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Abstract: Multilevel inverters have been widely used in various industrial applications such as
renewable energy generation and electric vehicles. An improved circuit of symmetrical cascaded
switched-capacitor multilevel inverter is proposed so that the reactive power is absorbed by its power
supply instead of capacitors. Then, a special hybrid pulse width modulation strategy combing level-
shifted pulse width modulation (LS-PWM) and phase-shifted pulse width modulation (PS-PWM)
was developed for the inverter. With this modulation algorithm, the power between cascaded units
is automatically balanced, and the voltage of the capacitor in each unit is also automatically balanced
to the dc input voltage. In addition, the optimized capacitor voltage ripple makes it possible to use
a smaller capacitor to produce a better output voltage waveform. Theoretical analysis, simulation
and experimental results show that the equivalent switching frequency of the cascaded multilevel
inverter is twice the original frequency so that the output voltage harmonics are only distributed
near even multiples of the carrier frequency.

Keywords: cascaded multilevel inverter; switched-capacitor; PWM modulation; reactive power

1. Introduction

Recently, multilevel inverters have been widely used in photovoltaic power generation,
energy vehicles and high voltage DC (HVDC) transmission since it not only offers the
advantage of low voltage stress across switching devices on the occasion of high voltage
application but also generates a sinusoidal output waveform with reduced harmonic
distortion at low switching frequency [1,2].

Basically, multilevel inverters can be categorized into three types: diode-clamped,
capacitor-clamped, and cascaded H-bridge. One dc voltage source is equipped in the diode-
clamped and capacitor-clamped multilevel inverter, which utilizes diodes or capacitors
to divide the dc source voltage into multiple voltage levels. A large number of power
switches, complex switching strategies and capacitor voltage balancing control are required
for the clamped-type multilevel inverter [3–5]. On the other side, the cascaded H-bridge
multilevel inverter has less switch voltage stress, and it is easy to realize the modular
design. However, multiple isolated dc sources are required [6,7].

In order to overcome the limitation of the conventional multilevel inverters, a va-
riety of novel topologies have been proposed, such as modular multilevel converter
(MMC) [8,9], Z-source inverter [10,11], switched boost inverter [12,13], switched-capacitor
(SC) inverter [14–24], etc. The switched-capacitor multilevel inverter has especially gained
more popularity because of its self-voltage balancing and boosting ability. In [17,18], by con-
structing an H-shaped SC cell with three switches and two voltage sources (dc sources
or capacitors), the voltage sources are connected in series or parallel by controlling the
three switches appropriately, thus more numbers of voltage levels are generated. In [19],
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two switches of an SC cell are replaced by two diodes so that the modulation circuit de-
sign is simplified. In [20], a new SC cell consisting of four switches, two diodes and two
capacitors is proposed to produce more output voltage levels. A single back-end H-bridge
inverter is connected in [17–20], and the voltage stress of the H-bridge power switches is
large, which is equal to the maximum voltage level of the dc bus.

In order to reduce the voltage stress of the H-bridge switches and the number of
isolated dc voltage sources, the switched-capacitor techniques are integrated into a cas-
caded H-bridge multilevel inverter in [21] by adding bidirectional switches between H
bridges. Most of the dc voltage sources in the cascaded multilevel inverter are replaced by
capacitors, which are charged by a single dc source with the help of bidirectional switches.
Further, a low-voltage SC cell and a high-voltage SC cell consisting of seven switches, four
capacitors and two diodes are inserted into the dc sides of two cascaded H-bridges to
generate more output voltage levels [22]; however, the modulation for power switches is
rather complex.

A simple SC cell, consisting of two switches, one diode and one capacitor, is embedded
between the dc power supply and H-bridge [23,24]. With the SC cell, two voltage levels in
the dc bus and five voltage levels in the output of the H-bridge are obtained. Nevertheless,
when reactive power flows from the inductive load to the input, the backflow current
would keep charging the capacitor in the SC cell due to the existence of the diode. Thus,
it is possible that the capacitor voltage reaches far beyond the dc source voltage when
dealing with large reactive power. In addition, symmetrical phase-shift modulation in [23]
leads to a power imbalance between cascaded units. Different dc voltage source values are
assigned in [24] to produce the maximum number of voltage levels at the output, which
aggravates the problem of the power imbalance between cascaded units.

