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Abstract: This paper presents a methodology for determining the optimal portfolio allocation for a
demand response aggregator. The formulation is based on Day-Ahead electricity prices, in which
the aggregator coordinates a set of residential consumers that are recruited through contracts. Four
types of contracts are analyzed, considering both direct and indirect demand response programs.
The objective is to compare different scenarios for contract portfolios in order to establish the benefits
of each market agent. An optimization problem is formulated to capture the interactions between
the aggregator and end consumers. The model is formulated as a mathematical program with
equilibrium constraints: At the upper level, the aggregator maximizes its benefits, whereas the
lower level represents the consumers’ contracts. By applying the developed methodology, the
characterization of the consumers’ behavior is established in order to forecast their responses to the
generation of punctual incentives, both for usual scenarios and peak events, as well as to evaluate
the impact that direct and indirect control contracts have on the performance of the aggregator as the
energy price varies.

Keywords: demand response; aggregator; consumer behavior; contract portfolio; demand side
management

1. Introduction

The energy sector, in particular, electricity, is evolving towards a more sustainable
model, supported by renewable sources, storage systems and active demand, in a dis-
tributed configuration. To properly operate this complex and uncertain system, adequate
energy management techniques are required. One of the main challenges in the modern-
ization of power grids is the involvement of consumers as active components of energy
systems, in what is called demand response or demand side management.

Demand response (DR) has been defined as “The change in electricity use by final
consumers from normal consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to induce a reduction in electricity
use in scenarios of high wholesale market prices or when system reliability is at risk” [1].
This definition, given by the US Department of Energy, has been broadly adopted by
academia in the research on DR [2].

The coordinated participation of DR allows for the improvement of the economic
efficiency in electricity markets since DR can reduce peak demand and price volatil-
ity [3]. Additionally, in a scenario with a high penetration of stochastic renewable sources,
DR promises to be a better alternative than using polluting and costly reserves to balance
the variability of renewable generation [4]. Countries such as the United States have
prescribed that DR resource owners can offer this service as a resource supply for greater
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market transparency [5]. Therefore, shaping the demand to reduce the peak and smooth
power variations allows one to improve the efficiency in the operation of the power system,
generating large savings [2,6].

There is a general consensus regarding the favorable impact of DR on ensuring
efficiency and greater flexibility in the operation of the electric system [7]. The challenge is
to design appropriate mechanisms to put this concept into practice so that the full potential
of DR is effectively exploited [8]. Any contract or operational model for an aggregation of
DR resources must point to two main objectives: to significantly impact the demand curve
as a result of the market price scenario and to guarantee sustainability as a business for the
aggregator, so that there is an incentive to address this coordination effort.

DR and its participation in the electricity market have been the subject of extensive
research, especially in the last decade, driven by the penetration of stochastic generation
technologies [9]. In addition, the authors of [10] present a ranking of different alternatives
for the feasibility of demand side management services, while detailed summaries of the
state of the art in DR models can be found in [9,11].

When consumers participate in DR, in general terms there are two possible approaches
in which they can change electricity usage: by reducing their energy consumption through
strategic load reduction or by shifting energy consumption to a different time or period [2],
unless they generate their own, which leads to a third option.

The fundamentals and business mechanisms of demand response aggregators are
presented in [12], including not only the coordination of consumers, but also of distributed
energy resources and storage technologies. Based on information gathered worldwide,
the authors highlight the importance of future research focusing on consumer behavior and
analyzing the actual contribution of the multiple demand response programs implemented.

There is an important body of research regarding the design of DR contracts and
management models by an aggregator. The authors of [13] consider the types of contracts
between consumers and the aggregator, and the management strategies with consumers
and the wholesale market, with emphasis on modeling alternatives for each of them,
and their corresponding concatenations. Bekiroglu et al. [14] propose a DR contract for
HVAC systems introducing a real-time market and the preferences of the consumers.
Vuelvas et al. [15] proposed a contract for incentive-based demand response that guaran-
tees voluntary participation and asymptotic truthfulness, where consumers must provide
their baseline consumption. Muthirayan et al. [16] presented a mechanism in which par-
ticipants must report their baseline consumption and marginal utility to the aggregator
and, through a probabilistic scheme, the consumers who will provide the DR service are
selected. In [3], a model is presented for a DR aggregator that aims to optimize the execu-
tion of DR contracts to participate in the wholesale Day-Ahead (DA) market; however, the
composition of its portfolio is predetermined by groups of consumers previously assigned
to each type of contract. A DR scheme using bilateral contracts and participation in the
DA and Real-Time (RT) markets is presented in [17]; nevertheless, it assumes the joint
engagement of a wind power generator and the aggregator. Henriquez et al. [18] present
an optimization model for the management of a DR aggregator in two instances of the
wholesale market, including its strategic participation in the RT market. None of the
referenced publications formulates the decision-making problem faced by the consumer in
response to the economic signals sent by the aggregator.

Concerning consumer behavior in response to price signals or incentives generated
within a DR program, there are several approaches that have been analyzed in the literature.
In [10], the economic model of consumer response is presented, through the maximization
of consumer benefit, introducing the concept of own-price and cross-price elasticity. This
approach includes the social weighting of the preference for the incentive with respect
to price change. In [11], the proposed model maximizes the consumer’s utility subject to
either a daily budget or predefined daily consumption. In [19], the consumer model is
proposed based on Simon’s satisfaction theory [20], where the incentive should be greater
than or equal to the level of aspiration of each consumer. Finally, in [21], a methodology is
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proposed for the representation by parameters of different groups of consumers according
to their flexibility to respond with shifting consumption or reduction, based on incentives,
including behavioral aspects and cultural characteristics that may influence this decision
making. The methodologies for the specific characterization of consumer response is not
part of the scope of our work, but its consideration is important for the application of the
comparison methodology in a particular case.

A successful DR program must take into account the valuable information collected in
recent years in a way that considers and harnesses the potentialities of consumers’ ability
and willingness to participate in such endeavors. In [22], a novel methodology is proposed
to obtain valuable information from the growing volume of data on electricity consumption
that have been and continue to be collected through questionnaires and smart meters. Only
on the basis of properly selected and analyzed information will it be possible to establish
the tariffs and incentives that truly maximize the success of demand response programs.

From the analysis of the state of the art of DR management models, it can be observed
that an aggregator has different alternatives to engage users in demand side management
programs. Each contract has its own advantages and limitations. An aggregator that aims
to participate in several markets, offering a set of services to the system operator, cannot
rely on a single type of DR contract. It must be able to manage a diverse portfolio of
contracts, also considering the expected consumer behavior for each scenario.

To assist in the obtention of as much information on the key elements of the man-
agement model to be developed as possible, it is important to characterize the types of
contracts available to the aggregator to assemble a portfolio of flexible resources.

