84

Wind-speed 6.11 15.45 9.26 7.52

March
Both 6.88 13.53 10.35 8.10
GHI xx xx xx xx

Wind-speed 6.87 13.59 10.70 8.37

April
Both 4.47 10.03 8.80 7.11
GHI 4.55 10.09 8.85 7.14

Wind-speed 4.79 10.36 9.61 7.63

May
Both 7.09 14.79 11.53 9.35
GHI 7.23 15.11 11.69 9.49

Wind-speed 7.45 14.84 12.59 10.19

June
Both 8.59 17.32 14.26 11.57
GHI 8.70 17.45 14.36 11.65

Wind-speed 9.03 17.43 15.05 12.17

July
Both 5.64 12.06 10.97 8.74
GHI 5.73 12.20 11.08 8.84

Wind-speed 6.19 12.18 12.23 9.73

August
Both 6.16 13.11 12.63 9.91
GHI 6.79 14.31 13.16 10.44

Wind-speed 5.26 12.63 13.01 10.57

September
Both 6.57 15.96 11.22 8.95
GHI 6.60 15.98 11.32 9.04

Wind-speed 5.26 12.63 13.01 10.57

October
Both 7.20 19.88 10.34 8.58
GHI 7.08 19.66 10.35 8.58

Wind-speed 7.59 19.76 12.09 9.68

November
Both 8.51 28.63 10.93 9.22
GHI 8.56 28.77 10.96 9.26

Wind-speed 8.30 28.12 10.76 9.04

December
Both 10.45 25.83 13.20 11.32
GHI 10.43 25.76 13.14 11.28

Wind-speed 10.06 25.01 12.83 10.92

5.4.1. Same Models for Different Years

The best model for each method (SARIMAX, ARIMAX, SARIMA) was chosen for
a 30-day period between late spring and early summer 2019. Then, these models were
used to predict the same period in 2020. The forecasts are depicted in Figures 6 and 7,
respectively. In addition, the evaluation results are shown in Table 9. It could be observed
that SARIMAX outperformed ARIMAX and SARIMA in both 2019 and 2020. The mean
absolute of the errors for SARIMAX is 5.84% in 2019 (where the best model was selected),
and it increased to 6.82% in 2020. However, the mean of the MAEs remained almost the
same. It means that in 2019, the errors were in different directions and canceled their effect.
However in 2020, the errors were in the same direction, therefore the mean absolute of
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the errors is slightly higher. Hence, it can be conjectured that the proposed approach is
appropriate to find the best model for each month. It can then be used to forecast the
percentage of the renewables for the next years with an acceptable error rate.

Table 9. Comparison between ARIMA-based and persistence models for a 30-day period between late spring and early
summer in 2019. The reported results for 2019 can be used to demonstrate the suitability of the same model to forecast the
same period in 2020.

Model Mean Absolute Mean Absolute Mean Absolute Mean Absolute
of the Errors [%] of the MPEs [%] of the RMSEs [%] of the MAEs [%]

SARIMAX(4, 1, 4)(2, 0, 0, 4)—(2019) 5.84 12.59 12.86 9.94
SARIMA(3, 1, 4)(2, 0, 2, 4)—(2019) 6.52 13.99 12.32 10.08

ARIMAX(4, 0, 3)—(2019) 7.53 13.15 13.24 10.75
Persistence—(2019) 7.23 15.06 11.79 10.11

SARIMAX(4, 1, 4)(2, 0, 0, 4)—(2020) 6.82 14.50 12.10 9.90
SARIMA(3, 1, 4)(2, 0, 2, 4)—(2020) 7.95 15.05 12.98 12.54

ARIMAX(4, 0, 3)—(2020) 7.80 14.48 12.76 10.42
Persistence—(2020) 8.54 18.08 11.37 10.00

