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Abstract: High-precision trajectory control is considered as an important factor in the performance
of industrial two-axis contour motion systems. This research presents an adaptive direct fuzzy
cerebellar model articulation controller (CMAC) sliding mode control (DFCMACSMC) for the precise
control of the industrial XY-axis motion system. The FCMAC was utilized to approximate an ideal
controller, and the weights of FCMAC were on-line tuned by the derived adaptive law based on
the Lyapunov criterion. With this derivation in mind, the asymptotic stability of the developed
motion system could be guaranteed. The two-axis stage system was experimentally investigated
using four contours, namely, circle, bowknot, heart, and star reference contours. The experimental
results indicate that the proposed DFCMACSMC method achieved the improved tracking capability,
and so reveal that the DFCMACSMC scheme outperformed other schemes of the model uncertainties
and cross-coupling interference.

Keywords: direct fuzzy cmac sliding mode control (DFCMACSMC); permanent magnet synchronous
motor (PMSM); precision motion control; position feedback sensor; trajectory tracking control

1. Introduction

Precision motion systems are being used extensively in precision fields, such as
computer numerical control (CNC) machineries, IC manufacturing, micro-mechanical
assembly, ultraprecision measurement, and microsurgery. Machine systems are generally
designed to reduce tracking errors with respect to each feed drive axis.

The micro-meter level system is becoming increasingly important in satisfying the
requirements for mass production in industrial 4.0. The permanent magnet synchronous
motor (PMSM) [1–5] is a device designed by using permanent magnets embedded in the
steel rotor to create a constant magnetic field. It provides for several better properties,
including low torque ripple, high efficiency, high power density, low maintenance cost, low
heat generation, and so forth. However, it still has some inherent disadvantages, such as
complex control systems, higher cost, and low reliability. Moreover, the servo-performance
of the biaxial motion control system is affected by backlash, nonlinear friction character-
istics, unmodeled dynamics, and other time-varying conditions. To better compensate
these uncertainties and nonlinearities, a better control scheme should be used for motion
control systems.

Various control schemes have been proposed to improve the control properties and
tackle the uncertainty challenge considering the adaptive techniques [1–9]. Based on the
concept of a learning-based approach for error compensation, repetitive perfect tracking
control [1] with an n-times learning filter was proposed for the X-Y stage target tracking.
The data-based friction model is used for rolling compensation. A FPGA-based self-tuning
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PID motion control system [2] was proposed to enhance the system performance of the
X-Y table controller. This system utilizes a radial basis function (RBF) neural network
with a gradient learning algorithm to reduce trajectory errors. The adaptive recurrent-
neural-network (ARNN) motion control system [3] for a biaxial motion mechanism was
proposed in the computer numerical control (CNC) machine. The tracking performance
was substantially improved, and the robustness to uncertainties, including the cross-
coupled interference and friction torque, could be obtained as well. A robust fuzzy neural
network controller [4] with nonlinear disturbance observer (RFNNCNDO) is proposed for
the precision control of a biaxial motion system. From the experimental results, the contour
tracking performance of the two-axis motion control system was significantly improved,
and the robustness could be obtained as well using the proposed RFNNCNDO control
system. The adaptive learning algorithms considered to be able to learn the parameters
of the RNN on-line were derived using the Lyapunov stability theorem. El-Sousy [6]
proposed a mixed H2/H∞ controller, a self-organizing recurrent fuzzy-wavelet-neural-
network controller (SORFWNNC) and a robust controller. The sufficient conditions were
developed for the adaptive mixed H2/H∞ to help track problems in terms of a pair of
coupled algebraic equations instead of coupled nonlinear differential equations. Sliding
mode control (SMC) is a nonlinear control algorithm that employs discontinuous control
to force system state trajectories to lie on some prescribed sliding surface. To resolve
this difficulty, an adaptation scheme which can improve the robustness of adaptive fuzzy
control is proposed in X-Y stage dynamic systems.