This research aims to respond to the objective stated in the previous paragraph,
evaluating a set of scenarios of operation conditions and prices and considering different
configurations of percentage distribution of types of contracts within the portfolio of an
aggregator. A methodology is developed to form an optimal portfolio for an aggregator
through a bi-level model for the management of a set of dissimilar DR resources. This
market agent interacts in two different phases: the first one is an interaction with the
wholesale electricity market, participating as a price taker in the DA market, and the
second with consumers, by means of a portfolio of different contracts, on which it relies
to perform its operational and economic management. The framework considers direct
and indirect load control contracts that are acceptable to consumers when compared to
the original baseline situation, paying for their consumption through the recognition of
an average tariff. Furthermore, the model includes the behavior of consumers based on
their preferences, which allows = a response with a high probability of occurrence to
be established.

The contributions are summarized as follows:

• The main contribution of our work is to describe and illustrate a methodology that
allows comparisons of different combinations of demand response contract types,
including electricity consumption remuneration conditions, such as flat rate and
dynamic tariffs, as well as incentive conditions for consumers.

• We use a model that links the aggregator’s upstream and downstream management
in such a way that it allows the analysis of the economic feasibility of the business
model and the alternatives it can consider, based on the characteristics of the contracts
included in its portfolio.

• A fundamental aspect of this methodology is the involvement of consumer preferences
through the concepts of own- and cross-price elasticity, which allows a response with
a high probability of occurrence to be established, discarding the possibility of gaming
behavior, which is present when using short-term statistical methods to establish a
baseline on which to quantify the effective reduction in consumption.

• The proposed methodology allows for the evaluation of the performance of a portfolio
with the same types of contracts but with different percentage distributions among
them. This analysis is performed in normal situations and in peak price events.
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Through a literature search on demand response programs and aggregator manage-
ment schemes, we did not find analyses that make direct comparisons between different
compositions of the same types of contracts, especially considering the aggregator’s benefit
criterion. This gap analysis from the aggregator’s perspective is addressed in our research.

The remainder of this paper is organized as follows: Section 2 presents a theoretical
description of the proposed methodology. Section 3 explains the formulation of the DR
aggregator’s optimal management model. Subsequently, in Section 4, the simulation
scenarios are presented and their results are illustrated in detail. Finally, Section 5 presents
the conclusions and future works.

2. Electricity Demand Response Contracts and Optimal Portfolio Methodology

This section describes the main elements that allow the implementation of the method-
ology through which the aggregator can determine the optimal percentage composition of
a portfolio of demand response contracts, consisting of four types of contracts typically
used in DR programs implemented in recent years.

2.1. The Demand Response Aggregator

DR can be activated to its full potential through an intermediary agent called an aggre-
gator, which focuses its efforts on recruiting smaller consumers to form an influential group
in the market [3]. Currently, there are operational DR programs involving large industrial
consumers and one of the challenges is to extend DR to commercial and residential users,
given the untapped potential of participants in DR programs [1,23].

Commercial and residential consumers are inexperienced in the electricity business
and large in number. For this reason, the presence of a dynamizing agent is required to
expose the set of represented consumers to the wholesale market, actively participating
with coordinated responses to market behavior signals [1].

One means of coordinating demand in terms of its participation in the market is by
designing a management model that maximizes the profit of a DR aggregator [1]. Profit
maximization is the motivation for this independent agent to structure the dynamic link
between demand and the market. To achieve this purpose, it is necessary to count on the
voluntary participation of consumers. Therefore, the aggregator’s strategy should consider
the structuring of contracts so that consumers profit through their participation in DR. This
model should consider the management of the aggregator before the Wholesale Market or
System Operator and its consumers. This intermediation function obliges the aggregator’s
management before the consumers, both in the subscription of DR contracts and in the
coverage of their energy needs [18].

The wholesale electricity market allows the purchase and sale of this commodity.
The DA market takes place the day before the delivery of energy, typically until midnight
before, on an hourly basis. Producers send to this market their production bids (consisting
of production quantities and minimum selling prices), while consumers and traders send
their consumption requests, consisting of hourly consumption quantities and their maxi-
mum purchase prices. In turn, the System Operator activates a market balancing tool that
generally corresponds to a uniform auction. This mechanism results in the definition of the
production levels for each selected agent and the DA balancing price [24].

2.2. Direct Control Contracts

In general terms, there are two types of DR activation models: Direct Control and
Indirect Control. In the case of Direct Control model, the aggregator directly schedules
the demand profile by remotely disconnecting equipment of the consumers, who are
notified at short notice [23]. On the other hand, in the case of Indirect Control model, DR is
performed by changing the price of energy or giving an incentive payment to participating
consumers [15].

In the case of direct control contracts, participating customers receive compensation
for their participation, usually in the form of a bill credit or by applying a payment discount
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for their participation in the programs. In another alternative scheme, participants are
rewarded with money for their performance based on the amount of load reduction during
critical conditions.

In direct load control programs, utilities, or the aggregator, in this case, have the ability
to remotely shut down participants’ equipment by notifying them shortly before the event.
These types of programs may be of interest primarily to residential customers and to small
commercial customers to some extent.

Accordingly, a usable scheme corresponds to one in which users are paid for reducing
their load to predefined values. Non-responsive participants may face penalties depending
on the terms of the scheme. This type of contract is called Load Curtailment (LC) [18].

On the other hand, another type of direct control contract corresponds to the Deferrable
Activation Load (DAL). Loads of consumers participating in DAL contracts can be partially
rescheduled during a predefined time window and shifted to off-peak hours at the conve-
nience of the aggregator. Due to this flexibility, consumers are compensated at the lowest
hourly rate throughout the day for each MWh defined as deferrable; and their remaining
consumption is paid at the average daily rate.

2.3. Indirect Control Contracts

The Indirect Control method is performed by changing the price of energy or giving
an incentive payment to participating consumers [15]. Thus, Indirect Control programs
can be classified into two basic categories: price-based DR and incentive-based DR.

Consumers are the basis in these types of DR programs since the success of these
undertakings depends on their behavior in response to market signals. Therefore, users
must be included in the management model by considering the decisions they make on
the basis of both incentive payments and price changes. This leads users to modify their
consumption pattern given their preferences in the exchange between two goods: electricity
at peak and off-peak hours.

Regarding the modeling of consumers’ behavior, the academic literature considers
various concepts, such as the response according to their price elasticity [10], the level of as-
piration, or considering the fulfillment of predefined budget according to their indifference
curves [11]. In this research, consumers’ behavior is modeled considering their characteri-
zation through the knowledge of their reaction to price variations or economic incentives
to reduce their consumption, through the use of the aggregate price-elasticity matrix.

