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Abstract: Solar radiation prediction is an important process in ensuring optimal exploitation of solar
energy power. Numerous models have been applied to this problem, such as numerical weather pre-
diction models and artificial intelligence models. However, well-designed hybridization approaches
that combine numerical models with artificial intelligence models to yield a more powerful model
can provide a significant improvement in prediction accuracy. In this paper, novel hybrid machine
learning approaches that exploit auxiliary numerical data are proposed. The proposed hybrid meth-
ods invoke different machine learning paradigms, including feature selection, classification, and
regression. Additionally, numerical weather prediction (NWP) models are used in the proposed
hybrid models. Feature selection is used for feature space dimension reduction to reduce the large
number of recorded parameters that affect estimation and prediction processes. The rough set theory
is applied for attribute reduction and the dependency degree is used as a fitness function. The effect
of the attribute reduction process is investigated using thirty different classification and prediction
models in addition to the proposed hybrid model. Then, different machine learning models are
constructed based on classification and regression techniques to predict solar radiation. Moreover,
other hybrid prediction models are formulated to use the output of the numerical model of Weather
Research and Forecasting (WRF) as learning elements in order to improve the prediction accuracy.
The proposed methodologies are evaluated using a data set that is collected from different regions in
Saudi Arabia. The feature-reduction has achieved higher classification rates up to 8.5% for the best
classifiers and up to 15% for other classifiers, for the different data collection regions. Additionally,
in the regression, it achieved improvements of average root mean square error up to 5.6% and in
mean absolute error values up to 8.3%. The hybrid models could reduce the root mean square
errors by 70.2% and 4.3% than the numerical and machine learning models, respectively, when these
models are applied to some dataset. For some reduced feature data, the hybrid models could reduce
the root mean square errors by 47.3% and 14.4% than the numerical and machine learning models,
respectively.

Keywords: solar energy; solar radiation prediction; hybrid machine learning; feature selection;
feature extraction; classification algorithms; regression analysis; Weather Research and Forecasting
(WRF)

1. Introduction

Solar energy is considered as a major source for future renewable energy [1]. As the
dependence on renewable energy increases, more attention to solar energy is paid. Solar
radiation data are the main ingredient of optimum design and operations of solar power
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systems [2]. It is necessary to ensure the stability of the energy supplied by solar stations.
Therefore, accurate prediction of the amount of solar radiation at a specific location is critical
from an operational perspective. For parties such as governments, enterprises, and energy
operators, solar radiation prediction is a key for optimal strategic plans, particularly when
hybridized with different energy sources. However, such an objective is associated with
practical difficulties. Particularly, the potential of solar energy is limited by inaccuracy of
solar radiation levels prediction when compared with certain alternative resources. In order
to handle this problem, several prediction models have been proposed in the literature
to predict solar radiation, including numerical weather prediction (NWP) and artificial
intelligence models, e.g., [3–8]. However, the large number of parameters associated with
the prediction process, including weather and topography variables, significantly affects
the underlying prediction models. Therefore, it is crucial to obtain a good representative
set of these parameters, or features as termed in machine learning, to improve the predictor
performance as well as reducing the computational cost of the real-time prediction systems.

NWP models can provide forecasts of solar radiation several days ahead along with
other weather parameters, such as temperature, air pressure, relative humidity, or wind
speed [9]. Such information can be useful for optimizing solar plant operating strategies.
These models rely on atmospheric reanalysis to obtain initial and boundary conditions for
the model run before it is realistically downscaled to a finer physical resolution using few
physical equations. An NWP model that downscales reanalysis data is called a mesoscale
model. As mesoscale models run within a smaller area compared with global-scale models,
they include additional details. Therefore, these models can provide forecasts of solar
irradiance with a high temporal spatial resolution over a wide area but with high levels of
computing power. The Weather Research and Forecasting (WRF) model [10] is the most
commonly-used mesoscale model, and it has been extensively applied and assessed. In this
paper, a nonhydrostatic WRF v3.7.1 model has been applied to simulate dust storm events
over Saudi Arabia to evaluate the reliability of global horizontal irradiance (GHI) forecasts.

Regarding artificial intelligence (AI) models, A large number of AI models for predict-
ing solar radiation or solar power have been proposed. For example, AI models have been
applied to predict solar radiation using fuzzy logic sets and systems [11,12], neuro-fuzzy
systems [13], neural networks [14–16], machine/deep learning [17–24], and LSTM [25–29].
There are some other regression tools that are based on statistical models linear and
non-linear regression, specially for seasonally-repeated patterns, e.g., Prophet [30,31]. Au-
tomated Time Series Models in Python (AtsPy) [32] provides a software package to compare
the forecasting performance of about ten other regression algorithms along with Prophet.

Abdel-Nasser et al. [33] developed an LSTM-based method for solar irradiance fore-
casting. They used LSTM models with an aggregation function based on Choquet integral.
Combining Choquet integral with LSTM aimed at achieving more accurate predictions
due to the memory units and the recurrent architecture which can model the temporal
changes in solar irradiance. The interaction between aggregated inputs are modeled by the
Choquet integral through a fuzzy measure.

Almaraashi [34] applied fuzzy logic systems that are designed and optimized using
fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms to forecast global
horizontal irradiance (GHI) in eight stations in Saudi Arabia. In addition, Almaraashi
predicted daily solar radiation in the same eight stations in Saudi Arabia using multi-layer
neural networks (NNs). This was done after applying four-feature selection methods
to discover the most important variables [35]. The used four-feature selection methods
are the Relief algorithm, Random-Frog algorithm, Monte Carlo Uninformative Variable
Elimination algorithm (MCUVE), and Laplacian Score algorithm (LS). A hybrid model
presented by Voyant et al. [36] applied the NWP model combined with a hybrid auto-
regressive moving average (ARMA) and neural networks to forecast hourly global radiation
for five locations in the Mediterranean area.