In this paper, the diode of the SC cell in [23,24] is replaced by a power switch, realiz-
ing a bidirectional current flow and thus improving the reactive power capability of the
inverter. As a result, each cascaded unit involves one capacitor and seven transistors as
well as one dc source. More output levels can be obtained by cascading multiple units.
Besides, a hybrid pulse width modulation combining level-shifted pulse width modula-
tion (LS-PWM) and phase-shifted pulse width modulation (PS-PWM) was developed for
the symmetrical cascaded switched-capacitor multilevel inverter. With this modulation
algorithm, the power between cascaded units as well as the voltage of the capacitor in
the SC cell is automatically balanced, and the capacitor voltage ripple is effectively mini-
mized. In summary, with the hybrid pulse width modulation, the proposed cascaded SC
multilevel inverter has the following highlights:

â Self-balanced capacitor voltages;
â Self-balanced power among cascaded SC cells;
â Reduced capacitor voltage ripple;
â Enhanced reactive power capability.

2. Cascaded Switched-Capacitor Multilevel Inverter
2.1. Circuit Description

Figure 1 shows a switched-capacitor multilevel inverter cascaded by n units, and
every unit consists of a dc voltage source Ei (i = 1, 2, . . . , n), an SC cell, and an H-bridge.

The main difference between Figure 1 and the proposed circuit in [23] is that the
charging diode of SC is replaced by MOSFET (Si5). As mentioned above, the reactive
power capability of the inverter can be improved, and the system power loss can also be
significantly reduced since the conduction loss of a MOSFET is much smaller than that of a
diode, especially when the charging current is large in low voltage side.
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Figure 1. Cascaded switched-capacitor multilevel converter.

2.2. Operation Principle

In each unit, the SC cell includes switches (Si5, Si6, and Si7) and capacitor Ci, and the
H-bridge is composed of switches Si1~Si4. In the SC cell, the switches Si5 and Si7 are turned
on/off simultaneously and have a complementary pulse signal with Si6. When Si5 and
Si7 are turned on, and Si6 is off, the capacitor Ci is parallelly connected to the dc source,
and the dc bus voltage Vbi is equal to Ei. When Si5 and Si7 are turned off, and Si6 is turned
on, the capacitor Ci is in series with the dc source. Since Ci was charged to the dc source
voltage Ei in the previous state, the dc bus voltage Vbi is equal to 2Ei. It can be concluded
that the capacitor is charged when connected in parallel and discharged when connected
in series. By converting the capacitor and the dc source in series or in parallel connection,
the dc bus has two voltage levels: Ei and 2Ei. With the operation of the H-bridge, a total of
five voltage levels is produced for each unit, i.e., 0, ±Ei and ±2Ei. The detailed operation
state circuits under resistive load are shown in Figure 2. From the analysis, power switches
of different voltage ratings should be selected for the SC cell and H-bridge. The voltage
stress of all power switches in the SC cell is Ei, and the voltage stress of switches in the
H-bridge is 2Ei.

If the dc sources are independent, and its voltage meets Ei+1 = 3Ei or Ei+1 = 5Ei, the
circuit shown in Figure 1 is configured as an asymmetric cascaded switched-capacitor
multilevel inverter, from which more voltage levels are produced. However, since the
voltage and power rating of each unit is different, each unit needs to be designed separately,
and it is difficult to realize the modular design.