It is important to mention that the estimation of the parameters associated with the
consumer is not part of the scope of this work and is left as a concern for future exploration.
On the other hand, this model includes the psychological preference of the society under
analysis, with respect to a punishment scheme (response to price variation) over a reward
scheme (response to incentive).

In the indirect control programs, the decisions taken by the consumers correspond
to the solutions of the problem of maximizing their utility by modifying their electricity
demand in response to a price variation signal or an incentive in exchange for its reduction.

2.4. Optimal Portfolio Methodology

This research work addresses the situation in which a DR aggregator participates
in the wholesale market and provides energy to its customers through a portfolio of
bilateral contracts. At the upper level, the aggregator interacts with the Independent
System Operator (ISO), through its participation in the DA market, while at the lower
level the aggregator makes the dispatch of consumers’ loads, according to the preset
bilateral contracts.

The participation of the DR aggregator in an open electricity market occurs in the
DA instance, where it acts as a price taker, given the size of this market. In addition, it is
assumed that the aggregator has an accurate forecast of the resulting price scenario it faces,
based on historical market information. The authors of [25] present a comparison of the
traditional algorithms used to forecast the price of electricity in the wholesale market,
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providing a recommendation of the approach that produces the most accurate results. This
analysis is not part of our scope but is necessary for the implementation of the proposed
contract composition comparison methodology.

In addition to considering the interaction of the DR aggregator upstream with the
DA market, it is also necessary to take into account its downstream management through
the different contracts with consumers. In this interaction, the aggregator sends economic
signals of price variation or incentive that the consumers receive to solve their utility
maximization problem as a function of their demand response.

The problem to be solved throughout this analysis corresponds to the definition of a
methodology that allows the aggregator to establish which combination of DR contracts
yields the best results concerning three evaluation criteria: greater benefit to the aggregator,
greater utility for consumers, and greater reduction in electricity consumption. This
methodology is illustrated through the analysis of specific cases.

This optimization problem is integrated by a higher level problem, whose objective
function to maximize corresponds to the aggregator’s profit from its interaction with the
electricity market and the response it receives from the consumers recruited through the
bilateral contracts subscribed. Additionally, within the constraints of the optimization
problem, the solution of two lower-level problems must be considered: the maximization
of the utility that each consumer performs based on the electricity prices or the incentives
offered, according to the type of contract subscribed and under the assumption of economic
rationality behavior. Figure 1 illustrates the concatenation of these optimization problems,
which correspond to the integral model that is designed.

Figure 1. Proposed aggregator Management Model.

Among the assumptions, it is important to highlight the adopted hypothesis of con-
sumer economic rationality, which is the basis of the solution to the problem of demand
response to price or incentive signals. With respect to the maximum demand considered
as shiftable or reduced by consumers, we include the assumption, based on the literature,
that its value can be considered as approximately 10% of the original hourly demand.
Similarly, the values of consumer price elasticities are taken from those typically reported
for some social groups where particular econometric analyses were performed for their
definition. The methodology to conduct these econometric studies and, in general, behav-
ioral economics and consumer demand response potential analysis is not part of the scope
of our research.
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3. Electricity Demand Response Aggregator Management Model

Based on optimization theory, the problem illustrated in Figure 1 corresponds to a
bi-level optimization problem, given the temporality of the decisions in this problem. In the
DA market, the aggregator designs the prices and, according to the characteristics of the
contracts with consumers, defines its market participation. Subsequently, on the next
day, users decide their level of consumption. The two levels of optimization are found in
the modeling of a higher-level problem with other optimization problems as part of the
constraints. These types of problems are specifically identified in the technical literature as
Mathematical Problems with Equilibrium Constraints (MPEC) [26].

3.1. Upper-Level Problem

The general problem consists of maximizing the aggregator’s profit, as stated in
Equation (1). This includes the purchase of energy with the wholesale market, the income it
receives from the sale of energy to its consumers by considering that users are included in a
DR program and the type of contract in which they are enrolled. The agreements considered
are contracts for direct control type LC and type DAL, and contracts for indirect control
type ToU and Reduction by Incentive (RI). This maximization is subject to constraints (2)
and (3).

max
pA,DA(t),q,v,inc

∑
tεT

(LDA(t)pA,DA(t) + LDA(t)PFix(t) + ∑
kεΨpi

d(t, k)R(t) + ∑
hεΨin

(d(t, h)R0(t)

− (D0(t, h)− d(t, h))η(t, h)A(t, h)) + LDA
prom( ∑

zεΨlc

(D0(t, z))− plc(t))

− B(t)plc(t) + LDA
prom ∑

yεΨdal

D0(t, y) + ρmin pdal(t))

(1)

subject to

pA,DA(t) = pLC(t)− ∑
kεΨpi

d(t, k)− ∑
hεΨin

d(t, h)

− ∑
yεΨdal

D0(t, y)− PFix(t)− pDAL(t)
(2)

∑
kεΨpi

d(t, k) + ∑
hεΨin

d(t, h) + ∑
yεΨdal

D0(t, y) + PFix(t)

+ pDAL(t)− pLC(t) ≥ Pmin(t).
(3)

Constraint (2) indicates the balance between the energy purchased by the aggregator
and the consumption of the corresponding users. Constraint (3) imposes a minimum value
of energy to be consumed.

3.1.1. Direct Control Load Curtailment Contracts (LC)

The restrictions inherent to LC-type direct control contracts correspond to their dis-
patch and the number of times they can be activated. The binary variables define whether
they are active (value of 1) and guarantee that the number of activations of each of these
does not exceed the maximum established [18].

pLC(t) = ∑
cεΨLC

qLC(c, t); ∀t. (4)

qLC(c, t) ≤ q(LC,max)(c)vLC(c, t), ∀t, cεΨLC (5)

q(LC,min)(c)vLC(c, t) ≤ qLC(c, t); ∀t, cεΨLC (6)

∑
tεT

vLC(c, t) ≤ MNLC(c), ∀t, cεΨLC. (7)
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vLC(c, t)ε[0, 1], ∀t, cεΨLC. (8)

Equation (4) corresponds to the sum of the energy of each one of the LC type contracts
dispatched in hour t. The value assigned to each contract corresponds to a value between
the maximum and minimum load, Equations (5) and (6), defined for each one. This
activation depends on the value taken by the binary variable vLC, on which the count is
performed to ensure that the maximum number of activations is not exceeded, Equation (7).
Equation (8) indicates that vLC is a binary variable.