5.4.2. Best Model of Each Month

Applying the methodology proposed in Section 3, the best model for each month
of the year is identified, by considering the three methods of SARIMAX, SARIMA, and
ARIMA. Table A1 shows the evaluation of the top models for each month, whereas Table 5
shows the derived (best) model for each month. In certain months, sharp changes have
been observed (irregularities) for a few days, whereas the models could not detect them
until the end of that day (as it was already discussed in Sections 5.2.1 and 5.2.2). Most of
those sharp changes are related to the changes in wind power generation. After careful
analysis, the following fact can be identified: as a result of sharp changes in wind power
generation, power system operators decided to increase/decrease the generation of fossil-
based sources. This caused a sharper and sudden change in the percentage of renewable
energy sources. For instance, on 19 November 2019 a sharp change can be observed.
The reason is that on this day, fossil-based hard coal and gas generations increased from
4463 MW and 4481 MW to 12,054 MW and 8118 MW, respectively. In addition, the power
generation from on- and off-shore wind sources decreased from 24,803 MW and 6076 MW
to 1127 MW and 191 MW, respectively. It is worth mentioning that the mean values of the
generation in 2019 from fossil-based hard coal and gas, as well as on- and off-shore wind
sources are 6040.27 MW, 5684.41 MW, 11,397.19 MW, and 2606.76 MW, respectively.

In order to reduce the effect of the sudden change of generation from non-renewable
sources, and also moderating those changes, the three worst months in terms of the mean
absolute of the errors (from Table A1) were chosen and the methodology was followed
to forecast the generation of renewables (instead of the percentage of the generation of
renewables). In Section 5.4.3, more details will be given about the method and the results
will be evaluated.

The selected models in Table 5 were used in the implemented service (https://github.
com/ren4kast/REN4KAST accessed on 5 November 2021) to forecast the percentage of
renewable energy sources for the day-ahead (see Section 5.1). The service is used to forecast
the percentage of renewable energy sources from 24 November 2020 to 26 November 2020.
The service was called every day at 11:50 p.m. to generate day-ahead forecasts. The results
show that the mean of the MAEs, the mean of the RMSEs, and the mean absolute of the
Errors for these three days were 5.10%, 5.73%, and 4.31% respectively, which are even better
than their counterparts in 2019 (where the model was selected).

https://github.com/ren4kast/REN4KAST
https://github.com/ren4kast/REN4KAST
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5.4.3. Forecasting Day-ahead Power Generation from Renewables

Table A1 demonstrates the different models based on the three time-series methods
of SARIMAX, SARIMA, and ARIMAX for each month of the year. It can be noticed that
the months of January, November, and December have the worst three prediction mod-
els. As mentioned above, it was found out that this is due to the fact that the operators
increase/decrease the traditional fossil-based generation based on the contributions from
renewable energy sources. To investigate more about this, instead of predicting the percent-
age of renewables (as is considered in Table A1), the power generation from renewables was
predicted only for those three months (e.g., the three worst months). To do this, the same
methodology provided in Section 3 was used, whereas the results are given in Table 10.

Table 10. Evaluation of the best model candidates for forecasting the power generation of renewable energy sources.

Model Mean Absolute Mean Absolute Mean Absolute Mean Absolute
of the Errors [MW] of the MPEs [%] of the RMSEs [MW] of the MAEs [MW]

SARIMAX(4, 1, 0)(0, 1, 1, 4) (Jan.) 4280.23 16.23 5955.59 4885.47
SARIMA(4, 1, 0)(2, 0, 2, 4) (Jan.) 4308.06 16.36 6038.57 4927.70

ARIMAX(3, 1, 1) (Jan.) 4285.68 16.15 5976.68 4905.17
SARIMAX(3, 2, 1)(2, 1, 1, 4) (Nov.) 7429.93 37.32 10,447.35 7905.16
SARIMA(3, 0, 3)(2, 0, 1, 4) (Nov.) 5502.95 26.49 7264.97 6045.49

ARIMAX(3, 2, 2) (Nov.) 7042.42 35.12 9147.59 7401.43
SARIMAX(3, 1, 4)(2, 1, 2, 4) (Dec.) 5679.29 22.42 7172.82 6014.19
SARIMA(3, 1, 1)(0, 1, 2, 4) (Dec.) 5562.20 22.42 7172.64 6027.94

ARIMAX(4, 1, 1) (Dec.) 5373.38 21.31 6970.78 5857.59

The results in Table 10 show that, the MPE is improved for all three months (in
comparison with Table A1). More precisely, in January the MPE is improved by 10.07%
(e.g., difference between 26.3% and 16.23%). However, in November and December im-
provements are less than in January, with 2.09% (e.g., difference between 28.58–26.49%)
and 3.4% (e.g., between 24.71% and 21.31%).