Boubaker et al. [37] have investigated one-day prediction of GHI using various DNN
models at Hail city, Saudi Arabia. They used six different DNN models: LSTM, BiLSTM,
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GRU, Bi-GRU, onde dimensional CNN, and other hybrid configurations such as CNN-
LSTM and CNN-BiLSTM. The used DNN models depend only on historical daily values
of GHI. However, These models did not take into consideration crucial weather param-
eters that may affect GHI, e.g., air temperature, humidity, wind speed, wind direction,
and atmospheric pressure.

The intuitive parameter selection by experts when predicting solar radiation can result
in different sets of possible input parameters in which some might appear to be redundant
or irrelevant. In addition, the manual selection of the most relevant features for this
problem is affected by the large dimensionality of the input feature space. Given such a case,
the automatic dimension reduction of the input feature space can be a valuable solution.

Solar energy prediction needs large amounts of data, which require a large number
of measuring devices and equipment. Moreover, the calculations of weather data needed
for the solar energy prediction process are often computationally expensive. Therefore,
one of the most important motivations for this research is to reduce the data reading and
calculation processes required for solar energy prediction and to reduce the cost of this
process. This helps to expand prediction operations in a broader and more comprehensive
way, even beyond the scope of traditional measurement stations. Another major motivation
for this paper is to use the power of smart and hybrid systems in predicting short-term
solar energy levels. Therefore, in this paper, a modified version of the tabu search attribute
reduction (TSAR) [38] is presented as a feature selection method along with different
prediction models for the estimation of solar radiation levels. The main modifications of
that method are adding more local search and extending some other search operations.
Consequently, various classification and regression models are designed to predict solar
radiation based on reduced features. Moreover, other hybrid predictive models are formu-
lated in order to utilize the outputs of the WRF numerical model as learning elements to
increase prediction accuracy. In addition to the proposed prediction models, the impact
of the attribute reduction mechanism on different classification and regression models is
investigated.

2. Methodology

The proposed methodology comprises different design elements, including feature
selection, classification, regression, and numerical models. In this section, these design ele-
ments are discussed and their integration in creating our prediction models are illustrated.
The main layout of the proposed methodology is presented in Figure 1. Four possible
methods can be implemented using this layout based on:

• Invoking reduced solar feature data or not;
• Applying only machine learning prediction models or hybrid models with the numer-

ical WRF models.

2.1. Feature Selection

The proposed feature selection (FS) method is designed on the basis of a modified
version of the Tabu Search Attribute Reduction (TSAR) method [38]. The proposed method
adds more local search and extends some other search operations. The modified feature
selection is denoted by mTSAR. The FS method selects the best features in order to use
them in building classifiers and prediction models. The main steps in the work-flow of the
presented method are highlighted in Figure 2, and detailed in the following subsections.
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Figure 1. The flowchart of the proposed solar prediction models.

2.1.1. Solution Representation

The FS method encodes its solutions in binary vectors. The dimension of these vectors
is equal to the number of conditional features. Therefore, if the entity of the coding-vector
has a value of 1, it implies that the corresponding feature is included in the solution
represented by this vector. Otherwise, this feature is not included in that solution.
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Figure 2. The flowchart of the proposed feature selection mTSAR method.

2.1.2. Feature Selection Evaluation

The dependency degree concept in the rough set theory [39] is invoked to evaluate the
goodness of reducts or solutions. Therefore, the feature selection problem can be defined
in terms of maximizing the dependency degree values of the solutions and minimizing
their cardinality. The dependency degree function of a solution (feature reduct) can be
computed using the following definitions [39]:

• Indiscernibility Relation. Given a set A of all condition features and a feature subset
P ⊆ A, the indiscernibility relation is denoted by IND(P) and defined as:

IND(P) = {(ξ, η) ∈ U ×U | ∀a ∈ P, a(ξ) = a(η)}. (1)

• Indiscernibility Equivalence. The relation IND(P) forms an equivalence relation on
the set U. The relation IND(P) represents a partition of U denoted by U/IND(P).
For any pair (ξ, η) ∈ IND(P), it can be said that ξ and η are indiscernible by features
of P. The P-indiscernibility equivalence classes are denoted by [ξ]P.

• Lower and Upper Approximation. Given a subset Ξ ⊆ U, one can define the P-lower
approximation of Ξ by:

PΞ = {ξ|[ξ]P ⊆ Ξ}. (2)
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Moreover, one can define the P-upper approximation of Ξ by:

PΞ = {ξ|[ξ]P ∩ Ξ 6= ∅}. (3)

• Positive Region. The positive region of the partition of U/IND(Q) with respect to P
is defined as the set of all members of U that can be uniquely classified to blocks of
the partition U/IND(Q) using the knowledge in P, which can be determined by:

POSp(Q) =
⋃

Ξ∈U/IND(Q)

PΞ. (4)

• Dependency Degree (γ). The dependency degree is the ratio of all objects of U that
can be appropriately classified to the blocks of the partition U/IND(Q) by means of
P. This dependency degree is denoted by γP(Q) and determined by:

γP(Q) =
|POSP(Q)|
|U| , (5)

where | · | is the cardinality measure.

Therefore, the dependency degree can be stated as the ratio of all objects of U that can
be classified to the blocks of the partition U/IND(Q) using P.

A feature subset Q is said to depend totally or partially on another feature subset P,
if γP(Q) = 1, or γP(Q) < 1,, respectively. In order to measure the quality of a solution
x, the dependency degree γx(D) of decision attribute D can be used. Therefore, for two
solutions x and y, x is better than y if one of the following conditions holds:

• γx(D) > γy(D);
• γx(D) = γy(D), and |x| < |y|,
where |x| and |y| are the number of features in x and y, respectively.

2.1.3. Initialization

A random binary vector is generated as an initial solution. Lists of tabu and elite are
initialized as empty lists. The most recently visited solutions are placed in the tabu list to
prevent being trapped in local optimal solutions. Moreover, the elite list contains the best
solutions found up to now. Then, they can be included in the steps of intensification.