3.1.2. Deferrable Activation Load Contracts (DAL)

The restrictions inherent to load contracts with deferred activation correspond to their
dispatch, where the binary variables define their activation (value of 1) and control that the
cumulative duration of the activation of each one of them corresponds to the time window
established in the binding agreement.

pDAL(t) = ∑
cεΨDAL

qDAL(c)vDAL(c, t), ∀t. (9)

∑
tεT

vDAL(c, t) = TH(c), ∀cεΨDAL. (10)

vDAL(c, t)ε[0, 1], ∀t, cεΨDAL. (11)

Equation (9) presents the total deferred energy at time t, given the activation of the
corresponding contract, by means of the binary variable vDAL. Equation (10) ensures that
the time window in which the deferrable load of each contract must be activated is exactly
met. Equation (11) indicates that vDAL is a binary variable.

3.2. Lower-Level Problem

As mentioned in Section 2, the lower-level problem corresponds to that faced by
the consumer of the variable price program (ToU Contract), Equations (12)–(14), and the
consumer of the incentive program, Equations (15)–(17). Their objective functions corre-
spond to maximizing their utility, having energy demand as their decision variable [10].
The restriction of the maximum load level to transfer or reduce is given by the factor “l”,
which indicates the estimated percentage of feasible loads to transfer or reduce according
to the consumers’ habits and the characteristics of the electrical appliances. This value is
considered as a maximum of 10% of the total load [27]. The estimation of this potential
displacement or load curtailment capacity is beyond the scope of this paper. Ref. [28] illus-
trates how the Non-Intrusive Load Monitoring (NILM) concept can be used to disaggregate
the demand of appliances susceptible to be deactivated in some periods or their number
decreased in periods of simultaneous activation.

max
d(t,k)

∑
t

∑
kεΨpi

(β(d(t, k))− d(t, k)R(t)) (12)

subject to D0(t, k)− d(t, k) ≤ l × D0(t, k), ∀t, kεΨpi (13)

d(t, k) ≥ 0, ∀t, kεΨpi (14)

Equation (12) corresponds to the maximization of the consumers’ utility of the vari-
able price or ToU contracts as a function of their energy consumption, considering their
income minus the price that the users pays for the service. Equation (13) constrains the
displacement or reduction in the load to the fraction “l” of the base consumption, while
Equation (14) forces the non-negativity of the consumption of these users.

For the consumers recruited into the incentive-based DR program:

max
d(t,h)

∑
t
( ∑

hεΨin

(β(d(t, h))− η(h)A(t, h)(d(t, h)− D0(t, h))) (15)
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subject to D0(t, h)− d(t, h) ≤ l × D0(t, h), ∀t, hεΨin (16)

d(t, h) ≥ 0, ∀t, hεΨin (17)

Equation (15) corresponds to the maximization of the consumers’ utility of DR incen-
tive contracts, as a function of their energy consumption, considering their income plus the
incentive A(t, h) they receive for each kWh they reduce concerning their base consumption,
including the social weighting factor η(h) towards the response to incentives. Equation (16)
constrains the load reduction to fraction “l” of the base consumption. Equation (17) forces
the non-negativity of the consumption of these users.

3.3. Model as a Mixed Linear Integer Mixed Problem

The approach of the optimization problem as a mixed integer linear problem that
concatenates the upper-level problem with the lower-level problem, requires that the latter
be solved locally and its solution be incorporated as a linear constraint of the upper-level
optimization problem.

For the solution of the lower-level optimization problem, the concept of price elasticity
is introduced as the consumer’s demand response to electricity price variation. Price
elasticity is a standardized measure of how the intensity of use of a commodity changes
when its price changes by 1%. Thus, price elasticity is a relative measure of consumer
response [10].

Specifically, in a market such as the electricity sector, a higher price elasticity of
demand generates a lower market equilibrium price. Elasticity is defined as the sensitivity
of demand with respect to price:

E =

(
R0

D0

)
×

(
δd
δp

)
(18)

where Ro is the original or initial price and Do is the basic consumption corresponding to
the initial price.

If the net price of electricity varies for different periods, then demand reacts in one of
the following forms:

• Some loads that are not susceptible to shifting from one period to another, such as
lighting, for example, may only change their state from on to off or vice versa. Such
loads, then, have sensitivity in only one period. In this case, this elasticity is called
self-price elasticity. Its value is always negative. The self-price elasticity is defined by
the Equation (19).

• Some consumption may be transferred from a peak period to an off-peak period. Such
behavior is called multiple period sensitivity and is known as cross-price elasticity. Its
value is always non-negative. The cross-price elasticity is defined by Equation (20).

According to the above, mathematically, the following expressions are derived:

E(t, t) =
4d(t)
4p(t)

≤ 0, ∀t. (19)

E(t, j) =
4d(t)
4p(j)

≥ 0, ∀t, j 6= t (20)

where4d(t) corresponds to the change in demand between basic consumption D0(t) and
final consumption d(t), generated by the price change4p(t) between the original price
R0(t) and the final price R(t).

Once the concepts of self and cross-price elasticity have been defined, the solution of
the lower-level problem is addressed, considering the consumers’ response, either to the
price change or to the payment of an incentive, as the modification of their initial demand
D0(t, ∗) to d(t, ∗) , where * identifies whether the user corresponds to the DR program
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motivated by price change (k) or by incentive (h). The amount of a given incentive can be
formulated as:

P(4d(t)) = A(t)4d(t) (21)

where A(t) corresponds to the value of the incentive that the aggregator pays to the user for
each unit of energy that decreases in time t with respect to its expected basic consumption
for that period.

Based on the above descriptions, the objective functions of the lower-level problem (12)
and (15) are optimized by applying the optimality conditions and assuming the behavioral
hypothesis of consumer economic rationality. The consumer’s income function β(d(t, k)),
in this case depending on his consumption, is assumed to be quadratic and the Taylor
series expansion can be used for its representation. The algebraic handling of this exercise,
which includes the explicit presence of the self and cross-price elasticities, allows us to
arrive at the following economic model, expressed as a linear equation that leads to our
complete mixed-integer linear programming model. Thus, Equations (22)–(28) correspond
to the optimality conditions of the problems set out in Equations (12) and (15).

d(t, k) = D0(t, k) + E(t, t, k)× D0(t, k)
R0(t)

× [R(j)− R0(j)] +
24

∑
j=1,j 6=t

E(t, j, k)× D0(t, k)
R0(j)

× [R(j)− R0(j)]; ∀t, kεΨpi

(22)

with D0(t, k)− d(t, k) ≤ l × D0(t, k), ∀t, kεΨpi (23)

d(t, k) ≥ 0, ∀t, kεΨpi (24)

d(t, h) = D0(t, h) + E(t, t, h)× D0(t, h)
R0(t)

× η(h)× A(t, h)× inc(t); ∀t, hεΨin (25)

with D0(t, h)− d(t, h) ≤ l × D0(t, h), ∀t, hεΨin (26)

d(t, h) ≥ 0, ∀t, hεΨin (27)

inc(t)ε[0, 1], ∀t. (28)

Equations (22)–(24) correspond to the response of the consumer recruited in the
program motivated by price change, while Equations (25)–(28) correspond to the consumers
of the program motivated by incentives.