To find out the reason for the 10.07% improvement in January, Pearson’s correlation
between the variables was compared. In January, the generation of renewables was highly
correlated to wind-speed, temperature, and dew-point with Pearson’s correlation of 0.9, 0.8,
and 0.7, respectively. Additionally, temperature and dew-point were correlated to wind-speed
with Pearson’s correlation of 0.7. Hence the wind-speed as an exogenous parameter perfectly
covers renewables’ generation behavior. In November and December, power generation
from renewables was highly correlated to wind-speed (0.9 and 0.8, respectively), but it was
also correlated to other variables such as dew-point, temperature, and wind-direction (0.7,
0.8, and 0.5, respectively), as well as to humidity and temperature in December (−0.6 and
0.3, respectively). However, these variables are not correlated to wind-speed which is the
model’s exogenous variable. Hence, the reason for drastic improvements in January can
be justified.

6. Conclusions and Future Work

In this paper, the percentage of renewables at the national level is studied by consider-
ing different types of renewable energy sources. To achieve this, a two-phase methodology
is proposed. Phase 1 deals with identifying the set of exogenous variables, and Phase
2 deals with the modelling of using them. It was showed that both GHI and wind-speed
are consistently the two important exogenous variables that can be used to forecast the
percentage of renewables from different types of sources. For modelling, the three differ-
ent ARIMA (auto regressive integrated moving average) based methods were used and
then optimised. Based on empirical results, it was shown that seasonal-based methods
(e.g., SARIMA(X)) have the edge over non-seasonal method of ARIMAX for most of the
months of the year. Further, it was conjectured that ARIMAX is better for the months
where there are no sudden changes in the weather conditions. Finally, it was shown that
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our models have an accuracy between 6.76 and 11.57% for all months of the year. The best
models were implemented in an open-source REN4KAST software platform.

Our developed method introduces promising preliminary results in the field of fore-
casting of renewables at a national level, and paves the way for future work, with real
industrial impact such as within the context of electric mobility. Some of the limitations
of our work are (1) the need to find statistical conditionals for each month and to choose
exogenous variables, (2) lack of generalisable components as well as of parameter expli-
cability, and (3) inconclusive hypothesis tests such as the p-test, leading to very large
confidence intervals.

As for future work, it would be interesting to investigate the means of further improv-
ing the accuracy of those models and circumvent some of the above-mentioned limitations.
To this end, it will be considered generating forecasts using AI-based methods such as
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units). Furthermore, our
forecasting models will be incorporated within a real-life use case of electric-mobility, in
order to demonstrate the added value as well as the need for our models with respect to
planning and scheduling requirements.
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Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike information criterion
API Application program interface
ANN Artificial neural network
ARIMAX Auto regressive integrated moving average with exogeneous input
BHI Beam horizontal irradiation
BNI Beam normal-incidence irradiation
CAMS Copernicus atmosphere monitoring service
DHI Diffuse horizontal irradiation
DSM Demand-side management
ENTSOE European network of transmission system operators for electricity
EV Electric vehicle
FFNN Feed-forward neural network
GHI Global horizontal irradiation
GRU Gated recurrent units
HI Horizontal irradiation
LSTM Long short-term memory
MA Mean absolute
MAE Mean average error
MPE Mean percentage error
MRE Mean relative error
NEAT Neuro evolution of augmenting topologies
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PV Photovoltaic
RBFN Radial basis function network
RES Renewable energy sources
RMSE Root mean square error
SARIMA Seasonal auto regressive integrated moving average
SARIMAX Seasonal auto regressive integrated moving average with exogeneous input
SSE Sum of squared errors
ToA Top of atmosphere

Appendix A. Time-Series Modeling

In this section, the first definition to time-series data is given, three of the most relevant
data-driven or deterministic models are presented, and then the different adopted metrics
in the literature to estimate the accuracy of a given prediction model are specified.