2.1.4. Search Procedures

The key search procedures of the proposed FS system are identical with minor mod-
ifications to those of our previously-published system [38]. Specifically, the proposed
method begins with an initial solution and continues to produce trial solutions within the
neighborhood of the current one. The stop criterion is met when no improvement is ac-
complished during of a predefined number of consecutive iterations. Thereafter, the search
process initiates a diversification step from a new diverse solution. If the number of such
consecutive non-improvement iterations reaches another pre-defined number of iterations,
an intensification step is initiated to refine the best solution achieved so far. If the number
of iterations reaches a maximum permitted iteration limit, the search is terminated. Lastly,
the search process uses a final step for diversification-intensification to obtain the final
solution. The details of the neighborhood and local search procedures are explained below.

• Neighborhood Search. The neighborhood of the current iterate solution x = (x1, . . . , xn)

is broken down into a fixed number of neighborhood zones denoted by Zj, j = 1, . . . , `,
and expressed as:

Zj(x) = {xj : xj = (xj
1, . . . , xj

n)}, (6)

where

xj
i

{
6= xi, ∀i1, . . . , ij ∈ {1, . . . , n}, and i1 6= · · · 6= ij,
= xi, otherwise.

(7)
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Within each zone, the search process generates a trial solution in accordance with the
tabu restriction to avoid revisiting recent solutions.

• Solution and Memory Updates. The next iterative solution is selected as the best trial
one among the generated solutions. Thereafter, the tabu and elite lists are revised.

• Local Search. Using a local search technique called Shaking [38], the best solution
is improved by attempting to sequentially eliminate its attributes without raising
its degree of dependency value. The steps of the shaking procedure are depicted
in Figure 3, which is a modified version of the original shaking procedure in [38].
The standard shaking technique [38] is used only to lower the cardinality of the best
reducts whose γ function values are equal to 1. However, the modified shaking
procedure applies the feature reductions to both total or partial reducts.

Figure 3. Reducing the cardinality of the best solution using the shaking procedure.

2.1.5. Diversification

Whenever diversification is required, it is possible to generate a new diverse solution.
The attributes included in a diverse solution are generated with probability that is inversely
proportional to their appearance in the previously generated solutions.

2.1.6. Final Intensification

In order to produce new promising solutions, the common features that appear in the
elite solutions can be utlilized. In particular, the reducts obtained are stored in a package
called the Reduct Set (RedSet). Then, the term “core” is defined as the intersection of all
reducts saved in the RedSet. Thus, a test solution xFinal is constructed as the intersection
of the best m reducts in RedSet. Therefore, a new solution candidate xFinal is generated to
contain the core. The trial solution xFinal is only considered if its number of features is less
by at least two than the best obtained reducts. Thereafter, new features will be added to
xFinal by converting the zero positions in xFinal in which the highest γ-value is given one.
This upgrading process continues until a suitable new solution is found.
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2.1.7. Control and Termination

Three non-improvement counters (Ilocal , Idiv, Iglobal) are used to control the processes
of applying the local search, diversification, and final intensification, where Ilocal < Idiv <
Iglobal . Specifically, if a number of non-improvement iterations, Ilocal , is reached, the shaking
procedure is utilized. Then, if the number of non-improvement iterations is increased
and reaches Idiv, a new diverse solution is generated. Finally, if the number of non-
improvement iterations exceeds Iglobal , then the final intensification is employed to refine
the best solutions in RedSet.

2.2. Prediction Models

Several solar radiation prediction models for the global horizontal irradiance (GHI)
values are proposed on the basis of classification, regression, numerical and hybrid tech-
niques. The target is to obtain predicted values of the GHI (in Wh/m2 per day) through
regression models or predicted classes of different ranges of the GHI values through clas-
sification models. All prediction models are created in two versions; with or without
feature selection. The numerical models of weather forecasting are inlaid within hybrid
regression models to obtain improved predicted values that are hopefully better than the
values obtained by the pure numerical or machine learning models.

2.2.1. Machine Learning Models

The range of solar radiation energy can be discretized into a certain number of classes.
Then, several classifiers are used to predict the classes of solar radiation energy. The follow-
ing classifiers are invoked in this work.

• Decision Trees. Binary decision trees are multi-class learners in which decisions are
followed in the shape of a tree, from its root node down to its leaf nodes that contain
the response [40]. Different structures of decision trees can be used in classification
based on the number of leaves used to make distinctions among classes. The number
of leaves could be low, medium, or high corresponding to classification models coarse,
medium or fine decision trees, respectively. The optimizable model employs certain
techniques to automatically tune model hyper-parameters.

1. Fine Decision Tree;
2. Medium Decision Tree;
3. Coarse Decision Tree;
4. Optimizable Decision Tree.

• Discriminate Analysis. Discriminant analysis assumes that data are generated by
different classes based on different Gaussian distributions. Therefore, these classifier
models attempt to estimate the parameters of a Gaussian distribution that fit each
class [41]. Two common types of such classifier models are linear and quadratic
discriminant analysis apart from the optimizable discriminate analysis in which
model hyper-parameters are automatically tuned:

5. Linear Discriminate Analysis;
6. Quadratic Discriminate Analysis;
7. Optimizable Discriminate Analysis.

• Naïve Bayes Classifiers. These classifiers classify data in two steps. In the first step,
the classifier estimates the probability distribution parameters assuming that the
predictors are conditionally independent, given the class based on some training
data. In the second step, the classifier considers other unseen test data samples and
computes the posterior probability of that samples belonging to each class [42]. Then,
the method classifies the test data according to the largest posterior probability. Such
a classifier model invokes different techniques, such as Gaussian, kernel predictors,
or an optimizable technique:

8. Gaussian Naïve Bayes;
9. Kernal Naïve Bayes;
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10. Optimizable Naïve Bayes.

• Support Vector Machine (SVM). This classifier uses a separate hyper-plane to classify
data into two classes [43]. Different trick kernels can be utilized, if the data are not
linearly separable. Moreover, the classifier can deal with multi-class classification
through different upgrading criteria. Several kernels and modifications can be used to
design the following SVM models.

11. Linear SVM;
12. Quadratic SVM;
13. Cubic SVM;
14. Fine Gaussian SVM;
15. Medium Gaussian SVM;
16. Coarse Gaussian SVM;
17. Optimizable SVM.