Within the model, the optimal incentive value for the aggregator has been considered
taking into account that the cost to be paid by the consumer under this contract corresponds
to the average tariff of a usual day. The optimal value of the incentive is the average
difference between the DA market price and the average tariff, applicable if the market
price is higher than the average tariff. This incentive in the model is activated through
the binary variable inc(t), as indicated in Equation (25), so that this only occurs when the
model considers it pertinent in its objective of maximizing the aggregator’s profit.

In Equations (22) and (25), the elasticity matrix E corresponds to a square matrix of
n ∗ n, where n corresponds to the number of periods considered in the day, in which the
terms of its diagonal correspond to the coefficients of self-price elasticity. These negative
coefficients on the diagonal indicate the magnitude of the reaction in its demand in period
t to a price change or an incentive in period t. The coefficients outside the diagonal
correspond to the coefficients of the cross-price elasticity. This means that column j of this
matrix indicates how a change in price during period j affects demand during each period
of the day [10].

The conformation of the elasticity matrix allows the characterization of consumers
according to their behavior. When the non-zero elements in column j are above the diagonal
element it means that consumers react to a high price by shifting their consumption to
earlier hours. On the contrary, if the non-zero values are below the diagonal element,
these consumers react by shifting their consumption to hours after hour j. Consumers
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who can reschedule their consumption to the hours with the lowest price, usually in the
early morning and at the end of the day, are called “optimizing consumers” so that the
non-zero elements are located in the first and last hours of column j. The “inflexible
consumers” that have in their columns the non-zero elements in the hours around the
diagonal element are those who can only partially shift their consumption to hours adjacent
to their usual schedule.

If a price variation in period j induces to reorganize its production without a reduction
in energy demand , the sum of the coefficients of column j is equal to zero (lossless matrix).
On the other hand, if consumers reduce their total demand during the day, this summation
is less than zero.

In practice, the set of all consumers is composed of a mixture of all the types described
above. Therefore, the structure of the elasticity matrix and the value of its elements must
be determined by analyzing the response of consumers to actual price deviations from
expected values. Studies on this parameter have obtained varying values for the self-
price elasticity of electricity in the range of −0.25 [29]. In [30], the author presents a
methodology and the computer tools that allow its implementation in order to establish the
price elasticity of different groups of consumers, according to the historical patterns of their
behavior, through the consideration of time series. The analysis of these methodologies is
not included in this article.

Another aspect included in the developed model, related to consumer behavior, is the
consideration of a threshold at which no reaction occurs until the variation of the price
or incentive has a minimum percentage value, with respect to the expected price [27].
The value of this variation parameter to obtain a reaction has been set in the model as 5%
of the original price.

In Equation (25), the factor η(h) has been included which considers the difference
in the responses by consumers to a similar net effect of price variation and an incentive.
According to the technical literature, the reaction of consumers in response to a price-based
and an incentive-based program can be classified into three groups [10]:

• Consumers have the same behavior to an incentive and to a price variation. η(h) = 1.
• Consumers with greater reaction to a price variation. η(h) < 1.
• Consumers with greater reaction to an incentive. η(h) > 1.

The calculation of this factor for a specific society and the determination of a mathe-
matical model for η(h) requires extensive socioeconomic research based on historical data
and real-time surveys.

The complete model of the mixed-integer linear problem, therefore, corresponds
to the maximization of the objective function of the upper-level problem, with the lin-
ear constraints corresponding to Equations (2)–(11), related to the upper-level problem,
and Equations (22)–(28), corresponding to the solution of the lower problem:

max
pA,DA(t),q,v,inc

∑
tεT

(LDA(t)pA,DA(t) + LDA(t)PFix(t) + ∑
kεΨpi

d(t, k)R(t) + ∑
hεΨin

(d(t, h)R0(t)

− (D0(t, h)− d(t, h))η(t, h)A(t, h)) + LDA
prom( ∑

zεΨlc

(D0(t, z))− plc(t))

− B(t)plc(t) + LDA
prom ∑

yεΨdal

D0(t, y) + ρmin pdal(t))

(29)

Subject to:
Constraints (2) to (11).
Constraints (22) to (28).

4. Simulations and Results
4.1. Definition of Portfolio and Price Scenarios

This subsection presents the scenarios considered in the simulations with the imple-
mented model. The scenarios and simulated cases are defined to show the impacts that
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the coordinated DR has on the aggregator’s profit and on the cost to be covered by the
different types of consumers. Consumers are classified according to the contract subscribed,
through a portfolio that includes the types of contract defined here. This analysis includes
the effects of varying the participation of these contracts on the same aggregate demand.

4.1.1. Price Scenarios

Two scenarios of hourly electricity prices in the DA market are selected for the analyses
(see Figure 2), namely:

• Base Case (Prices 0): Corresponds to a typical electricity price curve of a usual day,
where there is no peak price event. The information used represents a scenario of usual
prices of the CAISO (California Independent System Operator) system, specifically
for July 2015 [31].

• Case High Prices in Peak Hours (Prices 1): This price curve presents hourly values
similar to the usual ones in off-peak hours, but its prices increase significantly in peak
hours. This scenario corresponds to those days when, for example, a system with an
energy matrix highly dependent on hydrology goes through a strong drought and
high decrease in the levels of reservoirs. In this type of event, demand during peak
price hours is usually met by dispatching generation sources dependent on high-cost
liquid fuels. Figure 2 shows the curves that describe the price scenarios considered in
the simulations.

Figure 2. Electricity prices for the 2 scenarios analyzed.

4.1.2. Portfolio Scenarios

In the definition of these scenarios, the composition of the portfolio corresponds to the
percentage allocation of four types of contracts, two of direct control and two of indirect
control: Load Reduction Contracts (LC), Deferrable Load Activation Contracts (DAL),
Reduction by Incentive Contracts (RI) and Price Variation Contracts (ToU), respectively.

In order to quantify the effects of the implementation of the DR program, the aggregate
demand, prior to the implementation of the program, of the consumers coordinated by the
aggregator is established as a baseline. For each hour of the day there is a defined amount
of energy, assuming perfect homogeneity in the demand of each user. In this baseline, all
consumers are subject to a single tariff for each kWh consumed in any of the 24 h; this tariff
corresponds to the weighted average tariff of a usual day. A usual day is understood as
one in which there is no punctual or sustained peak price event, concerning short-term
historical information.
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To capture the effect of the difference in the composition of the contract portfolio,
discrete cases are analyzed, starting with an equal participation of each of the contract types;
that is, each 25% of consumers participate with a different type of contract, among the
four defined types. Subsequently, this composition is modified by varying the participation
of each contract from 0% to 100%, while the remaining percentage of the demand is served
by the other three contracts.