The cerebellar model articulation controller (CMAC) structure has been applied widely
to regulate and control the complex dynamical systems owing to its fast learning prop-
erties, better generalization capabilities, and simple computation when compared with
neural networks [9–14]. A trained CMAC can approximate the nonlinear functions in
a generalized lookup-table manner over a domain to any desired accuracy. The robust
cerebellar model articulation controller (RCMAC) [9] was developed to achieve H∞ robust
tracking performance. This design technique is generally applied to control a chaotic
circuit system to verify its effectiveness. A modified adaptive Fuzzy CMAC scheme [13]
was proposed to solve the chattering problem without sacrificing the performance for a
class of nonlinear systems. This scheme with the saturation compensation can prevent the
chattering and steered the tracking error to converge exponentially to a residual set whose
size could be adjusted. A deep CMAC (DCMAC) framework, which stacks several layers
of single-layered CMACs, is proposed [15] for adaptive noise cancellation. A backprop-
agation algorithm is derived to train the DCMAC effectively and efficiently. The control
algorithm [16] is the core of the dynamic positioning system of USV. This paper adopts the
sliding mode control (SMC) algorithm based on a Cerebellar Model Articulation Controller.
The tracking differentiator was added to eliminate the large chattering in the initial stage
of the system. This research [17] proposes a new self-organizing FCMAC (NSOFC) for
uncertain nonlinear systems. The proposed method uses an integrated sliding surface and
overlaps the prior and present GMFs for each layer to form a sum of the two states that is
used to predict the error values. This research [18] proposes a control system consisting of a
novel type of fuzzy neural network and a robust compensator controller for robot systems.
The new fuzzy neural network is implemented by integrating a number of key components
embedded in a Type-2 fuzzy cerebellar model articulation controller (CMAC) and a brain
emotional learning controller (BELC) network, thereby mimicking an ideal sliding mode
controller. Clearly then, a synopsis of the above research studies reveals that the adaptive
structures with nonlinear approximation ability indeed improve the control performances.

The direct fuzzy CMAC sliding mode control (DFCMACSMC) is developed for the
two-axis PMSM positioning system. The proposed control structure consists of a two-
dimensional fuzzy CMAC structure with Gaussian membership functions. This control
system combines the advantages of fuzzy inference system and CMAC structure. The
parameter update rules for a DFCMAC with two inputs and one output are derived,
and the stability of the proposed learning algorithm is proven via a Lyapunov function.
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Trajectory planning mainly depends on the NURBS curve design method. The servo table
is experimentally investigated with four typical contours, namely the circle, bowknot,
heart, and star reference contours. The simulation results and experimental results are
presented to show that the proposed DFCMAC-based sliding mode controller indeed better
accomplished the tracking performances with regard to model uncertainties. The real-time
approach needs to be considered, as does the limitations. We will demonstrate that the
proposed adaptive DFCMAC algorithms can provide a successful industrial application
for biaxial PMSM-actuated motion tables for tracking different reference trajectories. In the
future, the microcontroller-based motion controllers will be designed and implemented for
industrial applications.

This paper is structured as follows. Section 2 highlights the importance of the system
architecture of the X-Y stage. This is followed by Section 2.1 with a description of the
two-dimensional FCMAC architecture given. The proposed DFCMAC design is given in
Section 2.2. Section 3 presents the results of the simulation and experiment. The conclusion
is drawn in Section 4.

2. Materials and Methods
2.1. System Model

The dynamic model of the single-axis motion stage is given as

m
..
x + b

.
x + Ff = w(u) + Fu, (1)

where m is the total equivalent mass, x is the stage displacement, b is the viscous friction
coefficient, Ff is the equivalent nonlinear friction force, u is the control input, w(u) denotes
the input nonlinear backlash function, and Fu is the sum of the modelling error, static load,
and bounded external disturbances. The friction force Ff is represented as:

Ff = Fcsgn
( .
x
)
+ (Fs − Fc) exp

[
−
( .
x/vs

)2
]
sgn
( .
x
)
+ Kv

.
x, (2)

where Fc is the Coulomb friction, Fs is the static friction, vs is the Stribeck velocity parameter,
.
x is the linear velocity of the X- (Y-) axis, Kv is the coefficient of viscous friction, and sgn(·)
is a sign function. The nonlinear control input function w(u) can be expressed as:

w(u) = cu + fb, (3)

where c is a positive constant, and fb denotes the unknown backlash nonlinear function.
This dynamic system can be rewritten as:

..
x = −g

(
b

.
x + Ff

)
+ gcu + D, (4)

With g = 1/m, D = g(fb + fu) where D is the lumped disturbance parameter bounded by
DU. It is assumed that |D| < DU. The experimental system of the proposed XY motion
stage is depicted in Figure 1a,b.