• Nearest Neighborhood Classifiers. A nearest neighbor can find other nearest neigh-
bors within a defined distance to search data points based on specified distance metrics
such as Euclidean and Hamming [44,45].

18. Fine KNN;
19. Medium KNN;
20. Coarse KNN;
21. Cosine KNN;
22. Cubic KNN;
23. Weighted KNN;
24. Optimizable KNN Classifiers.

• Ensemble Classifiers. A classification ensemble is a prediction model that comprises
a weighted combination of several models for classification. In general, combining
multiple classification models improves predictive performance. Ensemble classifiers
use boosting, random forest, bagging, random subspace, and error-correcting output
codes ensembles for multi-class learning [46].

25. Ensemble Boosted Decision Trees;
26. Ensemble Bagged Decision Trees;
27. Ensemble Subspace Discriminant Analysis;
28. Ensemble Subspace KNN;
29. Ensemble RUS Boosted Decision Trees;
30. Optimizable Ensemble Classifiers.

• Neural Networks. Artificial neural networks are a subset of machine learning that are
at the heart of deep learning algorithms. Their name and structure are based on the
human brain, and they mimic the way in which organic neurons communicate starting
from the input layer to output layer passing through hidden layers. They prove great
success in different applications [47]. The following neural network models are used
with various size and number of hidden layers.

31. Narrow Neural Networks;
32. Medium Neural Networks;
33. Wide Neural Networks;
34. Bilayered Neural Networks;
35. Trilayered Neural Networks.

Regression models can be implemented to predict certain amounts of solar radiation
energy by estimating GHI values. One of the most powerful regression models is the
Gaussian Process Regression (GPR) model. The GPR model is a non-parametric kernel-
based probabilistic model [48,49], which measures the similarity between training data to
predict the value for test data.
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2.2.2. Numerical Model

Numerous prediction models using NWP of solar radiation have been applied [4,5].
A recent and effective numerical model is the WRF mesoscale model [50]. The WRF model
serves both needs for atmospheric research and operational forecasting. The WRF model is
fitted with two dynamic (computational) cores, a data assimilation system and a software
architecture, thereby enabling for parallel computation and system scalability.

The WRF model is a mesoscale model developed by a group of scientists from different
institutes and centers, such as the National Center for Atmospheric Research (NCAR),
National Centers for Environmental Prediction (NCEP), National Oceanic and Atmospheric
Administration (NOAA), and a number of other collaborating institutes and universities.
The WRF is a fully compressible nonhydrostatic three-dimensional (3D) primitive equation
model that is designed for simulating atmospheric phenomena across scales. These scales
varies from large eddies (∼100 m) to mesoscale circulations and waves (from ∼100 m to
>1000 km).

The WRF system provides different physics options for cloud parameterization, plan-
etary boundary layer (PBL) turbulence physics, atmospheric radiation, and land surface
models (LSMs). It also incorporates various initialization routines and data assimilation
techniques that numerous weather agencies and research centers have extensively tested.
Additional manuals and descriptions of the WRF model are fully documented in [51,52].

2.2.3. Hybrid Model

In order to improve the prediction process, the machine-learning models can use the
output of the numerical models. In this research, a hybrid model is designed by using
known weather data and the estimated future data of solar radiation energy obtained
by the WRF model to build a new hybrid model for short-term solar radiation energy.
Therefore, a Gaussian Process Regression (GPR) model is utilized to do this job. Actually,
the GPR models are probabilistic ones with non-parametric kernel-based structures [49].
The proposed hybrid model is highlighted along with a corrector model that enhances the
prediction values of the WRF model by using the machine learning of the GPR.

Figure 4 illustrates a high-level structure of the hybrid model that uses two types of
input data. The first input data are the historical solar features including the values of GHI
of the m previous days, denoted by x1, x2, . . . , xm. The other input data are the predicted
value of GHI on the considered day for prediction, denoted by y. Then, the GPR model
uses these inputs to predict a new GHI value.

Figure 4. The layout of the hybrid prediction regression model.

Specifically, the designed GPR model predicts new GHI values, which are expected to
be more accurate than the ones predicted by the WRF models. Consider the input vector
X = (x1, x2, . . . , xm, y), then a new GHI value y′ can be computed from the following
regression model:

y′ = XT β + ε, (8)

where ε is generated for the normal distribution N (0, σ2), and β, σ are estimated from the
training data [49]. In order to deal with the non-linearity, a kernel-based structure can be
used to modify the above-mentioned model to be:

y′ = h(X)T β + f (X), (9)

where h(·) are basis transformation functions and f (·) is a Gaussian function [49].
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3. Experimental Setup and Evaluation

Available observed historical data are exploited in order to measure the performance
of the reduction in the input feature space. In particular, the impact of dimension reduction
on the solar radiation estimation process is investigated. This investigation is conducted by
measuring weather data variables, such as temperature, wind speed, humidity and direct
normal irradiance, as well as other environmental data. Table 1 enumerates the attributes
used for evaluation purposes. Evaluation of the proposed system is performed by setting
the GHI for the current day as the objective output.

An experiment to evaluate the discrete energy class prediction with and without fea-
ture selection is designed. For compliance with typical classification frameworks, the GHI
measurements are descretized into a finite number of levels. The range of the recorded GHI
expands between 0 and 9000. Two discrete sets are generated. The first set is called 5-class,
which comprises five levels of GHI values. Each level contains approximately 2000 values
of GHI. Similarly, the other set, 10-class, contains ten different classes representing ten
discrete GHI levels of approximately 1000 for each one.

In order to measure the candidate reduction of the input feature space, three data
sets, which were collected at distant stations distributed around Saudi Arabia, are used.
As shown in Table 2, the locations of these stations exhibit diverse climatic conditions.
The diversity of these cities in terms of locations and topographies has supported the choice
of these cities for our experimentation. Furthermore, the research nature of the installed
stations in these cities makes it easy to obtain the necessary solar data. King Abdullah
City for Atomic and Renewable Energy (KACARE) has installed and monitors these
stations under the Renewable Resource Monitoring and Mapping (RRMM) Program [53,54].
The main weather measurement that is used for evaluation is the GHI. The data sets
are collected for three Saudi cities on a daily basis from mid-2013 to the end of 2014.
Comprehensive evaluation is performed using these data sets. However, because of
technical issues with some of these recently-installed KACARE stations, two important
readings are missing during this period: visibility and sky cover parameters. This is
apart from the obvious uncertainty associated with all other measurements. Therefore,
to overcome this issue, another source to obtain the visibility variable data—the Presidency
of Meteorology and Environment stations is used. As depicted in Table 1, only two cities
out of the used three have the visibility parameter recorded.

