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Abstract: Forecasting the electricity price and load has been a critical area of concern for researchers
over the last two decades. There has been a significant economic impact on producers and consumers.
Various techniques and methods of forecasting have been developed. The motivation of this paper is
to present a comprehensive review on electricity market price and load forecasting, while observing
the scientific approaches and techniques based on wind energy. As a methodology, this review
follows the historical and structural development of electricity markets, price, and load forecasting
methods, and recent trends in wind energy generation, transmission, and consumption. As wind
power prediction depends on wind speed, precipitation, temperature, etc., this may have some
inauspicious effects on the market operations. The improvements of the forecasting methods in this
market are necessary and attract market participants as well as decision makers. To this end, this
research shows the main variables of developing electricity markets through wind energy. Findings
are discussed and compared with each other via quantitative and qualitative analysis. The results
reveal that the complexity of forecasting electricity markets’ price and load depends on the increasing
number of employed variables as input for better accuracy, and the trend in methodologies varies
between the economic and engineering approach. Findings are specifically gathered and summarized
based on researches in the conclusions.

Keywords: electricity price; electricity load; electricity price forecasting; wind energy; day-ahead
market; intra-day market; balancing power market

1. Introduction

The government-controlled and monopolistic characteristics of the power sector has
been changing since the beginning of the 1990s with the introduction of competitive market
and deregulation processes [1]. The free-competitive market rules reshape electricity trade,
as electricity is a non-storable commodity in economic terms, and its consumption and
production require a balance dependent on power system stability [2,3]. In line with these
changes, generating electricity from the renewable energy resources, mainly wind and
solar powers, is rapidly increasing in the world [4,5]. This increase can be attributed to
the environmentally friendly characteristics of renewable energy resources, that can be
expressed by increasing energy demand triggering global warming in the world [6].

Energy demand can be supplied by electricity production through wind energy [7].
However, electricity production is affected by weather conditions (e.g., speed of wind, pre-
cipitation, and temperature) and industrial activities (e.g., business work hours, weekdays,
holidays, weekends, etc.) [1,8]. These elements are particular to the electricity commodity,
making it unique and different from other commodities in terms of forecasting related
price dynamics. It leads to researchers developing new prediction methods. Besides, in
both financial and academic institutions, electricity price forecasts (EPFs) have become a
basic information for energy companies and energy researchers in their decision-making
systems and agendas [1,9,10].
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Various methods have been tried and developed for EPFs through renewable energy,
and it will continue as the new techniques are studied [11]. A contribution of this paper
to the literature is to analyze the relationship between EPF and wind energy. This paper
presents, as scientific novelty, a review on recent trends of EPF techniques considering
wind energy and updated references. The advances in EPF and load techniques are
comparatively discussed, and it is concluded with the main future works to cover in:

• Short-term, middle-term, and long-term price and load forecasting approaches;
• Simulation, equilibrium, production cost and fundamental models for middle and

long terms;
• Statistical, artificial intelligence, and hybrid models in the framework of time series

for short terms;
• Moving trends of EPF and load techniques that are in the span of economics and

engineering fields;
• Working principles of electricity markets through country-specific examples.

Forecasting methods in electricity market and renewable energy resources have gained
a forward acceleration and attracted attention from market participants and decision mak-
ers [12]. To this end, the motivation of this paper is to present a comprehensive review for
electricity markets considering price and load forecasting mechanisms through wind en-
ergy, which is one of the fastest growing renewable energy resources due to a growing wind
power integration into the electrical grids [13]. For the determined hypothesis, it is observed
that forecasting approaches vary between economic terms (i.e., demand [14], supply [15],
profit [16], producer, and consumer surplus [17]) and engineering techniques (i.e., power
systems [18,19], optimization [20], control [21], and meta-heuristics algorithms [22,23]). As
a methodology, this review follows the historical and structural development of electricity
markets (i.e., day-ahead markets, intra-day markets, balancing power markets), price and
load forecasting methods, and recent trends in wind energy generation, transmission, and
consumption, being a novel contribution to the literature. The difficulties of predicting
wind power [24], i.e., wind power has a stochastic nature [25] and its prediction is contigent
upon weather conditions, e.g., wind speed; precipitation; temperature, may have some
adverse effects on the market operations such as fast fluctuations of wind power and loads
in the new designed power grid [18]. Nonetheless, wind energy resource applications
require extremely rigarous and accurate data [26].

Findings are discussed and compared through the use of quantitative and qualitative
analysis, and they reveal that the complexity of forecasting electricity markets price and
load depends on the increasing number of employed variables as input for better accuracy,
and the trend in methodologies varies between the economic and engineering approaches,
and specifically includes mathematics, statistics, econometrics, and electrical engineering
and computer science.

The content of the work is presented as follows: Section 2 presents a literature analysis
on electricity market mechanism, components, and instruments, considering the day-ahead
market (DAM), or spot market; the intra-day market (IDM), or future market; the balancing
power market (BPM), or balance market; price of electricity; and electric load. Section 3
shows the electricity market price and load forecasting through wind energy generation.
Section 4 analyzes the forecasting models of the electricity markets through wind energy,
where several case studies are considered and discussed.

2. Electricity Market Mechanism, Components, and Instruments
2.1. Electricity Market: Structure and Components

The short-term electricity market structure includes day-ahead and intraday markets
which are often known as “spot markets” [27]. However, these markets’ designs show
differences. While DAMs have been coupled for the last few years, IDMs have gained trac-
tion by going global from being national [28]. Moreover, DAMs are organized as auctions,
whereas IDMs operate as trades and enable market participants to balance demand and
supply variations in the short-term to decrease exposure to an imbalance penalty [28,29].
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The reason being, DAMs are based on forecasts and forecasts include errors in their nature.
Specifically, various and increasing number of parameters, intermittent production from
wind power plants can be given as the factors. However, the closer to real-time, the more
accurate the forecast is possible. The bilateral basis with continuous trading enables market
participants to adjust their last updated positions [27]. In addition to these markets, the
eventual balancing of the supply and demand is accomplished by the BPMs, which are
regulated by the transmission system operator (TSO). The system stability is provided in
the context of security in these markets [30] (see [31,32] for detailed information).