If the dc source values are equal to E, the circuit shown in Figure 1 is configured as a
symmetrical cascaded switched-capacitor multilevel inverter. The voltage rating of each cell
is the same, and its power rating is also the same under appropriate modulation strategy;
therefore, modular design is realized, and only a single unit needs to be designed. In the
following, we focus on a symmetrical switched-capacitor multilevel inverter cascaded by
two units. Five voltage levels of 0, ±E and ±2E are produced by each unit, so the cascaded
inverter has a total of 5 × 5 = 25 working status, resulting in nine voltage levels of 0, ±E,
±2E, ±3E and ±4E for the inverter’s output, as shown in Table 1. However, there is only
one combination for the output voltage level ±4E, and there are several redundant states
for other voltage levels. Therefore, it is important to design the modulation algorithm to
select an appropriate redundant state in order that the power between cascaded modules
can be balanced automatically and the voltage ripple of the switched capacitor could
be minimized.
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Table 1. Working status of the cascaded inverter.

Number uO1 uO2 uO

1 +2E +2E +4E
2 +2E +E

+3E3 +E +2E
4 +E +E

+2E5 0 +2E
6 +2E 0
7 +E 0

+E
8 0 +E
9 +2E −E
10 −E +2E
11 +2E −2E

0
12 +E −E
13 0 0
14 −E +E
15 −2E +2E
16 −2E +E

−E
17 +E −2E
18 0 −E
19 −E 0
20 0 −2E

−2E21 −2E 0
22 −E −E
23 −2E −E −3E24 −E −2E
25 −2E −2E −4E
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2.3. Enhanced Reactive Power Capability of the Proposed Circuit

Since the current of the dc bus idi is always positive under resistive load, the switching
modes of our proposed circuit and the one in [23] are completely the same. However,
there is a significant difference between the two circuits if an inductive load is connected.
As shown in Figure 3, when the load is inductive, a phase shift ϕ between the output
voltage and output current of the inverter will lead to a negative idi in the dc bus. Take the
first-half period, for example, idi is negative during 0~t2 and positive during t2~t4.
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Figure 3. Operation waveforms under inductive load.

During 0~t2, for our proposed circuit, as shown in Figure 2e, at Mode 5, when the
dc bus voltage is 2Ei, the negative idi will charge the capacitor Ci and cause a voltage rise
on the capacitor. To the next state, when the dc bus voltage switches to Ei, as shown in
Figure 2c, due to the existence of the switch Si5, the capacitor discharges immediately, and
its voltage is clamped to the dc source voltage Ei. In contrast, for the proposed circuit
in [23], due to the existence of diode in SC cell, whether in Mode 3 or Mode 5, as shown
in Figure 4, the negative current idi keeps charging the capacitor. The process continues
until the current idi reverses at t2 instant, which results in a continuous rise of the capacitor
voltage during 0~t2.

When the output voltage uoi is negative, according to the switching modes of Mode 4
and Mode 6 in Figures 2 and 4, the situation is quite similar. The capacitor voltage of our
proposed circuit is maintained around the source voltage Ei, but the capacitor voltage of
the inverter in [23] will keep rising until the inverter’s output voltage and current are in
the same direction. It is obvious that the reactive power capability in [23] is limited due
to its high capacitor voltage, while the proposed circuit in this paper can work properly
under a large inductive load.
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3. Modulation Strategy
3.1. Hybrid Pulse Width Modulation

LS-PWM and PS-PWM are two of the most commonly used modulation strategies
for a conventional multilevel inverter. As discussed above, five-level voltage is produced
by each unit in the proposed cascaded multilevel inverter, which can be modulated using
LS-PWM with four carriers. With LS-PWM, in addition, a high-quality output waveform
of an inverter is achieved by charging and discharging the capacitor of SC cell alternatively
in high frequency, the voltage of the capacitor is automatically balanced and the voltage
ripple of the capacitor could be minimized. As for symmetrical cascaded units, PS-PWM is
a good choice when using which power between cascaded units is automatically balanced.
Therefore, by combining PS-PWM and LS-PWM, a hybrid pulse width modulation for a
nine-level inverter is provided in Figure 5. With this hybrid modulation, power balancing
between cascaded units and the capacitor voltage ripple minimization can both be achieved.