Table 1. Solar attributes used in the current experiment.

Attributes Abbreviation KAU QU TU

Air Temperature (Degrees C) T X X X
Average Wind Direct at 3 m (Deg North) WD X X X
Average Wind Speed at 3 m (m/s) WS X X X
Diffuse Horizontal Irradiance (Wh/m2) DH X X X
Direct Normal Irradiance (Wh/m2) DN X X X
Peak Wind Speed at 3 m (m/s) PWS X X X
Relative Humidity (Percent) H X X X
Station Pressure (mB (hPa equivalent)) P X X X
Visibility V X X ×

Table 2. The data of the stations and their recorded measurements.

Station City Latitude Longitude Elevation Data
(N) (E) (m) Samples

King Abdulaziz Univ. (KAU) Jeddah 21.49604 39.24492 75 582
Qassim Univ. (QU) Qassim 26.34668 43.76645 688 576
Taif Univ. (TU) Taif 21.43278 40.49173 1518 575
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In order to evaluate the GHI prediction performance of the proposed hybrid learning
model, which is used for regression in this case, other data sets were selected to cover four
different levels of challenge: clear, cloudy, dusty, and dusty-cloudy [8]. Table 3 [8] presents
the challenging cases, including 41 dust storms. The solar attributes are collected on those
dates and the following days thereby leading to the creation of data sets with 81 records at
three stations KAU, QU, and TU. If one day after the storm is recorded in addition to the
storm days, it should add up to 82 days rather than 81. There is one day missing because
one of the storms lasted for two consecutive days. The prediction performance is done by
feeding measurements of preceding days to the regression process in order to predict GHI
in these specific 81 days.

Table 3. Dates of widespread dust storm events covering different areas of Saudi Arabia on 2014.

Month Days

January 19, 27
February 24
March 3, 9, 12, 16, 24, 27, 31
April 1, 3, 11, 15, 19, 27, 30
May 3, 7, 10, 13, 19, 23
June 5, 12, 16, 18, 22
July 5, 9, 13, 18, 20, 31
August 18
October 9, 11, 14, 16, 21
November 4

These 41 cases reveal a clear seasonality changes in the observed frequency of dust
storms during 2014. The highest frequency of events are during the spring and summer
(March–August), whereas the lowest number of dust storms events took place in the
autumn and winter (September–November). More details are found in [55].

The simulations of the severe dust storm events over Saudi Arabia are performed
using the WRF with the dynamic core of the Advanced Research WRF (ARW). The WRF
model provides two-day hourly forecasting for surface solar irradiance for specific cases
in 2014. The atmospheric dust aerosol is indirect data that is highly correlated with the
solar radiation at the surface. Specifically, an increase in atmospheric aerosol dust will
immediately turn into solar irradiance reduction on the surface. Consequently, improving
the aerosol forecasting leads to more accurate prediction of surface solar radiation.

For the solar irradiance prediction process, the forceasting data of the National Centers
for Environmental Prediction (NCEP), which follows the Global Forecast System (GFS)
model [56], is used. As a preprocessing step, these GFS forecasts are downscaled both
spatially and temporally. Four daily samples of NCEP GFS are given at 0 UTC, 6 UTC,
12 UTC, and 18 UTC. The temporal and spatial resolutions are three hours and 0.5◦ × 0.5◦,
respectively. The forecast accuracy evaluation is performed by comparing the GHI forecasts
of WRF with the obtained ground measurements. Land cover and elevation and land
cover data were obtained from the digital terrain model of the United States Geological
Survey [57].

In order to represent different weather conditions, simulations of the aforementioned
cases were obtained using non-hydrostatic WRF-ARW mesoscale model (version 3.7.1).
These simulations were based on the NCEP GFS. Two nested domains are included in the
model configuration, as depicted in Figure 5. Unevenly spaced vertical levels are used with
27 km and 9 km of grid spacing for the coarser grid of domain 1 and for domains 2 and
45, respectively. In the evaluation procedure, estimates corresponding to domain two grid
points that enclose the experimental radiometric stations are used. Two-day with one-hour
resolution forecasting simulations were performed on a daily basis. The starting point was
ate midnight UTC. The two-way nesting option between domains 1 and 2 was selected to
allow the grids to interact in both directions.



Energies 2021, 14, 7970 13 of 29

Figure 5. Successive nested domains for model configuration.

In this work, the used a scheme known as Grell convective scheme, which represents
an advanced version of the Grell-Devenyi ensemble convection scheme [58]. The rapid
radiative transfer scheme (RRTM) is selected to control parameterization for long-wave
radiation [59]. The RRTM scheme represents the influences of the detailed absorption
spectrum, accounting for carbon dioxide, ozone, and water vapor as well as a scheme for
short-wave radiation [60] and PBL scheme [61] of Yonsei University (YSU).

Specific days of the year, with distinct sky conditions, are selected to analyze the
performance of the WRF model. The main objective of such selection is to evaluate
the model’s forecasting accuracy under different meteorological conditions. Therefore,
the condition of the sky is the main basis of the analysis. In particular, four different
daily scenarios are considered: clear sky, cloudy, dusty, and dusty-cloudy. From an
operational perspective, it is more practical to forecast on a day-ahead mean basis than an
hour-ahead basis.

4. Results and Discussion

In this section, the discussion of the obtained results is presented in the context of
the main hypothetical questions raised in this paper. Particularly, the first question of
which prediction paradigm performed the best: numerical, machine learning, or hybrid.
The second question is related to investigating the impact of feature space dimension-
reduction on the prediction performance. The later aspect has been considered partly in
an earlier paper [62]. However, an extended version is presented here by considering the
hybrid model for regression of real-time non-discretized data.