2.1.1. Day-Ahead Markets

DAMs are organized markets that are used for electricity trading and balancing
activities just one day before the delivery date of electricity, operated by a transmission
system operator. DAMs include auctions that are conducted simultaneously 24 h in a day.
The market participants are able to adjust their own transaction schedule by selling or
buying power with the short-term price forecasts thereby maximizing their profits [33]. The
main reasons that DAMs are needed and their purposes are summarized as follows [34]:

• Determining the electrical energy reference price.
• To provide market participants with the opportunity to balance themselves by giv-

ing them selling and buying energy options for the next day in addition to their
bilateral agreements.

• To provide the system operator with a balanced system the day before.
• To provide the system operator with the opportunity to manage the constraints in the

day before, by creating bid zones for large-scale and continuous constraints.

DAMs are developing through institutions, regulations, software and web applications
daily. For instance, currently, a DAM software and optimization model on the DAM for
the Turkish electricity sector, which has a user-friendly interface design and is amenable
to flexibility and improvements, since it is designed and written entirely by the domestic
resources, has been completed [35]. Table 1 shows the various DAMs electricity markets
over the world.

Table 1. Various DAMs in the world.

Country Name (Year)
UK England and Wales Electricity Pool (1990)

Norway Nord Pool (1992)
Sweden Nord Pool (1996)

Spain Operadora del Mercado Español de Electricidad
(OMEL) (1998)

Finland Nord Pool (1998)
USA California Power Exchange (CalPX) (1998)

Netherlands Amsterdam Power Exchange (APX) (1999)
USA New York ISO (NYISO) (1999)

Germany Leipzig Power Exchange (LPX) (2000)
Germany European Energy Exchange (EEX) (2000)
Denmark Nord Pool (2000)

Poland Towarowa Gielda Energii (Polish Power Exchange,
PolPX) (2000)

USA Pennsylvania-New Jersey-Maryland (PJIM)
Interconnection (2000)
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Table 1. Cont.

Country Name (Year)
UK UK Power Exchange (UKPX) (2001)
UK Automated Power Exchange (APX UK) (2001)

Slovenia Borzen (2001)
France Powernext (2002)
Austria Energy Exchange Austria (EXAA) (2002)

USA ISO New England (2003)
Italy Italian Power Exchange (IPEX) (2004)

Chez Republic Operator Trhu s Electrinou (OTE) (2004)
USA Midwest ISO (MISO) (2005)

Belgium Belgian Power Exchange (Belpex) (2006)
Source: Adapted from [1].

The liberalization of the electricity markets in Europe began three decades ago [36].
Before the 1990s, the markets had a monopolistic characteristic and were dictated by
governments. This transformation led to electricity generation, transmission and dis-
tribution along with the law of supply/demand, which enabled competition and price
reductions [37]. It is noteworthy that the DAMs in the world have adapted to this transfor-
mation and quickly became larger markets, and some of their names that are mentioned in
Table 1 changed due to integrations, where detailed information can be found in [1].

2.1.2. Intra-Day Markets

In addition to the currently operating DAM, Ancillary Services, and balancing power
market, the intra-day market (IDM) enables near real-time trading and offers market
participants the opportunity to balance their portfolios in the short term. The IDM works
as a bridge between the DAM and the BPM, and it contributes greatly to sustainability of
the whole system.

The functionality of the IDM changes the role of the factors that cause imbalances,
such as power plant failures, changes in the production of renewable energy sources, and
unpredictable changes in the amount of consumption, as they will be eliminated in a
near real time, and the participants will be given the opportunity to balance or minimize
the negative or positive imbalances that they may face. Additional trading space will be
provided by giving the participants the chance to evaluate their capacities, which they
cannot use in the DAM, in the IDM after the closing time of the DAM. It will contribute to
the increase of liquidity in the markets. It will also be of significant assistance to the TSO in
providing a balanced system prior to real-time balancing.

IDMs are developing daily in terms of institutions, regulations, software, and web
applications. The market designs in IDM might strongly deviate between countries [38].
For instance, a new software, named “Intraday Market Software”, on IDM for the Turkish
electricity sector was developed and has been in use by Energy Exchange Istanbul (EPIAS)
since 2016 [39]. More information can be found in [40] for the German IDM, in [41] for the
European IDM, and in [42] for the Swedish IDM.

2.1.3. Balancing Power Markets (Balance Markets)

Real-time balancing consists of balancing power market (BPM) and ancillary services.
The system operator is provided the spare capacity that can be activated in a couple of
minutes (i.e., around 15 min) by the BPM for real-time balancing. Ancillary services provide
demand and frequency control services. The balancing market prices are determined hourly
based on upward and downward regulating power offers evaluated by the TSO in real-time
balancing [43].

Although a market with balanced production and consumption amounts is given to
the TSO with the DAM and IDM, there are deviations in real time. For example, if a power
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plant is out of service, or when a large amount of consumption causes the plant to stop
(start), the balance is disrupted [44]. For instance, on BPM for Turkish electricity sector [45]:

• All market participants participating in the BPM must present their available capacities.
• Balancing units that can receive or load independently in a couple of minutes (around

15 min) are obliged to engage in the BPM.

More information can be found in [46] for the European BPMs.

2.2. Electricity Market Instruments through Country-Specific Researches
2.2.1. Electricity Price

Electricity prices, or market clearing price (MCP), are determined by the law of
supply/demand curves. The place for this is the DAM, which is managed by the system
operators of the countries. The system operators gather hourly offers for the following
day from sellers and buyers, and the supply/demand curves are analytically built in this
way. The intersection of the supply and demand curves gives the MCP. While the buying
and selling amounts are named as equilibrium quantities of electricity, the electricity trade
volume is determined by multiplication of the equilibrium quantity and MCP. However,
forecasting electricity prices is not easy because price series show characteristics such
as variance, nonconstant mean, significant outliers, and volatility [47]. The common
characteristics of electricity prices can be summarized as follows [1,48,49]:

• Seasonal effects for prices;
• Mean reversion;
• Spikes and volatilities due to changes in fuel price, load uncertainty, outages, market

power, and market participant’s behavior;
• Correlation between electricity load and price.

More detailed information can be found in [1] for various countries, and in [50] for the
Turkish electricity markets, in [51] for the England and Wales electricity markets, in [52,53]
for the Nordic electricity (Nord Pool) markets, in [54] for the New Zealand electricity
markets, in [55] for Danish electricity markets, and in [56] for the US electricity markets.