It is important to highlight the restriction that the maximum demand susceptible to
being reduced or displaced by each type of contract is 10% of the total demand served by
that type of contract for each of the hours of the day [27].

Figure 3 illustrates the total hourly demand of the users recruited by the aggregator
for an average day. It is the baseline when no DR program is implemented. This curve has
been assembled based on typical load profiles in the CAISO market.

Figure 3. Total base demand of the recruited consumers.

4.1.3. Particular Characteristics of the Portfolio Contracts

The characteristics adopted in each type of contract are as follows:
Contract-tsype LC (LC): Consumers recruited with this type of contract receive the

electric energy service in a manner that covers their demand in exchange for the payment
of the average daily tariff per MWh consumed. In the events in which the aggregator
activates the DR of any of the contracts of this type, consumers reduce their consumption
by the amount requested by the aggregator. Each contract predefines the range of reduction
that may be demanded by the aggregator and the maximum daily number of times it may
be activated. In compensation, each user receives payment of a value equivalent to the
average tariff for each MWh not consumed, an amount assumed as representative of the
price at which the users value the energy in their utility function. In the detailed structuring
of this type of contract, the value of the penalty for non-compliance with this commitment
should be considered, using analyses addressed by [4], not included in the comparative
analysis approached in this paper.

DAL-type contracts (DAL): In these contracts, a maximum percentage of 10% of the
loads of consumers participating in these contracts can be rescheduled during a predefined
time window and shifted to off-peak hours at the convenience of the aggregator. Due to
this flexibility, consumers are compensated with the lowest hourly rate charge throughout
the day for each MWh defined as deferrable activation; their remaining consumption is
paid at the average tariff.

Reduction by incentive contracts (RI): In this type of contract, the aggregator within its
model decides in which hour to generate an incentive and the value of the incentive according
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to the amount of demand reduction required. This value of the incentive is determined accord-
ing to the consumer’s self-price elasticity, previously established, through historical analysis
of the consumer’s behavior before this input and incorporated in the contract explicitly. This
characterization is not developed in this research work. The consumers, in turn, receive notice
of the time and value of the incentive, as well as the target load reduction. The rest of their
demand is paid through the value of the average tariff.

ToU contracts (ToU): The aggregator defines three tariff levels of homogeneous dura-
tion (8 h), such that their weighted average, in base conditions, is equivalent to the average
daily tariff. In this type of contract the consumers vary their consumption pattern accord-
ing to their willingness. The behavior of the consumers is predicted by the aggregator,
according to the self and crossed price elasticity of the users. The consumers pay for their
consumption according to the tariff in force at the time of consumption.

4.2. Base Scenario or Price 0

Table 1 shows the results of the 10 cases of variation in the composition of this portfolio
for the “price 0” or base case. This case corresponds to a typical day where no major peak
event is generated, including that scenario where no demand response program has been
implemented.The columns RI, TOU, LC and DAL present the share of each type of contract
for each case, RD—demand reduction, CU—consumer utility and AB—aggregator benefit.

Table 1. Results of the simulations in the base scenario.

Case RI ToU LC DAL RD CU AB

1 0% 0% 0% 0% 0.00% 0.00% 0
2 100% 0% 0% 0% 0.89% 1.00% 257
3 50% 17% 17% 17% 0.54% 1.16% 159
4 25% 25% 25% 25% 0.37% 1.25% 110
5 0% 100% 0% 0% 0.58% 1.16% 39
6 17% 50% 17% 17% 0.44% 1.22% 86
7 0% 0% 100% 0% 0.00% 0.00% 0
8 17% 17% 50% 17% 0.24% 0.83% 74
9 0% 0% 0% 100% 0.00% 2.82% 146

10 17% 17% 17% 50% 0.24% 1.77% 122

The comparison between the behavior of the cases is illustrated in Figure 4 and their anal-
ysis for each of the three comparison criteria used is presented in the following subsections.

Figure 4. Comparative behavior between compositions—base scenario.
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4.2.1. Lower Consumer Payments

The portfolio that offers the greatest benefit to consumers is the one in which the
entire portfolio corresponds to 100% of the deferred activation load contracts (DAL-type
contract). This criterion is quantified as the amount that those involved save by interacting
with the market and responding to the corresponding price signals. This type of demand
response means, in the simulated cases, that the involved participants pay 97% of the value
corresponding to the case when no DR program is present. It is worth noting that in this
case demand does not suffer a net reduction.

In the base case, market prices present a deviation of ±30% concerning the average
tariff, in addition to the fact that there is a correlation between typical demand and prices
behavior. Therefore, there is insufficient motivation for users to significantly modify their
consumption or for the aggregator to generate incentives that lead to behavioral responses.
This analysis is supported by the fact that the greatest impact on consumption bills is found
in contracts where up to 10% of the demand is transferred to the hour with the lowest
consumption price, which is approximately 30% lower than the average daily rate.

For this variable, the next best performing compositions correspond to those where
the share of DAL contracts is reduced to 50% and 25% of demand, respectively, with the
rest of the demand distributed homogeneously among the other three types of contracts.

The importance of DAL-type contracts concerning the lowest price to be paid for
electricity consumption is followed by the scenarios in which there is a greater participation
of ToU- and RI-type contracts. The order of these two compositions is permuted if inflexible
users of ToU contracts are considered.

Special interest in this simulation corresponds to the LC-type contracts, which are not
activated in any of the scenarios of the base case. This behavior is explained by the fact
that market prices do not offer the necessary incentive for the aggregator to dispatch this
type of contract, since in none of the hours the market price is at least the double of the
average tariff.

4.2.2. Higher Aggregator Profit

When analyzing the behavior of the composition of the contract portfolio for the
aggregator’s profit, the case with the highest value in this variable is the one in which the
RI contract corresponds to 100% of the contracts. This case is followed by the composition
in which these contracts meet 50% of the demand.

This result indicates that the aggregator’s management model effectively seeks to
maximize its profit by using the additional tools that this type of contract provides. This
type of contract is the only one in which it has an active role in generating incentives in
response to market signals and knowledge of the consumers’ elasticity.

In this case it is worth noting that after these two compositions, the best results are
obtained in the cases of high participation of DAL-type contracts. These cases generate
benefits to the aggregator, due to the location in the baseline of the demand classified as
flexible, at times when the market price is above the average tariff. The displacement of
this demand to the lowest cost hour does not totally eliminate the savings generated by its
non-dispatch at those initially foreseen hours.