In Figure 5, es is the modulating signal with amplitude Aref, and e1~e8 are carriers. The
level-shifted carriers e1 ~ e4 have the same phase, which is compared with the modulating
signal to generate switching control signals for the first cascaded unit. Similarly, the level-
shifted carriers e5~e8, whose phase is opposite to e1~e4, are compared with the modulating
signal for generating switching control signals for the second cascaded unit. It can be
seen from Figure 5, five voltage levels of 0, ±E and ±2E are produced for the output
(uo1 and uo2) in each unit, and a nine-level output voltage (uo) of 0, ±E, ±2E, ±3E and ±4E
is obtained by cascading two units. It was noted that for each unit, when the output voltage
is switching between +E and +2E, the capacitor operates in charging and discharging mode
alternately in high frequency. Therefore, the capacitor voltage can be balanced to dc input
voltage automatically, and the voltage ripple of the capacitor can be minimized.
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Figure 5. Modulation principle of hybrid PWM.

The modulation index is defined as

M =
Are f

2Ac
(1)

where Ac is the peak-to-peak amplitude of the carriers.
The operating status of each switch in the cascaded inverter is given in Table 2, where

“↓” and “↑” represent capacitor discharging and charging, respectively.

Table 2. Operating status of each switch.

Status
Capacitor Status Output Level

Si1 Si2 Si3 Si4 Si5 Si6 Si7

1 0 0 1 0 1 0 ↓ +2E
1 0 0 1 1 0 1 ↑ +E
1 1 0 0 1 0 1 ↑ 0
0 0 1 1 1 0 1 ↑ 0
0 1 1 0 1 0 1 ↑ −E
0 1 1 0 0 1 0 ↓ −2E

According to Table 2 and Figure 5, the modulation logic of switching control signals
in the first cascaded unit can be summarized as follows. When es > 0, the control signal
of S11 satisfies vgs11 = 1, which is complementary to control signal of S13; when 0 < es < e2
or es < e3, the control signal of S12 satisfies vgs12 = 1, which is complementary to control
signal of S14; when e4 < es < e1, the control signals of S15 and S17 satisfy vgs15 = vgs17 = 1,
which is complementary to the control signal of S16. Similarly, the modulation logic of
switching control signals in the second cascaded unit is shown as follows: when es > 0,
vgs21 = 1; when 0 < es < e6 or es < e7, vgs22 = 1; when e8 < es < e5, vgs25 = 1. Thus, the logic
modulating circuit of hybrid pulse width modulation is shown in Figure 6.
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The hybrid pulse width modulation strategy described above can be easily extended
to a symmetrical cascaded multilevel inverter cascaded by n units. Switching control
signals in each unit is still generated from the modulating circuit in Figure 6, and the phase
shift between different carrier sets for cascaded units should be set to (360/n) ◦.

3.2. Harmonic Analysis of Output Voltage

Assuming the capacitor voltage is equal to E, the Fourier transform of the inverter
output voltage can be expressed as

uo = E[4M cos(ω0t)+

∑8
i=1 ∑+∞

m=1 ∑+∞
n=−∞ Amni cos(nω0t + mωct + mαi)]

(2)

where ω0 and ωc are the frequency of modulating signal and carriers, respectively. Amni is
the amplitude of harmonics caused by the i-th carrier centering at the frequency of
nω0 + mωc, and αi is the phase angle of the i-th carrier.

In addition, Amni is equal to 0 when m + n is an even number [25]. In the proposed
hybrid pulse width modulation, the phase difference between two sets of carrier signals is
180◦; thus, the harmonics generated from two cascaded units cancel each other when m is
an odd number, and the harmonics only need to be considered when m is an even number.

3.3. Power Balance

As discussed above, in the hybrid pulse width modulation, a single modulating
signal and two sets of carriers of opposite phases are utilized. From (2), the fundamental
component of the output voltage is independent of the carrier; thus, the fundamental
power in two cascaded units is equal.

Considering the harmonic component of the multilevel output voltage is low, the
power dissipated by the harmonic current can be neglected. Therefore, the output power
of each unit approaches, and power balancing is realized automatically.