2.2.2. Electricity Load

Forecasting the electricity load has been a key role in the operation of power systems,
and it includes forecasts on various time scales (i.e., minutely, hourly, and yearly) [57].
Several decisions are based on load forecasts, for instance, reliability analysis, dispatch
planning of generating capacity, and operation and maintenance plans for power systems.
With the free competition and deregulation of the electric power industry, load forecasting
increased its viability and importance all around the world. An accurately predicted load
is vital data for the EPF, since market shares, profits, and shareholder value can easily be
influenced by forecast errors. Nevertheless, due to the nonstationary and variability of
the load series, forecasting procedures of the electric load is increasingly difficult. Time-
varying prices, price-dependent loads, and the dynamic bidding strategies of market
participants make this complexity [58]. Therefore, more accurate results are needed by more
sophisticated forecasting instruments for the electrical power systems and the motivation
behind more accurate forecast methods is hidden in the economic effect of the forecast
errors [59]. However, a substantial amount of research has been done (see [60,61] for
reviews and [58,62,63] for methods and techniques of short-term load forecasting and
modeling, respectively).

Moreover, electric power should be stored or consumed very close-after from its gener-
ation. The cost of storing electric power is expensive, therefore, electricity markets, through
system operators, exist for allocating the transactions between market participants. This
mechanism provides a possible distribution of loads, freeing networks will be avoided from
excessive loads. This review is focused on renewable energy through wind energy. Weather
conditions, e.g., wind speed, precipitation, and temperature, have an important influence
on electricity production from wind energy. The countries that supply a considerable share
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of electricity demand from wind energy (e.g., Spain, Denmark, Germany [4]) and have
wind energy potential (e.g., Turkey) should consider this energy source, mitigating global
warming. More details can be found in [1] for various countries, and in [50] for the Turkish
electricity markets.

3. Electricity Market Price and Load Forecasting through Wind Energy Production

The EPF studies can be categorized in the following two main groups: Long/middle
terms and short terms. While long/middle models can be gathered into: simulation,
equilibrium, production cost, and fundamental models. Short term models, or time series
models, can be gathered into: statistical, artificial intelligence, and hybrid models [64], see
Figure 1. This review paper follows the approach presented in [64]. Tables 2 and 3 presents
a literature review through statistical models. However, it differs from the mentioned
approach by merging the artificial intelligence and hybrid models into one category, as
shown in Table 4. Table 5 presents a literature review through middle/long term models
on electricity market price and load forecasting through wind energy.
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Figure 1. A classification for EPF approaches. Source: Adapted from [64].

Various statistical model examples are shown in Tables 2 and 3 (Table 2 contains more
simple models, represents the first part of the statistical models and Table 3 contains more
advanced models, represents the second part of the statistical models). These models can
be gathered in a main title named as time series analysis. Specifically, ordinary least squares
(OLS) regressions, autoregressive distributed lag (ARDL) regressions, panel data analysis,
vector autoregressive (VAR) analysis, generalized autoregressive conditional heteroskedas-
ticity (GARCH) analysis, multiple linear regressions, auto-regressive with eXternal model
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input (ARX) analysis, logit-probit regressions, quantile regressions, autoregression (AR)
models, exponential generalized autoregressive conditional heteroskedasticity (eGARCH)
analysis, autoregressive moving average model with exogenous regressors (ARMAX) anal-
ysis, least absolute shrinkage and selection operator (LASSO) analysis, seasonal component
autoregressive (SCAR) analysis, and univariate and multivariate regressions.

The studies concentrating on merit-order effect for wind power on electricity market
price are viable among researchers. Positive merit order effects were found with OLS
analysis and time series regressions for Italy [31,65] and for US (California) [66], with
time series analysis for Australia [67], and Germany [68], and with ARDL model and
demand/supply framework for Australia [69,70], and with quantile regression model for
Germany [71] and for US (California) [72]. A different type of time series analysis with
panel data analysis through fixed effect regression was applied in [31] for Germany, and a
dampening effect of wind power with reduced forecasting errors, which led to decreased
price volatility. The VAR model was applied in [42] for Sweden with Granger causality
analysis (i.e., unit root tests and impulse-response functions), and it was shown that the
prices in the IDMs responded to wind power forecast errors. The same model was applied
in [73] for Denmark, Sweden, and Finland. It was found that wind forecast errors did not
affect price spreads in locations with large amounts of wind power generation. Studies
for Germany [74,75] and Australia [76] with GARCH and eGARCH models showed that
an increase in wind generation decreased the prices and increased the price volatility. A
multiple linear regression model was applied for Germany’s electricity markets [32,77],
which showed that 15 min scale helped significantly to reduce imbalances in intraday
trading, and a considerable share of spot price variance was explained by fundamental
modelling. The ARX models, which are linear models, were applied for Germany [30,78],
Poland [78], European countries, and the US [79], and the findings supported more accurate
EPPs in the mentioned electricity markets. The ARMAX model was applied for Germany,
where it showed that wind energy generation decreased market spot prices [80]. The
AR models were applied for Denmark, Finland, Norway, and Sweden, and the used
models were better performed compared to commonly-used EPF models [81,82]. The
LASSO models were applied for Denmark, Finland, Norway, and Sweden, Germany,
and the European Countries, and they demonstrated that LASSO models lead to better
performance compared to the typically considered EPF models [83–85]. The SCAR models
were applied for Denmark, Finland, Norway, and Sweden, where the SCAR models
significantly outperformed the autoregressive benchmark [86]. The multivariate and
univariate models were applied for the European countries and some guidelines were
provided to structuring better performing models [87].

Table 2. Statistical models (first-part) on electricity market price and load forecasting through wind energy.

Author (s) Data/Period Country Method (s) Findings

Clo et al. (2015), [65]. GME/2005–2013 Italy Time series
(OLS) analysis

The merit-order effect for wind
power was found.

Cludius et al. (2014a), [67]. AEMO/
2011–2013 Australia Time series

regression analysis
The merit-order effect for wind

power was found.

Cludius et al. (2014b), [68]. EEX/2008–2016 Germany Time series
regression analysis

The merit-order effect for wind
power was found.