Appendix A.1. Definition

A time-series is a consecutive set of data points measured over successive periods
of time. Mathematically, it is defined as yt such that t = 0, 1, 2, ..., where t represents a
discrete point in time. Note that the difference between two points in time t and t − 1
describes the duration of an interval. In this paper, such a time interval is considered to
have a value of 15 min. A time-series containing data points of a single variable is termed
as univariate. However, if data points of more than one variable are considered, then it is
referred as multivariate.

To analyse the time-series data, two techniques exist in the literature: event-based
detection and data-driven modeling [40]. The former has the objective of detecting unusual
variations in time-series using mathematical modeling, whereas the latter uses machine
learning methods with enough historical data to generate a model to predict a value in the
future (e.g., yt+1).

Appendix A.2. Data Driven Models

This paper follows the same line of research as that of the data-driven modeling
(DDM) techniques [40]. To this end, three of the most relevant DDM-based methods of
SARIMAX, SARIMA, and ARIMAX [21] are considered and compared. Note that those
are hybrid methods whose basis is ARIMA, and assume that the time-series is stationary.
In case seasonality is present in the time-series data, then SARIMA can be beneficial
over ARIMA. Whenever, explanatory exogenous variables are present, then ARIMAX can
be more effective than ARIMA. Finally, when both seasonality and exogenous variables
are present, then SARIMAX would be the most useful. Next, each of those methods is
described, starting from ARIMA.

Appendix A.2.1. Auto Regressive Integrated Moving Average

An ARIMA model, denoted by ARIMA(p, d, q) is presented mathematically in the
following manner:

φp(B)Odyt = c + θq(B)εt (A1)

such that

φp(B) = 1−
p

∑
i=1

φiBi

θq(B) = 1−
q

∑
i=1

θiBi

Od = (1− B)d

Bk(yt) = yt−k
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where εt is the white noise, c is a constant value, φp(B) is a polynomial of order p, θq(B) is
a polynomial of order q, Od is the differentiating operator and B is the backshift operator,
which shifts an observation yt in time. Furthermore, p, q, and d denote respectively the
lag or auto-regressive order, the degree of difference to make the time-series stationary,
and the moving average window size. As an example, when p = 1, d = 1 and q = 1, the
equation takes the form:

(1− φ1B)(1− B)Yt = (1− θ1B)et (A2)

where et is the noise, and φ and θ are the model parameters to be estimated. The lag or the
backshift operator acts as follows: Byt = yt−1, B(B)yt = yt−2 and so on.

Similarly, with higher values for the parameters, for ARIMA(2, 1, 3) it can be extended
as follows:

(1− φ1B− φ2B2)(1− B)Zt = (1− θ1B− θ2B2 − θ3B3)et (A3)

Appendix A.2.2. Auto Regressive Integrated Moving Average eXogenous

ARIMAX is an ARIMA-based model with one or more exogenous variables. It is
denoted by ARIMAX(p, d, q) and takes the following form:

φp(B)Odyt = c + βkxk,t + θq(B)εt (A4)

such that βk is the coefficient value of the kth exogenous variable, xk,t is the vector con-
taining the kth exogenous variable at time t, whereas all other parameters have the same
definition as in Equation (A1). As an example, ARIMAX(1,1,1) with a single covariate and
its coefficient xt, β ∈ R, may be expressed as:

φ1(B)(1− B)yt = βTxtθ1(B)εt (A5)

where φ, β and θ are to be estimated.

Appendix A.2.3. Seasonal ARIMA

Seasonality in time-series data means periodic fluctuations. To capture this, the
SARIMA(p, d, q)(P, D, Q, s) model is presented mathematically in the following manner:

ΦP(Bs)φp(B)OdOD
s yt = c + ΘQ(Bs)θq(B)εt (A6)

such that
OD

s = (1− Bs)D

ΦP(Bs) = 1−
P

∑
i=1

ΦiBs,i

ΘQ(Bs) = 1−
Q

∑
i=1

ΘiBs,i

where ΦP(z) is polynomial of order P, ΘQ(z) is polynomial of order Q and OD
s is the

seasonal differentiating operator. Furthermore, p, q and d have the same definition as in
Equation (A1), whereas the parameters P, Q and D have the same definition as their lower-
case counterparts (non-seasonal) but are for the seasonal part. Finally, s is the number of
observations in a year, such that in this paper it is considered to be fixed and has a value of
4 (i.e., presenting the different seasons of the year).