4.1. Feature Selection Results

One of the main aims of this paper is to optimize the input feature space. Before dis-
cussing the proposed models, the impact of the proposed feature-space reduction on
efficiency is emphasized. Specifically, a discussion is raised regarding the potential effects
of this reduction based on the γ-values. The following three different forms of the output
space are considered:

• A continuous real-number space;
• A 5-class decision space;
• A 10-class decision space.

Figure 6 illustrates the precision independence of the input attributes when fed in-
dividually to the classifier—that is a single-reduct input space. Every one of these three
figures displays the γ-values separately for each of the three output spaces listed above,
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for each single attribute. From these figures, it is clear that the DH and DN attributes yield
the best γ-values, then H. WS and PWS have the worst γ-values.

Figures 7–9 illustrate how dual-attribute reductions function in relation to the γ-values.
The left diagonals in these figures reflect the top view of Figure 6. The non-linearity of the
input data is proved here. This implies that the best quality is not always achieved when
effective cuts are taken individually, and vice versa. This reflects the complex nature of the
problem under consideration herein.

More comprehensive results for real, 5-class, and 10-class data are presented in Tables 4
and 5. The 5-class and 10-class results are combined in Table 5, as both results are similar.
These results indicate how a combination of a very low-γ single-reduct attribute and other
attributes may provide better prediction quality than a combination of good single reducts.
In the KAU case, for example, combining H and DH with PWS boosted the value of γ to
100%. A similar effect appears when the low P attribute is combined with other attributes.
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Figure 6. γ-values of reducts with a single attribute using real-value, 5-class and 10-class data.
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Figure 7. The real values of the decision attribute: Distributions of γ-values of reducts with dual and single attributes.
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Figure 9. The 10-class decision attribute: Distributions of γ-values of reducts with dual and single attributes.

Table 4. The real values of the decision attribute: The best reducts for five independent runs.

Dataset Attributes in the Best Reducts Reduct Reduct

T WD WS DH DN PWS H P V Size Quality

KAU X X 2 100%

QU X X X 3 99.65%

X X X 3 99.31%

X X 2 97.92%

X X 2 97.92%

TU X – 1 99.83%

X X – 2 99.83%

X – 1 92.17%

Table 5. The 5-class or the 10-class decision attribute: The best reducts for five independent runs.

Dataset Attributes in the Best Reducts Reduct Reduct

T WD WS DH DN PWS H P V Size Quality

KAU X X 2 100%

X X X 3 100%

QU X X X 3 99.65%

X X 2 99.31%

X X X X 4 97.92%

X X X X 4 97.92%

TU X – 1 99.83%

4.2. Prediction Results with Classification

For prediction and energy level classification, a five-fold cross-validation evaluation
scheme is followed. The results with reducts ignore the attributes that have not been
selected in real values of the decision attribute, as shown in Table 4—for example attributes
WD, WS, and PWS.

Tables 6–8 depict the class prediction results using the 35 prediction models that were
discussed in Section 2.2. These prediction models are sorted based on the averages of their
classification rates, and the best rate of each column is highlighted in bold. Generally, using
reducts for reduced feature selection yields better class predication rates for most cases.
The remarkable performance boost occurs with the cases that are originally affected by
missing measurements. e.g., the discriminant analysis for TU datasets. It can be seen that
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the levels of classification vary according to the model used, with advantage to the results
to the support vector machines and neural networks models.

Table 6. Class prediction rates of the KAU datasets.

Classifiers

5 Classes 10 Classes

AveragesWithout
Reducts

With
Reducts

Without
Reducts

With
Reducts

Optimizable SVM 88.1% 89.3% 78.9% 81.6% 84.5%
Linear Discriminate Analysis 87.6% 88.1% 76.6% 76.8% 82.3%
Optimizable Discriminate Analysis 87.6% 88.1% 76.6% 76.8% 82.3%
Quadratic SVM 86.9% 89.7% 73.0% 78.4% 82.0%
Linear SVM 87.5% 88.8% 72.3% 75.1% 80.9%
Trilayered Neural Networks 85.4% 85.6% 73.5% 77.7% 80.6%
Wide Neural Networks 87.8% 88.7% 75.1% 70.3% 80.5%
Optimizable KNN Classifiers 85.6% 86.3% 74.1% 74.9% 80.2%
Bilayered Neural Networks 84.7% 87.1% 71.6% 77.0% 80.1%
Narrow Neural Networks 85.6% 86.6% 71.8% 75.6% 79.9%
Medium Neural Networks 87.6% 87.1% 72.3% 68.7% 78.9%
Cubic SVM 83.2% 88.7% 68.6% 73.5% 78.5%
Ensemble Subspace Discriminate Analysis 82.0% 82.6% 71.8% 68.7% 76.3%
Medium Gaussian SVM 80.4% 83.3% 60.7% 65.8% 72.6%
Weighted KNN 76.5% 81.3% 59.1% 64.6% 70.4%
Optimizable Ensemble Classifiers 76.3% 79.4% 63.4% 62.4% 70.4%
Fine KNN 74.2% 78.9% 57.6% 62.9% 68.4%
Ensemble Bagged Decision Trees 70.4% 72.3% 62.2% 62.2% 66.8%
Cubic KNN 76.3% 78.2% 54.3% 58.2% 66.8%
Optimizable Decision Tree 73.4% 75.4% 57.9% 59.8% 66.6%
Medium KNN 71.8% 79.2% 53.6% 59.5% 66.0%
Ensemble Boosted Decision Trees 76.5% 75.9% 55.0% 56.2% 65.9%
Cosine KNN 71.5% 75.3% 54.0% 59.2% 65.0%
Fine Decision Tree 70.6% 72.7% 57.2% 57.9% 64.6%
Ensemble Subspace KNN 74.7% 67.4% 61.9% 49.8% 63.5%
Fine Gaussian SVM 68.9% 78.7% 45.5% 60.1% 63.3%
Coarse Gaussian SVM 73.4% 74.9% 50.3% 51.4% 62.5%
Ensemble RUS Boosted Decision Trees 72.9% 73.4% 50.3% 51.4% 62.0%
Medium Decision Tree 68.0% 68.2% 52.2% 50.2% 59.7%
Optimizable Naïve Bayes 70.1% 68.7% 50.7% 48.6% 59.5%
Kernal Naïve Bayes 69.4% 68.7% 50.5% 48.6% 59.3%
Coarse KNN 62.8% 67.2% 43.1% 44.8% 54.5%
Coarse Decision Tree 61.7% 61.7% 40.5% 40.5% 51.1%
Gaussian Naïve Bayes 60.1% 58.1% 40.5% 39.2% 49.5%
Quadratic Discriminate Analysis 74.6% 74.7%
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Table 7. Class prediction rates of the QU datasets.