Csereklyei et al. (2019), [69]. NEM/2010–2018 Australia ARDL model The merit-order effect for wind
power was found.

Forrest and MacGill
(2013), [70].

AEMO and
NEM /2009–2011 Australia

Econometric analysis
techniques (a

supply/demand
analysis for

electricity markets)

The merit-order effect for wind
power was found and wind
generation had an impact on

the MCPs.
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Table 2. Cont.

Author (s) Data/Period Country Method (s) Findings

Gianfreda et al. (2016), [31]. ENTSO-E/
2012–2014 Italy Time series

regression analysis

It was found that wind generation
power induced high

imbalance values.

Gürtler et al. (2018), [88]. ENTSO-
E/2010–2016 Germany Panel data analysis

(fixed effect regression)

It was found that there were
dampening effects of wind power

on MCPs, however this effect
started to decrease after 2013.

Hu et al. (2018), [42].

Nord Pool FTP
server and

ENTSO-
E/2015–2018

Sweden

VAR framework
(Granger causality tests

and impulse
response functions)

It was found that intraday prices
responded to wind power

forecast errors.

Koch and Hirth, (2019), [32]. ENTSO-E and
TSO/2012–2017 Germany A multiple linear

regression model

It was shown that the 15 min scale
became common in intraday

trading and helped significantly to
reduce imbalances.

Maciejowska (2020), [71].
EPEX and
ENTSO-E/
2015–2018

Germany Quantile regression
model

It was found that wind energy
generations had a negative effect

on the MCPs.

Pape et al. (2016), [77]. ENTSO-E, EEX,
EPEX/2012–2013 Germany

Multiple linear
regression models

(Fundamental
price modeling)

It was shown that the used models
well explained the spot

price variance.

Serafin et al. (2019), [89]. Nord Pool,
PJM/2013–2018

Denmark,
Finland,
Norway,

and Sweden

Quantile Regression
Averaging and

Quantile Regression
Machine

It was shown that QRM was both
more efficient and had more

accurate distributional predictions.

Spodniak et al. (2021), [73]. ENTSO-E, Nord
Pool/2015–2017

Denmark,
Sweden,

and Finland
VAR model

It was found that wind forecast
errors had no impact on price
spreads in locations with a big

amount of wind power generation.

Westgaard et al. (2021), [72].

LCG
Consulting,

OASIS/
2013–2016

US
(California) Quantile regression Wind generation had a negative

effect on electricity prices.

Woo et al. (2016), [66]. CAISO/
2012–2015

US
(California) OLS Regression

It was found that trading
efficiency could be enhanced by

DAM forecasts.

Ziel and Steinert, (2018a), [90]. EPEX/2012–2015 Germany
and Austria

Time series models
(supply/demand

curves)

It was found that using the law of
supply/demand curve yields
realistic patterns for electricity

prices and leads to
promising results.

Ziel and Weron, (2018b), [87].
EPEX, Nord

Pool, BELPEX/
2011–2013

European
Countries

Multivariate and
univariate models.

More powerful variables identified
and guidelines were provided for

better performing models.

AEMO: Australia Energy Market Operator
ARDL: Autoregressive distributed lag models

BELPEX: EPEX Spot Belgium
DAM: Day-ahead market

EEX: The European Energy Exchange
ENTSO-E: European Network of Transmission System Operators

for Electricity

EPEX: The European
Power Exchange
GME: Gestore dei
Mercati Energetici

MCPs: Market
clearing prices

NEM: The Australian
National Electricity

Market’s

PJM: The Pennsylvania–New
Jersey–Maryland Interconnection

OLS: Ordinary least squares
QRM: Quantile

regression machine
VAR: The vector autoregressive
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Table 3. A literature review through statistical models (second-part) on electricity market price and load forecasting through
wind energy.

Author (s) Data/Period Country Method (s) Findings

Ketterer (2014), [74]. EEX and
ENTSO-E/2006–2012 Germany GARCH model

Wind power generation had a
positive effect on decreasing the

wholesale electricity price;
however, increased its volatility.

Kyritsis et al. (2017), [75].

Phelix Day
Base, EEX,

and ENTSO-E/
2010–2015

Germany GARCH-in-Mean
model

It was found that wind power
Granger cause of MCPs and the

volatility of electricity prices were
increased by wind
power generation

Maciejowska et al.
(2019), [78].

TGE, PSE, EPEX
SPOT and ENTSO-

E/2016–2017

Germany
and Poland

Econometric models
(i.e., ARX and probit)

It was shown that the price spread
could be forecasted by ARX and

probit models.

Maciejowska et al.
(2021), [30].

EPEX and ENTSO-
E/2015–2019 Germany Econometric models

(ARX)

It was shown that variables that
were forecasted gave biased

results; however, they could be
corrected with regression models.

Marcjasz et al. (2018), [81].
Nord Pool, PJM

Interconnection and
EPEX/2013–2018

Denmark,
Finland,
Norway,

and Sweden

Autoregression Models
It was the extended model of

Hubicka et al. (2019), [91] analysis
with much longer datasets.

Mwampashi et al.
(2021), [76]. NEM/2011–2020 Australia eGARCH model

It was found that wind generation
increase decreased daily prices
and increased price volatility

Nowotarski et al.
(2014), [79].

Nord Pool, EEX,
and PJM/1998–2012

European
Countries

and US

ARX model
(Constrained least
squares regression)

The findings supported more
accurate results and the used

models were well performed for
EPFs in the electricity markets.

Paraschiv et al. (2014), [80].
EEE, TSO,

Bloomberg/
2010–2013

Germany ARMAX model
It was found that wind energy

generation decreased market spot
prices.

Uniejewski et al.
(2016), [82].

GEFCom, Nord
Pool/2011–2013

Denmark,
Finland,
Norway,

and Sweden

Autoregression (ridge
regression; stepwise
regression, LASSO;
elastic net) models

The used models performed well
in comparison to previous

preferred EPF models.

Uniejewski and Weron
(2018), [83].

Nord Pool,
PJM/2013–2017

Denmark,
Finland,
Norway,

and Sweden

LASSO models
It was shown that LASSO models
performed well in comparison to
previous preferred EPF models.

Uniejewski et al.
(2019a), [86].