4.2.3. Greater Consumption Reduction

Another very important criterion in the evaluation of the performance of each compo-
sition of the aggregator’s portfolio is the net reduction in consumption in the base scenario.
With respect to this variable, the composition that yields the greatest reduction is the
implementation of RI contracts for 100% of the demand, followed by the implementation
of ToU-type contracts for all consumers.

The above result is due to the aggregator’s action to stimulate demand reduction
through strategically defined hour-to-hour incentives. On the other hand, in the composi-
tion with ToU-type contracts, the reduction is limited by the difference between the peak
hour tariff and the average tariff, while another part is not reduced but shifted. DAL-type
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contracts do not generate demand reduction. LC-type contracts are not triggered by the
relatively low differences between the average tariff and the hourly market price.

4.3. Scenario Prices 1

Table 2 shows the results of the 10 cases of variation in the composition of this portfolio,
including that scenario where no demand response program has been implemented, for the
“price 1” or Peak case. This case presents hourly values similar to the usual ones in off-peak
hours, but its value increases significantly in peak hours.

Table 2. Results of the simulations in the peak scenario.

Case RI ToU LC DAL RD CU AB

1 0% 0% 0% 0% 0.00% 0.00% 0
2 100% 0% 0% 0% 1.75% 2.56% 2368
3 50% 17% 17% 17% 2.70% 5.78% 1372
4 25% 25% 25% 25% 3.15% 7.33% 873
5 0% 100% 0% 0% 1.13% 3.32% 76
6 17% 50% 17% 17% 2.49% 6.04% 608
7 0% 0% 100% 0% 9.96% 19.93% 1164
8 17% 17% 50% 17% 5.33% 11.36% 969
9 0% 0% 0% 100% 0.00% 4.00% −110

10 17% 17% 17% 50% 2.12% 6.26% 546

Similar to the base price scenario, Figure 5 illustrates the comparison between the
behavior of the cases, characterized by different percentages of the types of DR contracts
considered in this study. The analysis with respect to each of the comparison criteria used
is presented in the following subsections.

Figure 5. Comparative behavior between compositions—peak scenario.

4.3.1. Lower Consumer Payments

In this case, the portfolio that offers the greatest benefit to consumers is the one in
which the entire portfolio corresponds to 100% of LC-type contracts. This result is followed
in decreasing order by those in which its share is 50%, 25% and 17%. Among the latter,
consumers obtain a lower cost when they are accompanied by a 50% share of DAL-type
contracts, 50% of ToU-type contracts and 50% of RI contracts, in that order.

The above result highlights the importance of LC-type contracts in peak events where,
with prices higher than double the average daily tariff, these contracts are activated generat-
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ing both a significant decrease in consumption and an important benefit for the aggregator.
In contrast, in the base scenario there is no activation of this type of contracts.

In the case of 100% of the LC-type contracts, users pay a value equivalent to 80% of
the cost they would have to pay in a scenario with no DR program implemented. In fact,
the percentage savings of all compositions in this case are higher than those calculated in
the base case, showing that demand response programs have a greater impact on peak
price events.

4.3.2. Higher Aggregator Profit

With respect to the aggregator’s benefit, the scenario that yields the best result in this
criteria is the one in which the RI contract corresponds to 100% of the contracts, followed by
the composition in which these contracts meet 50% of the demand. In this case, the LC-type
contracts with 100% and 50% participation yield the highest benefit for the aggregator
after those scenarios where the percentage participation of the RI contracts is dominant.
As in the base case, this result indicates that the aggregator model maximizes its profit by
actively generating incentives in response to market signals and knowledge of consumers’
self-price elasticity. Likewise, with the peak price levels of the simulated case, it is attractive
for the model to activate LC-type contracts, achieving benefits for the aggregator to the
extent that market prices are greater than twice the average tariff.

4.3.3. Greater Consumption Reduction

Finally, with respect to consumption in this case, the composition that results in the
greatest reduction is the implementation of LC-type contracts for 100% of the demand,
followed by those where their participation is 50%, 25% and 17%. Among the latter,
a greater net reduction in demand is obtained when they are accompanied by a 50% share
of RI contracts, 50% of ToU contracts and 50% of DAL contracts, in that order. Again,
this result shows the benefits of LC-type Direct Control contracts in peak market events,
where the massive reduction in consumption is generated in the highest price hours,
normally coinciding with the highest demand hours. Likewise, after this type of contract,
it is followed in effectiveness for this criteria by the RI contracts, given the action of the
aggregator in stimulating the reduction in demand through incentives strategically defined.

4.4. Joint Analysis of Results in the Price Scenarios

The previous sections present the comparative results of the different cases of percent-
age composition of the DR contract portfolio, both for the 0 or base price scenario and for
the 1 or peak price scenario.

From these analyses it can be concluded, through the ordinal qualitative assessment
of the set of the three selected comparison criteria, that the composition with the best
results in the base case is that which covers 100% of the demand with RI contracts. This
composition is followed by that in which 50% of the demand is covered with this type of
contract, distributing the rest of the demand homogeneously among the other three types
of contracts.

For the case of prices 1 or peak, the best performing composition corresponds to the
one in which 100% of the demand is covered by LC-type contracts. This composition is
followed by the one in which 50% corresponds to these contracts and the rest is distributed
among the other three types of contracts.

Finally, adding the valuations of each of the compositions of the base scenario and
the peak scenario, with a 50% weighting for each scenario, it is obtained that the best com-
position corresponds to 50% for RI contracts, followed by the homogeneous composition
among contracts of 25% for each one.

The same behavior is exhibited by increasing the weighting of the base case to 60%.
From this point, the second best option corresponds to the case where 100% of the contracts
are of the RI type, maintaining as the best alternative the distribution of 50% RI contracts
and the rest of the demand homogeneously distributed among the other types.
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If the weighting of the base scenario increases to values above 85%, the best alterna-
tive, in this particular comparative analysis, corresponds to the composition of contracts
characterized by 100% of RI-type contracts.

Figure 6 presents the compositions of greatest benefit to the aggregator for high
weight scenarios of the base case, which correspond to the values expected in typical
electricity markets. Figures 7 and 8 illustrate the results of the other two criteria for these
compositions, adding composition 7 in order to highlight its important contribution in
demand reduction and consumer utility. The abscissa axis identifies the share of the base
price scenario.

Figure 6. Comparative behavior in weighted scenarios: aggregator benefit.

Figure 7. Comparative behavior in weighted scenarios: consumer utility.
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Figure 8. Comparative behavior in weighted scenarios: demand reduction.

Figure 9 illustrates the comparison of the different simulated cases, considering a
weighted average rating for each price scenario. In this case, an ordinal rating is used for
each criterion and the same importance is assigned to the three criteria.