2.2. Two-Dimensional FCMAC Architecture

A basic CMAC architecture [9] is shown in Figure 2. The mapping relation is
described as:

Y : y(s) = AW, (5)

where s is the continuous n-dimensional input space, A is the association memory with
na elements, R is the receptive field with nh elements, W is the weight memory with nh
adjustable weights, and Y is the m-dimensional output space. The mapping structure of the
two-dimensional CMAC is depicted in Figure 3. In this case, two input variables, s1 and s2,
are both quantized into nine intervals and divided into three blocks. Namely, s1 is divided
into three blocks named A, B, C, and s2 is divided into a, b, c in the first layer. Then, s1 is
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shifted an interval to D, E, F, and so is s2 that shifted to d, e, f in the second layer, and so on.
Therefore, Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, Cc, which are called hypercubes, are obtained in
the first layer and the same as Dd, De, Df, Ed, Ee, Ef, Fd, Fe, Ff that are in the second layer.
Each hypercube is composed of the blocks in the same layer of two input variables; that is
to say, it is impossible to obtain a hypercube, such as Ad, Ei, or Gc. In the case, there are
81 states, 36 hypercubes, and four layers, and each state activates four association cells that
exists in different hypercubes. It means that k = 81, m = 4, and n = 36. The actual output
of each state can be expressed as:

ysk = aT
skW =

[
ask,1 ask,2 . . . ask,n

]


w1
w2

...
wn

 =
n

∑
j=1

ask,jwj (6)

where aT
sk is the association index vector of the k-th state and W is the weight vector that

comprises weights stored in memory. The collection of Equation (6) can be represented as:

Y =


ys1
ys2

...
ysk

 =


as1,1 as1,2 . . . as1,n
as2,1 as2,2 . . . as2,n

...
ask,1 ask,2 ask,n




w1
w2

...
wn

 =


aT

sk
aT

sk
...

aT
sk




w1
w2

...
wn

 = AW (7)

and the matrix A is expressed as:

A =


aT

s1
aT

s2
...

aT
81

 =


1 0 0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 1 0 · · · 0 1 0 · · · 0 1 0 · · · 0
...
0 0 0 · · · 1 0 0 · · · 1 0 0 · · · 1


81×36

(8)

with

aT
s21 =

[
0 0 0 0 1 0 · · · 0 1 0 · · · 0 1 0 · · · 0 1 0 · · · 0

]
where it means that state (3,3) activates the hypercubes 5(Bb), 14(Ee), 19(Gg), and 28(Jj).
The related weights are adjusted by the update law as

W(i) = W(i− 1) + ∆W = W(i− 1) +
α

m
ask

(
yd

sk − askW(i− 1)
)

(9)

where i means the i-th learning step, yd
sk is the desired output, and α is the learning rate.

Through the above training process, FCMAC [9–12] is able to approximate the desired
trajectory. The mapping structure of the two-dimensional CMAC with the Gaussian basis
function is shown in Figure 4. Here, the Gaussian function is adopted as the receptive field
basis function, and it is given as:

ϕij(si) = exp

[
−
(
si −mij

)2

σ2
ij

]
for j = 1, 2 . . . . . . , 12 (10)

where ϕij(si) presents the j-th block of the i-th input si with the mean mij and the variance
σij. Areas formed by blocks, named as Aa, Bb, and Cc, are called receptive fields. Each
location of A is parallel to a receptive field. The two-dimensional receptive field function is
defined as:

bk =
2

∏
i=1
ϕij(si) for k = 1, 2 . . . . . . , n (11)
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where bk is associated with the k-th receptive field. As for the results, the output of CMAC
with the Gaussian basis function can be expressed as

y = aT
sk


b1 0 · · · 0
0 b2 · · · 0
...

. . .
0 0 · · · bn

w = ξTw = wTξ (12)

with ξT , aT
sk


b1 0 · · · 0
0 b2 · · · 0
...

. . .
0 0 · · · bn

.
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The mechanical system of a motion stage system with system uncertainty can be
generally rewritten as a second-order nonlinear system. It is given by [4]

..
x = f(x) + b(x)u + d(t) (13)

y = x, (14)

where x is the stage X- or Y-axis displacement, and X =
[

x1 x2
]T

=
[

x
.
x
]
∈ R2 is

the state vector of the system. f(x) and b(x) are the bounded real continuous nonlinear
functions, u ∈ R is the control input, y ∈ R is the system output, and d is the bounded dis-
turbance that cannot be measured. It is assumed that the system in Equations (13) and (14)
is controllable, and it is required that b(x) 6= 0 for vector X in certain controllability regions.
It is assumed that 0 < b(x) < ∞.
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Figure 5 demonstrates the architecture of the proposed DFCMACSMC method for the
two-axis motion system. The output tracking error is defined as e = xd − y = xd − x, and
the tracking error vector is E =

[
e

.
e
]T

=
[

e1 e2
]T.
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sṡ = −η|s|⁡, η > 0. (16) 

Since f(𝒙) and b(𝒙) are known and free of external disturbances, the derivative of 

the sliding surface is taken with respect to time as a zero-value. It becomes 
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The sliding surface parameter s is defined as follows:

s = −(cE) = −
(
c1e +

.
e
)

(15)

with c =
[

c1 1
]
.