GEFCom, Nord
Pool/2013–2015

Denmark,
Finland,
Norway,

and Sweden

SCAR models
SCAR models significantly

outperformed the
autoregressive benchmark.

Uniejewski et al.
(2019b), [84]. EPEX/2015–2018 Germany LASSO models

Some recommendations were
provided for very short-term EPF

with LASSO models.

Ziel, (2016), [85]. EPEX/2009–2014 European
Countries

Time series model
-Linear regression

(LASSO)

It was shown that the LASSO
forecasting technique

performed well.
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Table 3. Cont.

Author (s) Data/Period Country Method (s) Findings

ARMAX: Autoregressive moving average model with
exogenous regressors

ARX: Auto-regressive with eXternal model input
EEX: The European Energy Exchange

GARCH: A generalized autoregressive conditional
heteroskedasticity model

eGARCH: An exponential generalized autoregressive conditional
heteroskedasticity) model

ENTSO-E: European
Network of

Transmission System
Operators

for Electricity
EPEX: The European

Power Exchange
EPF: Electricity

price forecasting
LASSO: The least

absolute shrinkage and
selection operator

NEM: The Australian National
Electricity Market’s

PJM: The Pennsylvania–New
Jersey–Maryland Interconnection
SCAR: The Seasonal Component

AutoRegressive

The first part of the statistical models that are shown in Table 2 are closer to the research
perspective of the fields of economics, and the traditionally used regression models by
OLS (i.e., the difference between actual and predicted values are squared), VAR (i.e., the
causality relationships), quantile regressions (i.e., the nonlinear relationships between
electricity prices and variables are possible), and univariate and multivariate models (i.e.,
multivariate models are accepted as more accurate than the univariate ones but each
approaches have its own advantages or disadvantages). However, when the number
of regressors become large, these models were insufficient and, thereby, linear models
via LASSO [92], ARX [93], SCAR (introduced by [94] and built on the ARX framework),
GARCH [95–98] and eGARCH (i.e., proposed by [99]), and ARMAX [100] models were
preferred, as it is shown in the second part of the statistical models with Table 3. Therefore,
to obtain more accurate findings, statistical models should be more advanced and, since
the complexity increases, artificial intelligence and hybrid models are required for more
accurate and sensitive forecasts that are shown in Table 4. However, this time the subject
becomes closer to the research perspective of the engineering field.

Various artificial intelligence and hybrid/ensemble models on electricity market price
and load forecasting through wind energy examples are shown in Table 4. These models
can be gathered in a main title named as time series analysis. Specifically, ensemble
learning methods for Austria [101], deep neural networks analysis for Germany [102] and
US (New York) [103], sensitivity analysis for Mexico [104], and deep learning models for
US (New York) [105] can be given as country-specific examples. General findings for the
studies showed that the proposed method could provide an effective forecast.

Table 4. A literature review through artificial intelligence and hybrid/ensemble models on electricity market price and load
forecasting through wind energy.

Author (s) Data/Period Country Method (s) Findings

Bhatia et al.
(2021), [101].

ENTSO-
E/2015–2016 Austria

A real-time hourly
resolution model

(ensemble
learning model)

The developed forecasting model
showed more consistency,

accuracy, and validity.

Bublits et al.
(2017), [106].

EPEX, ENTSO-
E/2011–2015 Germany

Agent based modelling
and multiple

regression analysis

The effect of renewable energy
prices has been as half low as the

coal and carbon prices on
electricity prices in Germany in

the duration of analysis.

Li and Becker
(2021), [102].

Nord Pool,
ENTSO-E,

Thomson Reuters
Eikon/2015–2019

Germany LSTM deep
neural networks

It was shown that feature selection
is useful for more
accurate forecasts.
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Table 4. Cont.

Author (s) Data/Period Country Method (s) Findings

May et al. (2022), [104].
CONAGUA,

CENACE, AND
CRE/2017–2018

Mexico
Artificial Intelligence

Techniques (Sensitivity
Analysis)

It was found that the effects of the
variables fluctuated due to

consumption market conditions.
Nowotarski and Weron,

(2018), [107]. GEFCom/2011–2013 - Neural network and
autoregression

The study was an update of EPF
techniques of Weron (2014), [108].

Osorio et al. (2015),
[109].

Portuguese TSO
(REN)/2007–2008 Portugal

Hybrid
evolutionary-adaptive

method

A new hybrid method was tested
and reduce the uncertainty of

wind power predictions.

Yang and Schell,
(2021), [103].

NYISO/
historical data US (New York) Deep neural networks

It was displayed that TL improved
accuracy across all

network representations.

Yang and Schell,
(2022), [105].

NYISO/
historical data US (New York) Deep learning model

The deep learning model was
developed and it was shown that
it performed well on time series

for EPF.
Zhang et al. (2012),

[110]. NSW/2006 Australia WT, ARIMA and
LSDVM

It was shown that the preferred
method performed well on EPF.

ARIMA: Autoregressive integrated moving average
CENACE: Natural Center for Energy Control

CONAGUA: Natural Water Commission
CRE: Energy Regulatory Commission

ENTSO-E: European Network of Transmission System Operators
for Electricity

EPEX: The European
Power Exchange

LSSVM: Shrinkage and
selection operator least

squares support
vector machine

NYISO: The New York
Independent System Operator
GEFCom: The Global Energy

Forecasting Competition
NSW: New South Wales

TSO: Transmission
system operator

WT: Wavelet transform

The need for artificial intelligence models comes from the non-linear characteristics
of electricity price. Since the large number of time series models have linear predictors,
the time series techniques lack the ability to capture the behavior of the price signal [64].
Neural [47] and fuzzy neural networks [111] are proposed due to solving this problem.
Nonetheless, due to functional relationship of electricity price with time and the nature
(characteristics) of electricity price, it is a time variant signal; therefore, neural and fuzzy
neural network solutions may not be sufficient for precise forecasting results [64], and
it needs hybrid models, which are the combination of non-linear and linear modelling
capabilities occurs.