Classifiers

5 Classes 10 Classes

AveragesWithout
Reducts

With
Reducts

Without
Reducts

With
Reducts

Optimizable SVM 86.2% 93.9% 77.9% 86.4% 86.1%
Trilayered Neural Networks 84.7% 93.4% 73.5% 82.1% 83.4%
Optimizable KNN Classifiers 86.2% 91.1% 74.2% 81.2% 83.2%
Bilayered Neural Networks 85.4% 90.9% 74.4% 81.5% 83.1%
Narrow Neural Networks 85.9% 92.2% 70.9% 82.1% 82.8%
Wide Neural Networks 84.7% 91.6% 71.4% 81.4% 82.3%
Medium Neural Networks 86.1% 91.6% 70.6% 80.5% 82.2%
Linear SVM 83.1% 92.9% 69.7% 82.9% 82.2%
Quadratic SVM 83.6% 92.0% 70.6% 81.2% 81.9%
Cubic SVM 80.3% 90.8% 67.4% 79.3% 79.5%
Optimizable Ensemble Classifiers 84.8% 84.1% 71.3% 70.6% 77.7%
Medium Gaussian SVM 78.0% 87.1% 62.4% 72.8% 75.1%
Ensemble Subspace Discriminate Analysis 78.6% 79.1% 67.9% 66.0% 72.9%
Ensemble Bagged Decision Trees 79.4% 82.2% 64.1% 65.3% 72.8%
Fine KNN 74.6% 85.7% 57.1% 70.7% 72.0%
Weighted KNN 76.3% 85.0% 55.9% 70.9% 72.0%
Ensemble Boosted Decision Trees 81.2% 82.0% 58.4% 60.5% 70.5%
Optimizable Decision Tree 77.7% 81.5% 60.3% 62.2% 70.4%
Cubic KNN 74.2% 82.8% 51.2% 66.4% 68.7%
Ensemble Subspace KNN 79.3% 73.3% 69.5% 51.7% 68.5%
Medium KNN 74.6% 81.9% 51.9% 63.8% 68.1%
Cosine KNN 73.0% 81.7% 50.7% 63.2% 67.2%
Fine Decision Tree 72.3% 78.6% 55.4% 57.8% 66.0%
Fine Gaussian SVM 68.8% 80.7% 44.4% 65.3% 64.8%
Medium Decision Tree 75.3% 76.8% 51.6% 53.7% 64.4%
Coarse Gaussian SVM 72.0% 77.0% 50.0% 52.4% 62.9%
Coarse KNN 66.9% 70.0% 45.8% 48.4% 57.8%
Ensemble RUS Boosted Decision Trees 71.3% 70.9% 39.7% 42.2% 56.0%
Coarse Decision Tree 66.2% 65.5% 46.0% 46.0% 55.9%
Linear Discriminate Analysis 85.8% 93.0% 84.0%
Optimizable Discriminate Analysis 87.8% 93.0% 84.0%
Kernal Naïve Bayes 72.0% 69.9% 51.2%
Optimizable Naïve Bayes 72.0% 70.6% 52.1%
Gaussian Naïve Bayes 65.2% 64.8%
Quadratic Discriminate Analysis
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Table 8. Class prediction rates of the TU datasets.

Classifiers

5 Classes 10 Classes

AveragesWithout
Reducts

With
Reducts

Without
Reducts

With
Reducts

Optimizable Ensemble Classifiers 84.5% 79.4% 66.9% 61.3% 73.0%
Bilayered Neural Networks 63.8% 88.2% 52.8% 74.4% 69.8%
Trilayered Neural Networks 60.5% 85.7% 51.9% 76.1% 68.6%
Ensemble Boosted Decision Trees 76.7% 77.0% 59.8% 60.1% 68.4%
Narrow Neural Networks 62.2% 85.4% 50.2% 75.1% 68.2%
Wide Neural Networks 66.0% 85.2% 48.1% 70.6% 67.5%
Medium Neural Networks 65.7% 85.2% 48.3% 70.6% 67.5%
Ensemble Subspace Discriminate Analysis 77.0% 79.4% 51.0% 61.5% 67.2%
Optimizable Decision Tree 74.9% 75.3% 59.1% 59.1% 67.1%
Ensemble Bagged Decision Trees 74.0% 76.7% 55.1% 58.7% 66.1%
Optimizable KNN Classifiers 62.9% 88.0% 41.8% 69.5% 65.6%
Optimizable SVM 51.6% 91.6% 39.4% 75.1% 64.4%
Quadratic SVM 49.0% 89.9% 42.0% 76.5% 64.4%
Fine Decision Tree 68.3% 74.2% 54.4% 57.7% 63.7%
Medium Decision Tree 69.0% 73.5% 55.4% 56.4% 63.6%
Linear SVM 48.6% 87.2% 39.5% 73.7% 62.3%
Cubic SVM 48.4% 85.4% 39.5% 73.7% 61.8%
Ensemble Subspace KNN 70.4% 77.0% 46.3% 51.0% 61.2%
Weighted KNN 58.7% 81.4% 38.3% 61.7% 60.0%
Medium Gaussian SVM 46.9% 85.5% 38.3% 66.4% 59.3%
Fine KNN 58.0% 80.5% 36.8% 59.1% 58.6%
Medium KNN 57.7% 80.0% 37.1% 58.0% 58.2%
Cubic KNN 57.1% 78.7% 37.1% 57.1% 57.5%
Coarse Decision Tree 67.8% 66.7% 44.6% 44.6% 55.9%
Cosine KNN 55.4% 78.0% 33.8% 55.4% 55.7%
Coarse Gaussian SVM 43.7% 79.4% 32.9% 53.8% 52.5%
Coarse KNN 53.3% 71.4% 26.3% 46.3% 49.3%
Fine Gaussian SVM 38.3% 79.6% 7.0% 48.1% 43.3%
Ensemble RUS Boosted Decision Trees 55.7% 57.7% 19.3% 30.8% 40.9%
Kernal Naïve Bayes 69.2% 48.8%
Optimizable Naïve Bayes 69.2% 48.8%
Linear Discriminate Analysis 86.4%
Optimizable Discriminate Analysis 86.4%
Quadratic Discriminate Analysis
Gaussian Naïve Bayes