To guarantee that the trajectory of the state error vector e will transfer from the
approaching phase to the sliding phase, the sufficient condition is

s
.
s = −η|s| , η > 0. (16)

Since f(x) and b(x) are known and free of external disturbances, the derivative of the
sliding surface is taken with respect to time as a zero-value. It becomes

.
s = −

(
c1

.
e +

..
e
)
= −

(
c1

.
e +

..
xd −

..
x
)
= −

(
c1

.
e− f(x)− b(x)ueq

)
− ..

xd = 0. (17)

Therefore, the equivalent control can be obtained as follows:

ueq =
1

b(x)
(
c1

.
e− f(x) +

..
xd
)

(18)

In the approaching phase, s 6= 0, an approaching-type control uap must be added to
satisfy the sufficient condition and complete sliding mode control. It can be expressed as:

u = ueq =
uap

b(x)
(19)

with

uap = η∆sgn(s) , η∆ = D + η η∆ ≥ η ≥ 0 sgn(s) =


1
0
−1

s > 0
s = 0
s < 0

where ueq is the equivalent control input, and η∆ and η are positive constants.
Replacing ueq in Equation (18) by the FCMAC u(x|θ) gives

u(x|θ) = ξTθ. (20)
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The control input u and the adaptive laws are chosen as:

u = uD(x|θ)−
η sgn(s)

b(x)
(21)

.
θ = −2r1sb(x)ξ(x). (22)

The optimal parameters θ∗ is defined as follows:

θ∗ = arg min
θ=Ωθ

[
sup
x∈Ωx

∣∣uD(x|θ)− ueq
∣∣], (23)

where Ωθ and Ωx are the set of suitable bounds on θ and x, respectively.
The minimum approximation error is defined as:

ω = b(x)
(
uD(x|θ∗ )− ueq

)
+ d(t). (24)

The time derivative of the sliding surface is

.
s = −

(
c1

.
e +

..
xd −

..
x
)

= −
(
c1

.
e− f(x)− b(x)u− d(t)

)
− ..

xd
= −c1

.
e + f(x) + b(x)u + d(t)− ..

xd
= −c1

.
e + f(x) + b(x)u + d(t)− ..

xd +ω− b(x)
(
uD(x|θ∗ )− ueq

)
− d(t)

= b(x)
(

uD(x|θ)− η sgn(s)
b(x)

)
+ω− b(x)(uD(x|θ∗ ))

= −ηsgn(s) +ω+ b(x)(uD(x|θ))− b(x)(uD(x|θ∗ ))

= −ηsgn(s) +ω+ b(x)(uD(x|θ)− uD(x|θ∗ )) = −ηsgn(s) +ω+ b(x)
~
θ

T
ξ(x)

(25)

The Lyapunov function is defined as:

VDFCMACSMC = (s2 +
1

2r1

~
θ

T ~
θ) (26)

with
~
θ = θ− θ∗.
The time derivative of function V can be expressed as follows:

.
VDFCMACSMC = s

.
s + 1

2r1

.
~
θ

T ~
θ+ 1

2r1

~
θ

T
.
~
θ

= s
(
−ηsgn(s) +ω+ b(x)

~
θ

T
ξ(x)

)
+ 1

r1

~
θ

T
.
~
θ

= sb(x)
~
θ

T
ξ(x) + 1

r1

~
θ

T
.
~
θ− sηsgn(s) + sω

= 1
r1

~
θ

T
( .

~
θ+ r1sb(x)ξ(x)

)
− sηsgn(s) + sω = −sηsgn(s) + sω ≤ 0

(27)

with
.
~
θ =

.
θ.