Hybrid models have a very complex forecasting structure, including several algo-
rithms for decomposing or cluster data, feature selection, combined forecasting mod-
els, and heuristic optimization [112]. The most commonly preferred decomposition
method is the wavelet transform [113–122]. Other decomposition studies that used
empirical mode are given in [123–129]. The most widely preferred feature selection
methods are the correlation analysis are presented in [118,123,130–132], and the mu-
tual information method in [121,123,130,133–135]. The algorithms for the clustering
data are based on: (1) k-means [136,137]; (2) enhanced game [136]; (3) self-organizing
maps [114,136,138]; and (4) fuzzy [121,139]. Combined forecasting models for hybrid
models that build on more than one method are very common. Some examples can
be found in [114,116,124,135,140,141]. The heuristic optimization studies can be found
in [126,131,133,139]. The major problems in employing hybrid model are [112]: (1) The
proposed methods avoid to be compared with well-build models; (2) the used data sets are
small; (3) lack of analysis of the effect of selecting different components.

Various middle/long term models on electricity market price and load forecasting
through wind energy examples are shown in Table 5. These models can be gathered
by time series analysis. Specifically, a case study for US (Texas) [142], the sensitivity
analysis through scenarios for Australia [143], balancing the cost of electricity demand
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with large amount of wind energy for Australia [144], data analysis techniques through
electricity demand models for Australia [145], WILMAR model through scenarios for
Ireland and Great Britain [146]. Monte Carlo simulations for Mykonos (Greece) and La
Ventosa (Mexico) [147], and for Denmark [148]. Simulations with stochastic and robust
optimization for China [149], a market equilibrium model for China [150]. A modelling
demand response utility function for Iran [151], and a dispatch model for Colombia [152]
can be given as country specific examples.

Table 5. A literature review through middle/long term models on electricity market price and load forecasting through
wind energy.

Author (s) Data/Period Country Method (s) Findings

Baldick (2012),
[142]. ERCOT empirical data US Case study for Texas

Cost predictions are developed for
using wind energy to mitigate

CO2 emissions.

Banaei et al.
(2021), [4]. Game theory data -

The supply function
model

(pricing models)

Results showed that the applied
method reduced the market
players profit that depended

on uncertainties.

Bell et al. (2017),
[143]. WRF data/2015 Australia The sensitivity analysis

through scenarios

The average wholesale spot price
in the NEM decreased due to the

increase in wind
power generation.

Blakers et al.
(2021), [144]. NEM/2006–2010 Australia

Balancing the cost of
electricity demand with

high levels of
wind energy

It is found that wind energy
generation led deployment on the

MCP, but it was modest.

Cutler et al.
(2011), [145]. AEOM/2008–2010 Australia

Various data analysis
techniques through
electricity demand

models

Wind power generation became a
significant secondary influence
(the relationship is inverse with

spot prices) after electricity
demand on spot prices.

Denny et al.
(2010), [146]. AIGS Ireland and Great

Britain
WILMAR model

through scenarios

It was found that the increased
interconnection reduced both

average prices and the volatility of
those prices in countries.

Elfarra and Kaya
(2021), [147].

Akdağ et al. (2010),
[153]/2008–2009

Mykonos (Greece)
and La Ventosa

(Mexico)

Annual energy
production through

Monte Carlo
simulations

The PDFs (i.e., spline based)
produced minimum fitting error

Ji et al.
(2021), [149].

Simulation forecast
data China

Simulations with
stochastic and robust

optimization

The validity and superiority of the
recommended models were

shown in case studies.

Khosravi et al.
(2022), [148].

WF power generation
and West Denmark
electricity markets

Denmark
Stochastic scheduling,

simulations with
Monte-Carlo method

Increase in the profit was observed
from the wind power
management method.

Liu and Xu
(2021), [150]. CMDC/2013 China A market

equilibrium model

The impact of wind power
development on the spot market
price results were explored for

both long and short terms.

Niromandfam
et al. (2020), [151].

Ordoudis et al.
(2016), [154]. Iran

Modelling demand
response utility

function

It was shown that the proposed
demand response utility function

improved the wind generation
profit in the DAM.
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Table 5. Cont.

Author (s) Data/Period Country Method (s) Findings
Perez and

Garcia-Rendon,
(2021), [152].

Provided by the
authors through the
XM data/2018–2019

Colombia Dispatch model
New bid prices in the market were
determined by the firms through

the structural model.

AEMO: Australia Energy Market Operator
AIGS: All Island Grid Study

CMDC: The China Meteorological Data Service Center
DAM: Day-ahead market

ERCOT: The electric reliability council of Texas

MCP: Market
clearing price

NEM: The Australian
National Electricity

Market
PDFs: Probability
density functions

WILMAR: A stochastic unit
commitment model

WRF: Mesoscale numerical
weather prediction system

The long/middle term models include simulations (i.e., Monte Carlo simulations),
market equilibrium models, production cost models, and fundamental models such as
game theoretical approaches. The duration is longer or at least the considered period
is middle-term in these models. They have remarkable theoretical contributions to the
development of the EPF models by using economics terminology and approaches. Table 6
gives the main pros and cons of the reviewed methods and techniques based on the
references that are given with Tables 2–5. Additionally, the last row of Table 6 shows the
error comparison of the models that are selected among Tables 2–5.

Table 6. Main pros and cons of the reviewed methods based on the references in Tables 2–5.

Pros and Cons of the
Reviewed Methods

Statistical Models
(First-Part)

Statistical Models
(Second-Part)

Artificial Intelligence and
Hybrid/Ensemble Models

Middle/Long
Term Models

Prons-1

Models allows the use of
data by converting them

from hourly to daily,
which reduce unwanted

and excessive noise. Their
implementtion are easy.

Conditional
heteroscedasticity models

truly explain the
volatilities in prices (i.e.,

seasonality, mean
reversion, and jumps).
Dynamic effects can

be considered.

These models display
improved forcasting

performance in terms of
consistency, accuracy, and

statistical tests).
High-frequency electricity

price data forecasts
are possible.

More realistic modes can
be possible to visualize the

market players’
behaviours (i.e., risk

management preferences).

Prons-2

Model allows omitting
variables which their

inclusion in regressions
may generate an

endogeneity problem.
They are wide-spread

preferred models.

The negative electricity
prices can be included into
the models, which helps to
conduct analysis without

shifting or cutting off
the series.

Private information and
imperfect market structure

(i.e., oligopolies) can be
included and represented with

these models.

Theorethical economic
models (i.e., Nash

Equilibrium conditions)
can be implemented

with simulations.