4. Capacitor Voltage Ripples

With the hybrid pulse width modulation, the capacitor in the SC cell operates al-
ternately in series and in parallel with the dc voltage source. The capacitor voltage is
clamped to dc voltage E whenever it is connected in parallel with the source, so the voltage
ripple of the capacitor is proportional to the integral of discharging current and is inversely
proportional to its capacitance.

The integral of discharging current takes the maximum value when the modulating
signal es reaches its peak Aref. The discharging current and capacitor voltage are given in
Figure 7 when a pure resistive load R is connected.
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Based on a similar triangle theory, it can be further expressed as
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where fC is the frequency of carriers e1~e8.
The capacitor satisfies

C >
10M− 6

αR fC
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where α = ∆VCmax/E represents the allowable ripple voltage across the capacitors, and it is
normally set around 10%.

5. Simulation Verification

In order to verify the effectiveness of the proposed symmetrical switched-capacitor
multilevel inverter and its hybrid pulse width modulation, a simulation model was built in
PSIM. The simulation parameters are listed in Table 3.

Table 3. Parameters of the cascaded multilevel inverter.

Parameters Simulation Experiment

E 48 V 48 V
M 0.95 0.95

f0/fC 50 Hz/5 kHz 50 Hz/5 kHz
C1, C2 100 µF 100 µF

S15~17, S25~27 Ideal switch IRFI4410Z
S11~14, S21~24 Ideal switch IRF640

Load 50 Ω/50 Ω-50 mH/10 Ω-50 mH 50 Ω/50 Ω-53 mH

Figure 8 shows the simulation results under the 50 Ω load condition. As shown in
Figure 8a, a five-level output voltage is produced by each unit, and a nine-level output
voltage is generated by cascading two units. Since the RMS value of output voltage in each
unit is measured the same as 66 V, it can be deduced that the power of each cascaded unit
is equal, and the power between two cascaded units is automatically balanced. Moreover,
the capacitor voltage is balanced to the dc input voltage by using hybrid PWM. From the
FFT analysis result in Figure 8b, the voltage harmonics of each unit are distributed near the
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carrier frequency (5 kHz) and its multiples (10 kHz, 15 kHz, . . . ), while the harmonics of
the total output voltage are located near even multiples of the carrier frequency (10 kHz,
20 kHz, . . . ), showing that the equivalent switching frequency after cascading is increased
to twice the carrier frequency.

Energies 2021, 14, 7643 10 of 16 
 

 

Table 3. Parameters of the cascaded multilevel inverter. 

Parameters Simulation Experiment 
E 48 V 48 V 
M 0.95 0.95 

f0/fC 50 Hz/5 kHz 50 Hz/5 kHz 
C1, C2 100 μF 100 μF 

S15~17, S25~27 Ideal switch IRFI4410Z 
S11~14, S21~24 Ideal switch IRF640 

Load 50 Ω/50 Ω-50 mH/10 Ω-50 mH 50 Ω/50 Ω-53 mH 

Figure 8 shows the simulation results under the 50 Ω load condition. As shown in 
Figure 8a, a five-level output voltage is produced by each unit, and a nine-level output 
voltage is generated by cascading two units. Since the RMS value of output voltage in 
each unit is measured the same as 66 V, it can be deduced that the power of each cascaded 
unit is equal, and the power between two cascaded units is automatically balanced. More-
over, the capacitor voltage is balanced to the dc input voltage by using hybrid PWM. From 
the FFT analysis result in Figure 8b, the voltage harmonics of each unit are distributed 
near the carrier frequency (5 kHz) and its multiples (10 kHz, 15 kHz, …), while the har-
monics of the total output voltage are located near even multiples of the carrier frequency 
(10 kHz, 20 kHz, …), showing that the equivalent switching frequency after cascading is 
increased to twice the carrier frequency. 

 

 

(a) (b) 

Figure 8. Simulation waveforms for a resistive load: (a) Output voltage and capacitor voltage ripple; (b) FFT analysis result 
of output voltage. 