By choosing ηd > 0, Equation (31) is given as follows:

.
VDFCMACSMC ≤ −|ω||s| − η|s| ≤ −ηd|s| (28)

with ηd = (η+ |ω|).
Integrating the above equation, it yields∫ t

0
|s(τ)|dτ ≤ 1

ηd
[VDFCMACSMC(0)−VDFCMACSMC(t)] (29)
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Since VDFCMACSMC(0) is bounded, and VDFCMACSMC(t) is nonincreasing and bounded,
the following equation can be conducted:∫ t

0
|s(τ)|dτ ≤ ∞ (30)

Furthermore,
.
s(τ) is also bounded. The s(τ) is uniformly continuous. Using Barbalat’s

lemma [16], the following result can be obtained:

lim
t→∞

s(t) = 0 (31)

It can be implied that limt→∞|e(t)| = 0. The DFCMACSMC system is stable, and the
error will converge to zero asymptotically [19–22]. The proposed system guarantees the
asymptotical stability of the tracking error e(t), even with the parameter variations and
external disturbances.

3. Results
3.1. Contour Planning

The NURBS [23] curve is applied to optimize the trajectory point to obtain the smooth
trajectory. The NURBS curve expression is defined as follows:

F(u) =
∑n

i=0 wiDi Ni,k(u)
∑n

i=0 wi Ni,k(u)
(32)

Ni,0 =

{
1 ui ≤ u ≤ ui+1

0 otherwise
(33)

Ni,m =
(u − ui)Ni,m−1(u)

ui+m − ui
+

(ui+m+1 − u)Ni+1,m−1(u)
ui+m+1 − ui+1

, m ≥ 1 (34)

with U = [uo, u1, · · · , un+k+1], where u is the control variable of the curve, k is the power
exponent of the interpolation basis function, n is the number of interpolation points, and
wi is the weight factor, whose number is the same as the control variable. Ni,k is the basis
function, which is selected according to the node vector. Four contour shapes were applied
for this proposed adaptive DFCMAC control system, namely, the circular, bowknot, heart,
and star curves. Table 1 lists the parameters of these four contours. Figure 6a–d depicts the
desired contours based on the abovementioned parameter setting.
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Figure 6. The reference contours, (a) the circle contour, (b) the bowknot contour, (c) the heart contour, and (d) the star
contour (unit: µm).



Energies 2021, 14, 7802 10 of 16

Table 1. The four types of trajectory planning.

Trajectory Type Segment Functions

Circle contour

kd = 2
V = [V0, V1, V2, V3, V4, V5, V6] = [(2.5, 0), (2.5, 2.5), (−2.5, 2.5), (−2.5, 0), (−2.5,−2.5), (2.5,−2.5), (2.5, 0)]

(unit: cm, cm)
P = [P0, P1, P2, P3, P4, P5, P6, P7, P8, P9] = [0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1]

w = [w0, w1, w2, w3, w4, w5, w6] = [1, 0.5, 0.5, 1, 0.5, 0.5, 1]

Bowknot contour

kd = 2
V = [V0, V1, V2, V3, V4, V5, V6] = [(0, 0), (−1.5,−1.5), (−1.5, 1.5), (0, 0), (1.5,−1.5), (1.5, 1.5), (0, 0)]

(unit: cm, cm)
P = [P0, P1, P2, P3, P4, P5, P6, P7, P8, P9] = [0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1]
w = [w0, w1, w2, w3, w4, w5, w6] = [1, 2.5, 2.5, 1, 2.5, 2.5, 1]

Heart contour

kd = 2
V = [V0, V1, V2, V3, V4, V5, V6] = [(0, 0), (−3, 2), (−2, 5), (0, 3.6), (2, 5), (3, 1), (0, 0)] (unit: cm, cm)

P = [P0, P1, P2, P3, P4, P5, P6, P7, P8, P9] = [0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1]
w = [w0, w1, w2, w3, w4, w5, w6] = [1, 1, 1, 1, 1, 1, 1]

Star contour

kd = 2
V = [V0, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12]
= [(0, 6), (−0.5, 6), (−1.5, 4), (−4, 4), (−2, 2), (−2.5, 0), (0, 1.5)
, (2.5, 0), (2, 2), (4, 4)(1.5, 4), (0.5, 6), (0, 6)]

(unit: cm, cm)

P = [P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14] =
[0, 0, 0, 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 1, 1, 1]
w = [w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

3.2. Parameter Setting and Performance Measurement

The average tracking error (ATE, TE) and tracking error standard deviation (TESD, TS)
are selected as the performance indices, which is defined as follows:

TE =
K

∑
k=1

E(k)
n

(35)

TS =

√
∑K

k=1 (E(k)− TE)
2

K
(36)

with
E(k) =

√
e2

x(k) + e2
y(k),

where ex(k) is the tracking error in the x-axis, ey(k) is the tracking error in the y-axis, and
K is the total number of contour points. Two types of control algorithms are considered
herein: (a) the direct adaptive conventional CMAC sliding method, and (b) the proposed
adaptive DFCMAC sliding method.