Prons-3

Models allows to control
the seasonal effects by

introducing time
dummies.

The causality tests can be
implemented in the

context of multivariate
during off-peak hours,

peak hours, and all hours.

These methods are capable of
learning lon-term

dependencies. They cen
control how information is
abandoned or memorized

throughout time.

Strategical behaviours of
the market participants

can be modeled
and simulated.

Prons-4
Binary variables for the

weekend can be included
in models.

More accurate estimations
of load and wind with

these models might
improve EPF.

These models are reliable and
robust for the system’s

complexity. Specifically, the
ensemble methods have better

results than their
individual equivalents.

Parametric and
nonparamatric methods

can be
simultaneously
implemented.

Prons-5

Yearly, monthly, daily, and
hourly dummies can be

used to control for
systematic

demand changes.

These models (i.e., ARX)
can utilize both the

information on system
forecasts and actual past

realizations of
these variables.

Decision-making strategies
can be done with these model

and these models can be
implemented for other regions

to improve EPF efficiency.

Seasonal effects can be
simulated effectively.
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Table 6. Cont.

Pros and Cons of the
Reviewed Methods

Statistical Models
(First-Part)

Statistical Models
(Second-Part)

Artificial Intelligence and
Hybrid/Ensemble Models

Middle/Long
Term Models

Cons-1

There can be a lack of
certainity on estimations

of net effects for
individual consumers.

Estimated prices can be
different (i.e., higher) than

observed spot
market prices.

The stochastic nature of
weather conditions causes

the volatilities of wind
power. This effects
electiricity prices
electricity price

spikes occur.

The decion-making rules are
difficult to validate. The

implementations might be
time-consuming.

The models might be case
dependent and different
findings can be obtained

for other situtaitions.

Cons-2

The differences in wind
load profiles can affect the

hours of the day and
electricity prices can be

dependent on
these changes.

Mean absolute errors
might not work properly

when the models with
more variables
are considered.

These methods have a
significantly increased
computational burden.

Prediction of wind power
effect on prices is difficult
due to the wide range of

factors (i.e., uncertain
demand, several

contingencies depend on
long-term forecasting

intervals).

Cons-3

Many of the variables tend
to show near-unit root, or
autoregrsssive properties;

therefore, lags of the
variables should be

included into the models.

The system of equations
need many parameters

and the estimation of the
coefficients are reletively

difficult or complex.

Irrelevent asssumtions might
block or decrease the

performance of the estimator.

If the computation time
increases with problem
size, this might weaken

the solution capabilitiy of
the concentrated problem.

Cons-4

Possible endogeneity
problems cause from

either omitted variables or
reverse causalities (i.e., the

aggregate or average
electricity demand).

ARMA type models are
bounded by the

assumption of constant
variance that yields

inconsistancy through
volatility.

Various open-source software
platforms might be needed, so

that any researchers can
implement the codes as

benchmarks in their
individual studies.

Error comparison of
the models -

Lasso (Ziel, 2016) [85],
MAAPE (%): 6.604, RMSE:

2.715, MAE: 1.819

Ensemble learning model
(Bhatia, 2021) [101], MAAPE

(%): 5.132, RMSE: 2.156,
MAE: 1.385

-

Note: The last row of Table 6 shows the comparison of the Lasso and Ensemble learning models in terms of mean arctangent absolute
percentage error (MAAPE), mean absolute error (MAE), and root mean squared error (RMSE).

4. Discussion of Forecasting Models on Electricity Markets

Electricity price and load are determined by day-ahead, intra-day, and balancing
markets all around the world; however, research shows that, although its data are usually
publicly available, market clearing price forecasting is more complex (i.e., fuel prices;
equipment outages; and the nature of the market clearing price depends on the hourly
loads creates this complexity [155]) than the load price forecasting.

Forecasting the electricity market’s prices is needed as a result of the dynamic features
of markets, moving from deregulated to regulated form, that cause price volatility. Thereby,
well performed MCP estimation and its confidence interval prediction may help power
producers and its utilities when submitting bids in cases that are more risk-free (i.e., they
can adjust their producers’ supply and profits) [155]. Moreover, with reliable daily price
forecasting, energy service companies or producers are able to lay out better financial
contracts or bilateral ones. The complexity of forecasting electricity markets price and
load is also dependent on the increasing number of employed variables as input for
better accuracy [64,112]. Thereby, the trend in methodologies moves to more sophisticated
instruments, such as hybrid models, as shown and discussed in this review.

In addition to the explanation of operating principles of the electricity market, it
is understood from the papers examined in this review that renewable energy resources
should be preferred, transforming the structure of electricity markets for better environment
conditions with low-carbon levels. Incentives and supply security can be the instruments
for all countries [156].

Many methods and models have been developed for the EPF of markets for the
last two decades. As a result of the stochastic and nonlinear nature of statistical mod-
els and price series, autoregression, moving average, exponential smoothing, and their
variants [33,157] have shown to be insufficient [49]. The artificial intelligence models are
able to capture non-linearity and complexities and flexible [47,158–160].
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Artificial neural networks are outstanding for short-term forecasting, and they are
efficiently applicable for electricity markets [161], being more accurate and robust than
autoregressive (AR) models. The research [48] uses artificial neural network models to
display the strong impact of electricity price on the trend load and MCP. Singhal and
Swarup [48] apply artificial neural network models to study the dependency of electricity
price in MCP and electricity load. Wang et al. [159] implement a deep neural network
model to forecast the price in US electricity markets, differently from conventional models
of neural networks. This model supports vector regression. On the other hand, since the
price series are volatile, the neural network models have potential to lose the properties of
the value of prices [64]. Moreover, neural networks are not convenient for too short-term
predictions, since they need high training time. As a result of the aforementioned issues,
artificial intelligence models have handicaps in perfect price forecasting [108].

Relying on a sole forecasting electricity price model may fail in the treatment of net-
work features in the short term. In those circumstances, hybrid models can be a better
alternative for price forecasting. An example of a hybrid model which is a composition of a
stochastic approach with a neural network model is given in [135]. Ghayekhloo et al. [136]
show hybrid models that include game theoretic approaches. Signal decomposition meth-
ods are also used in hybrid models such as empirical mode decomposition and wavelet
transform; the examples are given in [115,162,163]. Although the performance is signifi-
cantly improved by those models, the computational cost can be disadvantageous [101].