Figure 9 shows the simulation waveforms under inductive load. It can be seen that 
the capacitor keeps the voltage around the dc input voltage due to the clamping of Si5, and 
the inverter works properly even when the reactive power demand is large. For compar-
ison, the cascaded inverter using a diode in the SC cell [23] is also simulated, and the 
simulation results are shown in Figure 10. It can be seen that the capacitor voltage is far 
beyond the dc input voltage because the diode prevents the current flow, and the revers-
ing current keeps charging the capacitor in the SC cell. The output voltage waveform is 
heavily distorted, as shown in Figure 10b, and the overvoltage of capacitors might cause 
some safety issues. Thus, the optimized topology in this paper, by simplifying replacing 

0
−50
−100

50
100

0
−50
−100

50
100

0
−100
−200

100
200

u O
1 (

V
)

u O
2 (

V
)

0 0.01 0.02 0.03 0.04 0.05
Time (s)

u O
 (V

)

40
42
44
46
48

40
42
44
46
48

V C
1 (

V
)

V C
2 (

V
)

RMS: 66V

RMS: 66V

RMS: 128V

0
5

10
15
20

0
5

10
15
20

0 10 20 30 40 50
Frequency (kHz)

0
2
4
6
8

10

FF
T 

of
u O

1
(V

)
FF

T 
of

u O
2

(V
)

FF
T 

of
u O

(V
)

THD=30.3%

THD=30.3%

THD=15.57%

Figure 8. Simulation waveforms for a resistive load: (a) Output voltage and capacitor voltage ripple; (b) FFT analysis result
of output voltage.

Figure 9 shows the simulation waveforms under inductive load. It can be seen that
the capacitor keeps the voltage around the dc input voltage due to the clamping of Si5,
and the inverter works properly even when the reactive power demand is large. For
comparison, the cascaded inverter using a diode in the SC cell [23] is also simulated, and
the simulation results are shown in Figure 10. It can be seen that the capacitor voltage is far
beyond the dc input voltage because the diode prevents the current flow, and the reversing
current keeps charging the capacitor in the SC cell. The output voltage waveform is heavily
distorted, as shown in Figure 10b, and the overvoltage of capacitors might cause some
safety issues. Thus, the optimized topology in this paper, by simplifying replacing the
diode with MOSFET, improves not only the performance of the inverter under inductive
load but also the system’s reliability.
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(b) 10 Ω-50 mH.
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In order to compare the reactive power capability of the proposed circuit and
the inverter in [23], the capacitor voltage ripple with different inductive loads is de-
picted in Figure 11. Assuming that the limitation of capacitor voltage ripple is 15% Ei,
i.e., ∆VCmax = 7.2 V, with the inverter in [23], the ripple will reach the limitation when the
inductance increases to 120 mH and the power factor of the inverter is about 0.798. With
the proposed circuit in this paper, as shown in Figure 11, the voltage ripple will never
exceed the limitation even with a large inductance.

Energies 2021, 14, 7643 12 of 16 
 

 

0 50 100 150 200 250 300 350 400 450 500 550
L (mH)

0

2

4

6

8

10

12

14

16

18

20

Ca
pa

ci
to

r v
ol

ta
ge

 ri
pp

le
 (V

)

7.2

120

ripple limit

original inverter

improved inverter

 
Figure 11. Capacitor voltage ripple versus load inductance (R = 50 Ω). 

Compared to the power factor of [0.798,1] in [23], the power factor is extended to [0,1] 
for our proposed circuit, which has demonstrated an enhanced reactive power capability.  

On the other side, the proposed circuit has a smaller voltage ripple on the capacitor 
under the same inductive load, which means that the capacitance required can be reduced. 
Therefore, an electrolytic capacitor could be replaced by a film capacitor featuring a long 
lifetime and high reliability. 

6. Experimental Verification 
A prototype is also built. The parameters are listed in Table 3, and the experiment 

bench is shown in Figure 12. In the experiment, the hybrid modulation strategy illustrated 
in Figure 3; Figure 4 is realized using a DSP microcontroller. The generated control signals 
are sent to power switches through the optocoupler. 