In our experiments, the learning parameters are selected as: (a) The conventional
CMAC method: r1x = r1y = 0.001, c1x = c1y = 1, η = 1; and (b) the proposed DFCMAC-
SMC method: r1x = r1y = 0.001, c1x = c1y = 1, m = 0.5,σ = 1, η = 1. To verify the
advancement of the DFCMACSMC method, four simulations are investigated.

The system parameters and Stribeck friction models of the X-Y stage are assumed
as follows:

X-axis: Ktx = 0.96 N/A, Mx = 3× 10−3 N s2/m, Bx = 0.1 N s/m, FLx = 0.1 N,
Fcx = 0.15 N, Fsx = 0.24 N, Vsx = 10 m/s.

Y-axis: Kty = 0.96 N/A, My = 2.8× 10−3 N s2/m, By = 0.12 Ns/m, FLy = 0.1 N,
Fcy = 0.15 N, Fsy = 0.2 N, Vsy = 5 m/s.
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3.3. Simulation

The results derived from the conventional CMAC methods and those results generated
from our proposed method were compared and evaluated.

(a) The circle contour was evaluated to show the tracking results observed in the X and
Y axes, respectively. The simulation results are illustrated in Figure 7a–c. It shows
that the proposed DFCMACSMC method performed well for trajectory tracking. The
average of ATE index was 22.51 µm, and the average of TESD was 7.92 µm.

(b) In the bowknot trajectory case, this method also behaves well in the X-axis and Y-axis
displacement response, as shown in Figure 8a–c. The average of the ATE index was
21.79 µm, and the average of TESD was 7.62 µm in the bowknot case.

(c) The third specific application was the heart trajectory. Figure 9a–c indicates that the
position errors of the X and Y axes reduced significantly during the tracking process
for the two-axis system. The average of the ATE index was 27.22 µm, and the average
of TESD was 9.52 µm in the heart case.

(d) The star trajectory that we designed generated the total control point, defined as 13.
Figure 10a–c shows the two-dimensional trajectories. The DFCMACSMC architecture
could better achieve the tracking performance, and the trajectory error decreased at
a steady state. The average of the ATE index was 21.88 µm, and the average of the
TESD was 7.66 µm.

The proposed DFCMACSMC is compared to the conventional CMAC method shown
in Table 2. The position errors are 23.35 µm of the ATE index and 8.18 µm of the associated
TESD index. They indicate that the cerebellar model after adding the Gaussian function not
only retains the advantages of the traditional cerebellum, but also improves the processing
on uncertain factors to achieve better learning.

Energies 2021, 14, x FOR PEER REVIEW 11 of 16 
 

 

(b) In the bowknot trajectory case, this method also behaves well in the X-axis and Y-

axis displacement response, as shown in Figure 8a–c. The average of the ATE index 

was 21.79 μm, and the average of TESD was 7.62 μm in the bowknot case. 

(c) The third specific application was the heart trajectory. Figure 9a–c indicates that the 

position errors of the X and Y axes reduced significantly during the tracking process 

for the two-axis system. The average of the ATE index was 27.22 μm, and the average 

of TESD was 9.52 μm in the heart case. 

(d) The star trajectory that we designed generated the total control point, defined as 13. 

Figure 10a–c shows the two-dimensional trajectories. The DFCMACSMC architec-

ture could better achieve the tracking performance, and the trajectory error decreased 

at a steady state. The average of the ATE index was 21.88 μm, and the average of the 

TESD was 7.66 μm. 

The proposed DFCMACSMC is compared to the conventional CMAC method shown 

in Table 2. The position errors are 23.35 μm of the ATE index and 8.18 μm of the associ-

ated TESD index. They indicate that the cerebellar model after adding the Gaussian func-

tion not only retains the advantages of the traditional cerebellum, but also improves the 

processing on uncertain factors to achieve better learning. 

   

(a) (b) (c) 

Figure 7. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

circle path response. 

   

(a) (b) (c) 

Figure 8. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

bowknot path response. 

Figure 7. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the
circle path response.

Energies 2021, 14, x FOR PEER REVIEW 11 of 16 
 

 

(b) In the bowknot trajectory case, this method also behaves well in the X-axis and Y-

axis displacement response, as shown in Figure 8a–c. The average of the ATE index 

was 21.79 μm, and the average of TESD was 7.62 μm in the bowknot case. 