5. Conclusions

The power industry is rapidly growing all over the world, and renewable energy
resources are one of the most vital components in electricity production. Besides, renewable
energy has environmentally friendly features (i.e., a considerable reduction of emission
helps to mitigate global warming). To this end, increasing wind energy utilization is a
challenge to provide electricity power for electricity markets. For the last two decades, the
electricity market mechanisms have been faced with regulation procedures designed by
decision and policy-making processes. The competition is the key factor to decreasing the
cost of electricity and reliably meeting-demand solutions. However, the price spikes and
price volatilities, due to various environmental and business factors, are the handicaps
of this commodity. These handicaps encourage researchers to produce more effective
instruments, techniques, and solutions.

This review paper gathers the latest electricity price and load forecasting techniques
and discusses their strengths and weaknesses. Nevertheless, electricity trading markets are
becoming more sophisticated, with novel types of contracts in the bilateral transactions
or organized markets due to an existing free market competition rule. The independent
transmission system operators for each specific market have the responsibility of controlling
the entire transmission networks. The price mechanism operates with market clearing
price, which is obtained by the law of supply and demand curves that are determined
in the day-ahead markets. The price deviations caused by supply and demand forces
are corrected in balancing power markets by transmission system operators. Moreover,
the intra-day markets are functioning as a bridge between the day-ahead markets and
balancing markets. Market participants, who do not sell their entire power or do not take
their positions in the day-ahead markets, have the alternative to sell or buy the needed
power in the intra-day markets.

As a methodology, this review paper follows the historical and structural development
of electricity markets, price and load forecasting methods, and recent trends in wind energy
generation, transmission, and consumption. The findings that are based on the considered
studies in this review reveal that:

The merit order effect is found for wind power generation, which means that wind
power decreases wholesale price of electricity, however, it increases its volatility.

The volatility of wind power is induced by the stochastic character of weather condi-
tions; therefore, both the parametric and non-parametric techniques might be needed in
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the calculations. Moreover, this indirectly effects the market clearing prices; however, the
volatility of electricity prices is driven by the market design.

Technically, the models can be calibrated by transforming data, known as variance
stabilizing transformation, which yields more accurate predictions along with less spikes
and lower variation features of data.

As the EPF and load methods tend to be explained more dimensionally (i.e., hybrid
methods including deep learning and artificial intelligence), the performance of the meth-
ods increase in terms of accuracy, stability, and consistency. Besides, both the linear and the
non-linear nature of electricity price data can be observed in this way.

The regulatory interventions due to Covid-19 pandemic and the carbon pricing mech-
anism might have an adverse effect on electricity price dynamics. However, inventions of
new vaccines and pills and prevalent use of renewable energy sources (i.e., wind and solar
energy) will lessen the unpredicted effects of Covid-19 and carbon emissions.

Nevertheless, extreme weather events that are related with climate change seem
a barrier for electricity market participants through wind energy production in the near
future. Therefore, future studies may consider those facts and propose new forecasting tech-
niques and improvements for better market operations. As a practical solution proposal, a
cooperation between government, energy producers, manufacturers, and researchers in
developing countries might lead to the start of arrangements whereby produced power can
be directly delivered to energy-intensive factories, such as fertilizer factories (i.e., fertilizer
industry require significant electricity in the world). Therefore, energy transfer losses
can be prevented and, with special agreements, the manufacturers can benefit from these
arrangements as a means of production cost reduction and wind farm owners can benefit
from the utilization of produced electricity without any restriction. As a theoretical solution
proposal, research has demonstrated that a large installed capacity of wind energy might
reduce wind power variability. Thereby, smooth wind generation could be possible by
utilizing storage optimization systems and flexible electricity interconnections (i.e., high
voltage direct current systems with voltage source converters operating for wind farms).

Author Contributions: Study conception and design: H.A. and F.P.G.M.; acquisition, analysis,
drawing figures, and interpretation of data: H.A. and F.P.G.M.; drafting of manuscript: H.A. and
F.P.G.M.; critical revision: H.A. and F.P.G.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work reported herewith has been financially by the Dirección General de
Universidades, Investigación e Innovación of Castilla-La Mancha, under Research Grant ProSeaWind
project (Ref.: SBPLY/19/180501/000102). We are grateful to three anonymous reviewers that helped
us to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 7473 17 of 23

Nomenclature

AEMO Australia Energy Market Operator
AIGS All Island Grid Study
APX Amsterdam Power Exchange
AR Autoregression
ARDL Autoregressive distributed lag
ARMAX Autoregressive moving average model with exogenous regressors
ARX Auto-regressive with eXternal model input
Belpex Belgian Power Exchange
BPM Balancing power market
CalPX California Power Exchange
CMDC The China Meteorological Data Service Center
CRE Energy Regulatory Commission
DAM Day-ahead market
EEX European Energy Exchange
eGARCH Exponential generalized autoregressive conditional heteroskedasticity
ENTSO-E European Network of Transmission System Operators for Electricity
EPFs Electricity price forecasts
EEX European Energy Exchange
EPEX European Power Exchange
EPIAS Energy Exchange Istanbul
ERCOT The electric reliability council of Texas
EXAA Energy Exchange Austria
GARCH Generalized autoregressive conditional heteroskedasticity
GEFCom Global Energy Forecasting Competition
GME Gestore dei Mercati Energetici
IDM Intra-day market
IPEX Italian Power Exchange
LASSO Least absolute shrinkage and selection operator
LPX Leipzig Power Exchange
LSSVM Shrinkage and selection operator least squares support vector machine
MCP Market clearing price
MISO Midwest ISO
NYISO New York ISO
NEM Australian National Electricity Market
NSW New South Wales
NYISO New York Independent System Operator
OLS Ordinary least squares
OMEL Operadora del mercado espanol de electricidad
PJM Pennsylvania-New Jersey Maryland Interconnection
PolPX Polish Power Exchange
QRM Quantile Regression Machine
SCAR Seasonal component autoregressive
TSO Transmission system operator
UKPX UK Power Exchange
VAR Vector autoregressive
WILMAR A stochastic unit commitment model
WRF Mesoscale numerical weather prediction system
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