SARIMA(1, 1, 1)(1, 1, 1, 4), for example, may be written as:

(1−Φ1B)(1− φ1B4)(1− B)(1− b4)yt = (1 + Θ1B)(1 + θ1B4)εt (A7)
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where yt is the variable value at time t, et is random noise and Φ, φ, Θ and θ are the
model parameters to be estimated. The SARIMA model can be enriched with inclusion of
exogenous explanatory variables, resulting in SARIMAX.

Appendix A.2.4. Seasonal ARIMAX

The SARIMAX is a multivariate model which contains the SARIMA parameters
and also exogenous or external variables additionally. These variables should have a
cause–effect relationship with the endogenous variable.

The SARIMAX(p, d, q)(P, D, Q, s) model is presented mathematically in the follow-
ing manner:

ΦP(Bs)φp(B)OdOD
s yt = c + βkxk,t + ΘQ(Bs)θq(B)εt (A8)

such that all the parameters of Equation (A8) have the same definition as in Equations (A1)–(A6).
Note that, similar to the SARIMA model, the first six parameters of the SARIMAX can
be either zero or be positive. However, the more the range of those values is increased,
the more it takes time to derive an accurate model. Consequently, in Section 3, values for
those parameters are identified, which allow us to obtain accurate models in a reasonable
amount of time.

Appendix A.3. Accuracy Measuring Metrics

In this section, several accuracy measuring metrics proposed in the literature are
presented. Those are used to specify how close (e.g., to calculate accuracy) is the predicted
value ŷt to the observed one yt, while considering the n number of observations for each
day. Note that since the considered data has a resolution of 15-min intervals, the total
number of observations n has a value of 96 (i.e., 15-min interval in 24 h). Those metrics are
used in Section 5 to compare the different generated models to forecast the percentage of
renewable energy sources.

Appendix A.3.1. Mean Absolute Error

MAE is the average of the distance between predicted and observed values and is
given by:

MAE =
1
n

n

∑
t=1
|yt − ŷt| (A9)

For each observation, the distance between the predicted and observed values is
added. Then, the sum of the differences is divided by the number of observations to obtain
the average per observation.

Appendix A.3.2. Root Mean Square Error

RMSE is the standard deviation of the distance between the predicted and observed
values and is given by:

RMSE =

√
1
n

n

∑
t=1
|yt − ŷt|2 (A10)

It is the square root of the Mean Square Error (MSE). Similar to MSE, this metric is
highly affected by large errors. This is because they are squared before taking the average.

Appendix A.3.3. Mean Percentage Error

MPE is the third metric to calculate the accuracy of the predictions and is expressed as:

MPE =
100
n

n

∑
t=1

(
yt − ŷt

yt

)
(A11)

Since the actual rather than the absolute values of the errors are calculated in the
above equation, positive and negative forecast errors can offset each other.
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Appendix A.3.4. Mean of the Errors

This metric is used to calculate the average of all the errors within a day, which is
given by:

ME =
1
n

n

∑
t=1

(yt − ŷt) (A12)

It is similar to the one of Appendix A.3.1, however here the error differences can be
either positive or negative, and hence can offset each other as in Appendix A.3.3.

Appendix A.3.5. Mean Absolutes

This metric is used to calculate the absolute average error of one of the above-
mentioned metrics for a duration of m = 30 days. It is calculated as:

MAX =
1
m

m

∑
t=1
|Xt| (A13)

such that X can be ME, RMSE, MAE or MPE, whereas Xt is the corresponding metric’s
calculated error (see Equations (A9)–(A12)) for the tth day.

Table A1. Comparison between ARIMA-based and persistence models for all months of the year. The results reported here
are based on 4 different performance metrics.