(c) The third specific application was the heart trajectory. Figure 9a–c indicates that the 

position errors of the X and Y axes reduced significantly during the tracking process 

for the two-axis system. The average of the ATE index was 27.22 μm, and the average 

of TESD was 9.52 μm in the heart case. 

(d) The star trajectory that we designed generated the total control point, defined as 13. 

Figure 10a–c shows the two-dimensional trajectories. The DFCMACSMC architec-

ture could better achieve the tracking performance, and the trajectory error decreased 

at a steady state. The average of the ATE index was 21.88 μm, and the average of the 

TESD was 7.66 μm. 

The proposed DFCMACSMC is compared to the conventional CMAC method shown 

in Table 2. The position errors are 23.35 μm of the ATE index and 8.18 μm of the associ-

ated TESD index. They indicate that the cerebellar model after adding the Gaussian func-

tion not only retains the advantages of the traditional cerebellum, but also improves the 

processing on uncertain factors to achieve better learning. 

   

(a) (b) (c) 

Figure 7. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

circle path response. 

   

(a) (b) (c) 

Figure 8. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

bowknot path response. 
Figure 8. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the
bowknot path response.



Energies 2021, 14, 7802 12 of 16

Energies 2021, 14, x FOR PEER REVIEW 12 of 16 
 

 

   

(a) (b) (c) 

Figure 9. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

heart path response. 

   

(a) (b) (c) 

Figure 10. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

star path response. 

Table 2. The simulated results showing contour tracking errors. 

 Average Tracking Error (ATE) ME  ( m ) 

Trajectory Contour The Conventional CMAC Method The PROPOSED DFCMACSMC Method 

Circle contour 50.04 22.51 

Bowknot contour 32.89 21.79 

Heart contour 48.67 27.22 

Star contour 32.79 21.88 

Average 41.09 23.35 

 Tracking Error Standard Deviation (TESD) STDE  ( m ) 

Trajectory Contour The Conventional CMAC Method The Proposed DFCMACSMC Method 

Circle contour 17.53 7.92 

Bowknot contour 11.48 7.62 

Heart contour 17.04 9.52 

Star contour 11.48 7.66 

Average 14.38 8.18 

3.4. Field Test Response 

The field test was performed to verify the practicality of our proposed DFCMACSMC 

system. The path responses of the circle contour were measured and experimented, as 

shown in Figure 8. The total control points were seven. Figure 6a presents the reference 

trajectory. Figure 11a,b illustrates the x- and y-axis direction responses, respectively. As 

shown in Figure 11c, it is obvious that the proposed DFCMACSMC method achieves bet-

ter in dynamic tracking response. The ATE is 41.184 µm, and the TESD is 12.653 µm. 

Figure 9. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the
heart path response.

Energies 2021, 14, x FOR PEER REVIEW 12 of 16 
 

 

   

(a) (b) (c) 

Figure 9. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

heart path response. 

   

(a) (b) (c) 

Figure 10. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response, (c) the 

star path response. 

Table 2. The simulated results showing contour tracking errors. 

 Average Tracking Error (ATE) ME  ( m ) 

Trajectory Contour The Conventional CMAC Method The PROPOSED DFCMACSMC Method 

Circle contour 50.04 22.51 

Bowknot contour 32.89 21.79 

Heart contour 48.67 27.22 

Star contour 32.79 21.88 

Average 41.09 23.35 

 Tracking Error Standard Deviation (TESD) STDE  ( m ) 

Trajectory Contour The Conventional CMAC Method The Proposed DFCMACSMC Method 

Circle contour 17.53 7.92 

Bowknot contour 11.48 7.62 

Heart contour 17.04 9.52 

Star contour 11.48 7.66 

Average 14.38 8.18 

3.4. Field Test Response 

The field test was performed to verify the practicality of our proposed DFCMACSMC 

system. The path responses of the circle contour were measured and experimented, as 

shown in Figure 8. The total control points were seven. Figure 6a presents the reference 

trajectory. Figure 11a,b illustrates the x- and y-axis direction responses, respectively. As 

shown in Figure 11c, it is obvious that the proposed DFCMACSMC method achieves bet-

ter in dynamic tracking response. The ATE is 41.184 µm, and the TESD is 12.653 µm. 

Figure 10. The path trajectory of the simulations. (a) The X−axis tracking response, (b) the Y−axis tracking response,
(c) the star path response.

Table 2. The simulated results showing contour tracking errors.