Figure 9. Identification of the best distribution of RD contracts.

The analysis recommends the compositions with a high participation of RI-type
contracts, according to the structure of the analysis for each type of contract in the aggrega-
tor’s portfolio.

Finally, as an alternative evaluation of the consideration of the three criteria adopted
in determining the best compositions of demand response contracts, Figure 10 shows the
preferential order of the compositions for each weighted scenario, giving greater weight to
the aggregator’s benefit criterion (50%), followed by the consumer’s utility (30%), given the
importance of this criterion in guaranteeing their participation in DR programs, and the
least weight to demand reduction (20%). These criteria are weighted considering their
valuation from 0 to 100, with 100 being the highest value of each criterion while the other
values correspond to the percentage relative to this maximum value.
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Figure 10. Identification of the Best Distribution of RD Contracts: Alternative Evaluation.

This example illustrates the impact of differentiated weighting of the three criteria
considered and the use of a cardinal evaluation scale. This type of evaluation better
assesses the magnitude of the differences between the different compositions, beyond the
score given by the place they occupy in the ranking of their results. Case 2 composition
continues to be preferred in high participation levels of the base case, scenarios with higher
probability of occurrence.

The weighting given to each of the criteria adopted will depend on the local and
cultural context in which the aggregator intends to establish its demand response programs.
Thus, for example, in a context where environmental sensitivity is a motivating factor for
consumers to participate in these coordinated efforts, the demand reduction criterion
should be weighted more heavily.

5. Conclusions

This article describes a methodology for comparing different combinations of DR
contracts coordinated by an aggregator that recruits a significant number of consumers
through the subscription of contracts . This model considers the maximization of the benefit
of the aggregator and the expected behavior of the consumers. Likewise, it was shown that
the proposed demand response portfolio is able to generate reductions in the load during
the hours of greater demand of the system, as long as there is a timely activation of the
consumers’ contracts that is adequately coordinated.

A fundamental conclusion is that the implementation of different types of contracts
simultaneously allows an adequate response to different price scenarios, so that contracts
that are more relevant in the face of system peak events are not so in the usual conditions
of a relatively flat price curve. Applying the methodology described here, it was possible
to establish the importance of characterizing the behavior of consumers to forecast their
responses to the generation of specific incentives, both for the usual scenarios and for
peak events. Likewise, it is shown that direct load control contracts have an important
impact during periods of energy price increments, subject to the correct structuring of the
commitments, the adequate determination of the price to be recognized for the demand
response and the reliability of the consumption baseline.

As future lines of research, the exploration of a larger portfolio of contract types is
envisioned that includes structured contracts for prosumers, involving different generation
technologies, specific contracts for electric vehicles within the two possibilities: consump-
tion only and consumption and return to the grid, as well as incentive-type contracts using
the “probability of call” mechanism, described in [15]. With respect to consumer behavior,
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it is important to enrich the proposed methodology by incorporating econometric and
behavioral economics analyses that allow for a more solid comparison when applied to a
specific group of consumers. Additionally, for future analysis it is important to include the
characterization of load flexibility, given the reduction in uncertainty that the aggregator
will have with respect to the potential for consumer demand response.
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Abbreviations
The following abbreviations are used in this manuscript:

ISO Independent System Operator
DA Market Day Ahead Market
RT Market Real-Time Market
DR Demand Response
DAL Contract Deferrable Activation Loads Contract
LC Contract Load Curtailment Contract
RI Contract Reduction for Incentive Contract
ToU Contract Time of Use Contract

Nomenclature

Sets
Ψpi Set of consumers recruited for the program based on price (ToU).
Ψin Set of incentive-based consumers recruited for the program.

Ψlc
Set of consumers recruited for the direct control reduction
program (LC).

Ψdal
Set of consumers recruited for the direct control program for
activation of deferrable loads (DAL).

T Set of time units or hours of the day.

ΨLC
Set of demand response contracts of the direct control load
reduction type (LC).

ΨDAL
Set of demand response contracts of the direct control deferrable
activation load type (DAL).
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Indexes
t Hours of the day in which energy consumption takes place.
c DAL or LC-type contract number available to the aggregator.
j Auxiliary time step index to define the cross-price elasticity.

k
Consumer recruited for the DR program of the variable price or
“Time of Use” type.

h Consumer recruited for the incentive type DR program.

z
Consumer recruited for the direct control program through
LC-type contracts.

y
Consumer recruited for the direct control program through
DAL-type contracts.

Parameters
Consumer Demand

Pmin(t)
Minimum value to which the load of the consumers can be
reduced in hour t.

D0(t, ∗)
Demand without demand response program of the user type * at
time t. and * can be k, h, z or y.

Day-Ahead Market
LDA(t) Day-ahead market price at time t.
LDA

prom Weighted average energy tariff for a typical day.
DAL and LC-Type Contracts
QDAL(c) Load susceptible to be deferred in contract c of type DAL.
Q(LC,max)(c) Maximum energy reduction in contract c if activated.
Q(LC,min)(c) Minimal energy reduction in contract c if activated.

MNLC(c)
Maximum number of times the load reduction contract c can be
activated.

TH(c)
Total hours in which the deferrable load contract c must
be dispatched.

Consumer Behavior

E(t, t, ∗) Consumer’s price elasticity * at hour t for price change at hour t.
(Self elasticity). * can be k or h.

E(t, j, k)
Price elasticity of user k in hour t by price change in hour j.
(Cross Elasticity).

η(k) Incentive weighting coefficient for consumer k.

l
Maximum percentage of demand reducible or deferrable from a
consumer’s hourly baseline.

Incentives and Prices
A(t, h) Consumer incentive h at time t in the incentive-based program.

R(t)
Unit price of energy for the consumer in price-based contracts
(ToU).

ρmin Unit price of the deferrable load for the consumer y.

R0(t)
Unit price of energy for the consumer in hour t in the scenario
without demand response program.

B(t) Incentive for load curtailment contracts in hour t.
Variables
Day-Ahead Market

pA,DA(t)
Purchased energy (negative) for the aggregator’s resources in the
day-ahead market. The possibility of selling energy in the DA is
restricted.
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Consumer Contracts
qLC(c, t) Load reduction activated for contract c.

vx(c, t)
Binary variable indicating the status of the contract c. The x can
be DAL or LC.

px(t)
Sum of energy of all contract-type x (DAL or LC) of the
aggregator.

d(t, ∗) Final demand of consumer * in hour t for price or incentive based
programs.

β(d(t, ∗)) Income of the consumer * in hour t, as a function of his electricity
demand. * can be k or h.

inc(t) =
Binary variable indicating the activation of the incentive for
consumers of this type of program.
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