Model—Month Mean Absolute Mean Absolute Mean Absolute Mean Absolute
of the Errors [%] of the MPEs [%] of the RMSEs [%] of the MAEs[%]

SARIMAX (3, 0, 2)(2, 1, 2, 4)—January 7.69 28.09 10.06 8.70
SARIMA (2, 0, 2)(2, 1, 1, 4)—January 7.64 26.30 10.03 8.62

ARIMAX (3, 0, 4)—January 8.33 23.07 10.60 9.19
Persistence—January 12.04 32.98 14.85 13.44

SARIMAX (4, 1, 3)(1, 0, 0, 4)—February 6.18 18.20 9.15 7.66
SARIMA (4, 1, 3)(1, 0, 0, 4)—February 5.92 17.52 9.23 7.63

ARIMAX (2, 0, 4)—February 6.03 14.78 9.01 7.39
Persistence—February 7.71 20.11 10.81 9.42

SARIMAX (3, 1, 3)(2, 0, 2, 4)—March 7.43 14.94 10.41 8.43
SARIMA (4, 1, 4)(2, 0, 2, 4)—March 7.26 14.68 10.64 8.57

ARIMAX (4, 0, 3)—March 6.88 13.53 10.35 8.10
Persistence—March 8.44 18.37 12.01 10.38

SARIMAX (4, 1, 3)(2, 0, 2, 4)—April 4.60 9.73 8.40 6.76
SARIMA (4, 1, 4)(2, 0, 2, 4)—April 6.35 12.22 9.27 7.53

ARIMAX (4, 1, 4)—April 4.47 10.03 8.80 7.11
Persistence—April 5.65 12.50 8.19 7.25

SARIMAX (4, 1, 3)(2, 0, 2, 4)—May 7.89 15.88 11.77 9.69
SARIMA (4, 1, 3)(2, 0, 2, 4)—May 9.85 19.09 13.24 11.08

ARIMAX (4, 1, 4)—May 7.09 14.79 11.53 9.35
Persistence—May 7.68 16.44 12.88 9.84

SARIMAX (2, 0, 2)(2, 1, 2, 4)—June 6.54 15.76 12.46 10.15
SARIMA (4, 1, 3)(2, 0, 2, 4)—June 6.32 13.25 11.32 9.40

ARIMAX (2, 1, 3)—June 8.59 17.32 14.26 11.57
Persistence—June 7.59 16.38 12.97 11.04

SARIMAX (4, 1, 4)(1, 0, 1, 4)—July 5.03 12.96 10.66 8.68
SARIMA (4, 1, 3)(2, 0, 2, 4)—July 4.99 11.50 11.01 8.88

ARIMAX (3, 1, 3)—July 5.64 12.06 10.97 8.74
Persistence—July 6.46 15.97 9.28 8.20

SARIMAX (3, 1, 4)(2, 0, 2, 4)—August 5.56 11.88 12.19 9.57
SARIMA (3, 1, 3)(2, 0, 2, 4)—August 4.87 12.75 10.17 8.14

ARIMAX (4, 1, 3)—August 6.16 13.11 12.63 9.91
Persistence—August 6.64 15.43 10.06 8.78

SARIMAX (3, 1, 1)(2, 0, 2, 4)—September 6.38 15.12 10.16 8.21
SARIMA (2, 1, 4)(2, 0, 2, 4)—September 6.41 14.79 10.02 8.22

ARIMAX (3, 1, 2)—September 6.57 15.96 11.22 8.95
Persistence—September 8.32 20.07 11.65 10.17

SARIMAX (1, 1, 1)(2, 0, 2, 4)—October 6.80 18.54 9.23 7.80
SARIMA (4, 1, 3)(2, 0, 2, 4)—October 6.54 18.46 8.95 7.48

ARIMAX (3, 1, 4)—October 7.20 19.88 10.34 8.58
Persistence—October 8.62 22.77 12.85 11.47

SARIMAX (3, 1, 4)(2, 0, 2, 4)—November 8.81 29.61 11.13 9.42
SARIMA (3, 1, 3)(2, 0, 2, 4)—November 8.34 28.58 10.69 9.03

ARIMAX (3, 1, 4)—November 8.51 28.63 10.93 9.22
Persistence—November 10.13 33.79 14.74 13.07

SARIMAX (2, 1, 3)(0, 0, 2, 4)—December 10.48 26.01 13.20 11.29
SARIMA (3, 1, 4)(2, 0, 2, 4)—December 10.03 24.71 12.75 10.91

ARIMAX (4, 1, 3)—December 10.45 25.83 13.20 11.32
Persistence—December 8.84 19.97 13.16 11.64
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