Average Tracking Error (ATE) EM (µm)

Trajectory Contour The Conventional CMAC
Method

The PROPOSED
DFCMACSMC Method

Circle contour 50.04 22.51
Bowknot contour 32.89 21.79

Heart contour 48.67 27.22
Star contour 32.79 21.88

Average 41.09 23.35

Tracking Error Standard Deviation (TESD) ESTD (µm)

Trajectory Contour The Conventional CMAC
Method

The Proposed
DFCMACSMC Method

Circle contour 17.53 7.92
Bowknot contour 11.48 7.62

Heart contour 17.04 9.52
Star contour 11.48 7.66

Average 14.38 8.18

3.4. Field Test Response

The field test was performed to verify the practicality of our proposed DFCMACSMC
system. The path responses of the circle contour were measured and experimented, as
shown in Figure 8. The total control points were seven. Figure 6a presents the reference
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trajectory. Figure 11a,b illustrates the x- and y-axis direction responses, respectively. As
shown in Figure 11c, it is obvious that the proposed DFCMACSMC method achieves better
in dynamic tracking response. The ATE is 41.184 µm, and the TESD is 12.653 µm.
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Figure 11. The path trajectory of the experiments. (a) The X-axis tracking response, (b) the Y-axis tracking response, (c) the
circle path response.

In the second test, seven control points were selected, and the corresponding trajec-
tories are shown in Figure 6b. The responses of the bowknot outline were measured, as
shown in Figure 12a,b, respectively. It is illustrated that the tracking capability could be
guaranteed with small error responses. The experiment on the bowknot tracking trajectory
is illustrated in Figure 12c. The tracking contours were close to the reference paths, and the
steady-state response also behaved well. The position errors were 28.888 µm for the ATE
index and 26.259 µm for the TESD index.
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Figure 12. The path trajectory of the experiments. (a) The X−axis tracking response, (b) the Y−axis tracking response,
(c) the bowknot path response.

The heart contour is plotted in Figure 6c, and the total control point in the heart
contour was seven. The experiments of the heart trajectory are illustrated in Figure 13a–c.
The results illustrate that the trajectory performance was very fast and the steady-state
error decreased effectively. The position errors were 38.855 µm for the ATE index and
17.077 µm for the TESD index.

The star contour is plotted in Figure 6d, and the total control points in the star contour
were 13. The associated star trajectories are presented in Figure 14a–c. The proposed
DFCMACSMC method can handle the model uncertainty, and it effectively reduces the
error and achieves better trajectory tracking. The position errors reached 29.269 µm for the
ATE index and 18.349 µm for the associated TESD index for star contour tracking.
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Figure 13. The path trajectory of the experiments. (a) The X−axis tracking response, (b) the Y−axis tracking response,
(c) the heart path response.

Table 3 shows the comparison of the tracking errors with the DFCMACSMC and
conventional CMAC method. Four reference contours are considered. The proposed
DFCMACSMC method demonstrated more accurate performances, showing a 42.93%
improvement in the ATE and a 40.34% improvement in the TESD, compared with the
conventional CMAC. It is shown that the DFCMACSMC method obtained the lowest
indexes of ATE and TESD.

Table 3. The experimental results showing contour tracking errors.

Average Tracking Error (ATE) EM (µm)

Trajectory Contour The Conventional CMAC
Method

The Proposed
DFCMACSMC Method

Circle contour 64.520 41.184
Bowknot contour 52.836 28.888

Heart contour 69.029 38.855
Star contour 55.905 29.269

Average 60.573 34.569

EMTracking Error Standard Deviation (TESD) ESTD (µm)

Trajectory Contour The Conventional CMAC
Method

The Proposed
DFCMACSMC Method

Circle contour 18.696 12.653
Bowknot contour 39.215 26.259

Heart contour 31.581 17.077
Star contour 35.126 18.349

Average 31.155 18.585
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4. Conclusions

The DFCMACSMC method was presented to control the PMSM servo drive X-Y
motion system. This adaptive structure could guarantee and achieve the robustness, and
so this could provide superior tracking capability in the presence of parameter uncer-
tainties, cross-coupled interference, and external disturbances. Four contour trajectories
were experimented with to evaluate the proposed system. It is shown that the adaptive
DFCMACSMC system could alleviate the chattering and tracking errors in the field tests.
On average, it could achieve 42.9% and 40.3% improvement of ATE and TESD, respectively,
compared with the traditional CMAC strategy. Our research mainly contributes to a better
understanding of how successfully the DFCMACSMC method can be established to com-
pensate the XY motion stage with four different contours. In the future, the ARM-based or
DSP-based motion controllers will be designed and implemented such that our proposed
DFCMACSMC architecture can be widely realized and utilized in industrial applications.
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