 
Figure 12. Experiment bench. 

Figure 13 shows the experimental waveforms for a resistive load. The proposed 
switched-capacitor multilevel inverter cascaded by two units can generate a nine-level 
output voltage with a step voltage of 48 V. The RMS value of output voltage is measured 
as 125.84 V, which is close to the simulation value (126 V). By using hybrid PWM modu-
lation, the capacitors are charged and discharged alternately, obtaining a high-quality out-
put voltage waveform with a small capacitor (100 μF). In addition, the voltage of each 
capacitor is automatically balanced, and their voltage ripple is almost the same, which 
means that the transferred power in cascaded units is balanced automatically. 

Figure 11. Capacitor voltage ripple versus load inductance (R = 50 Ω).

Compared to the power factor of [0.798,1] in [23], the power factor is extended to [0,1]
for our proposed circuit, which has demonstrated an enhanced reactive power capability.

On the other side, the proposed circuit has a smaller voltage ripple on the capacitor
under the same inductive load, which means that the capacitance required can be reduced.
Therefore, an electrolytic capacitor could be replaced by a film capacitor featuring a long
lifetime and high reliability.

6. Experimental Verification

A prototype is also built. The parameters are listed in Table 3, and the experiment
bench is shown in Figure 12. In the experiment, the hybrid modulation strategy illustrated
in Figure 3; Figure 4 is realized using a DSP microcontroller. The generated control signals
are sent to power switches through the optocoupler.
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Figure 12. Experiment bench.

Figure 13 shows the experimental waveforms for a resistive load. The proposed
switched-capacitor multilevel inverter cascaded by two units can generate a nine-level
output voltage with a step voltage of 48 V. The RMS value of output voltage is measured as
125.84 V, which is close to the simulation value (126 V). By using hybrid PWM modulation,
the capacitors are charged and discharged alternately, obtaining a high-quality output
voltage waveform with a small capacitor (100 µF). In addition, the voltage of each capacitor
is automatically balanced, and their voltage ripple is almost the same, which means that
the transferred power in cascaded units is balanced automatically.
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Figure 13. Experimental waveforms for a resistive load.

Figure 14 shows the experimental waveforms for an inductive load. In Figure 14a, the
waveforms of capacitor voltage, output voltage and output current are shown. It shows that
the capacitor voltage balancing and power balancing between cascaded units are realized.
The FFT analysis of output voltage is shown in Figure 14b. It is shown that the harmonics
are mainly distributed around even multiples of the carrier frequency, i.e., 10 kHz, 20 kHz
and 30 kHz, which coincides with theoretical analysis and simulation results. The FFT
analysis of output current is shown in Figure 14c, which indicates that the output current
is a pure sine wave without containing any harmonics.
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The relationship between the system efficiency and output power is achieved in
Figure 15 by adjusting the value of the resistive load. The results show that the efficiency
of the inverter is larger than 92% when the power ranges from 24 W to 222 W. Especially,
the efficiency is larger than 97% when the output power is larger than 50 W. It is obvious
that the inverter has a high efficiency over a wide load range.
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7. Conclusions

In this paper, an optimized symmetrical switched-capacitor multilevel inverter was
proposed, and a hybrid pulse width modulation strategy combining LS-PWM and PS-PWM
was applied. The theoretical analysis, simulation results and experimental results are
provided. Compared to the inverter in [23], the proposed multilevel inverter has the
following advantages:

(1) With LS-PWM, a five-level output voltage is produced for each cascaded unit, and the
capacitor voltage can be balanced to the dc input voltage automatically. The capacitor
keeps charging and discharging alternately in high frequency so that only a small
capacitor is needed to minimize the capacitor voltage ripple;

(2) With PS-PWM, power balancing between cascaded units is realized automatically.
The equivalent switching frequency of the cascaded inverter is increased to twice the
carrier frequency; therefore, the harmonics of the output voltage is located near even
multiples of the carrier frequency;

(3) It has superior reactive power capability and reliability.
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