4.3. Prediction Results with Regression

Two solar forecasting experiments were carried out using regression models. In the
first experiment, the GPR models are applied to the KAU, QU and TU datasets. The main
results of this experiment are presented in Figures 10–15 and Table 9. The predicted solar
irradiance versus the real values for the invoked datasets with and without reduction
are shown in Figures 10–15. These figures indicate how promise the proposed regression
models are, especially the ones with reduction. Table 9 shows this by comparing the error
values between the two models using the Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and R-Squared measures. Given the values of the prediction and observation
data, yi and ζi, i = 1, . . . , n, respectively, these comparative measures are computed as
follows:
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ei = (yi − ζi), (10)

RMSE =

√
1
n

n

∑
i=1

e2
i , (11)

MAE =
1
n

n

∑
i=1
|ei|, (12)

ȳ =
1
n

n

∑
i=1

yi, (13)

R-Squared = 1− ∑n
i=1 e2

i
∑n

i=1(yi − ȳ)2 , (14)

The RMSE and MAE are calculated to estimate the errors of computing the GHI values
in W/m2, as explained as follows. The comparison in Table 9 highlights the success of the
reduction models in obtaining better results in two cases, and the results were very close in
the third one.
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Figure 10. The predicted solar irradiance versus the real values for KAU dataset without reduction.
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Figure 11. The predicted solar irradiance versus the real values for KAU dataset with reduction.
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Figure 12. The predicted solar irradiance versus the real values for QU dataset without reduction.
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Figure 13. The predicted solar irradiance versus the real values for QU dataset with reduction.
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Figure 14. The predicted solar irradiance versus the real values for TU dataset without reduction.
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Figure 15. The predicted solar irradiance versus the real values for TU dataset with reduction.

Table 9. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and R-Squared of GHI Values (in W/m2) using
regression prediction models on KAU, QU and TU datasets.

KAU QU TU

Without Reducts With Reducts Without Reducts With Reducts Without Reducts With Reducts

RMSE 124.76 118.11 146.79 143.78 170.34 171.80
MAE 93.067 85.913 105.110 102.530 126.200 129.340
R-Squared 0.99 0.99 0.99 0.99 0.98 0.98

In the other regression experiment, the machine learning (GPR), numerical (WRF),
and hybrid (GPR with WRF data) prediction models are applied on datasets KAU, QU,
and TU with dust storms. The daily solar features including the GHI values of the current
and previous days are used to predict the value of the GHI on the next day. Root mean
square errors are computed and reported using the five-fold cross-validation criterion,
as depicted in Table 10. The conclusion obtained from this result set implies that the use of
machine learning generally improves the results. The proposed hybrid model gives the
best results in most cases. Even with the only exception, with TU dataset, the recorded
error using the hybrid model is slightly larger than GPR. The second conclusion from
these results is that feature reduction does not help a lot with the regression process.
Figures 16–18 reveal detailed class prediction results using the confusion matrix principle,
which are the collection of predicted and actual classification information carried out by
the best classifiers. In most cases, the classification failure occurs with neighboring classes.
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Energies 2021, 14, 7970 24 of 29

1 2 3 4 5

Predicted class

1

2

3

4

5

T
ru

e
 c

la
s

s

Dataset: TU with reducts - Classifier: Optimizable Ensemble

2

2

5

1

7

136

19

1

24

168

19

14

176

1 2 3 4 5

Predicted class

1

2

3

4

5

T
ru

e
 c

la
s

s

Dataset:  TU with reducts - Classifier: Optimizable SVM

1 1

12

2

2

150

11

9

179

12

11

184

1 2 3 4 5 6 7 8 9 10

Predicted class

1

2

3

4

5

6

7

8

9

10

T
ru

e
 c

la
s

s

Dataset: TU - Classifier: Optimizable Ensemble

1

2

1

2

3

3

6

34

11

6

1

1

10

82

17

3

2

1

20

53

19

3

21

63

18

2

1

17

63

9

1

14

84

1 2 3 4 5 6 7 8 9 10

Predicted class

1

2

3

4

5

6

7

8

9

10

T
ru

e
 c

la
s

s

Dataset: TU with reducts - Classifier: Quadratic SVM

1

1

2 2

4

4

6

34

5

10

96

9

2

12

73

17

16

71

15

13

74

10

12

85

Figure 18. Distributions of TU predicted classes.

Figures 19–21 comprehensively reveal the detailed deviations between the true and
the predicted GHI values. The hybrid model performs well in most cases. There are some
days where the error between true and predicted values is large. This is because these days
usually follows cloudy ones whose mostly inaccurate measurements.

Table 10. RMSE of GHI values (in W/m2) using different regression prediction models on dust storm
datasets.

Prediction Models KAU QU TU

Numerical Model (WRF) 1412.06 1196.76 1354.16
Machine Learning Model (GPR) 440.02 737.70 334.46
Hybrid Model 421.15 695.41 365.43

Machine Learning Model with Feature Selection 514.19 645.37 666.37
Hybrid Model with Feature Selection 559.03 631.13 641.65
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Figure 19. Prediction models for KAU with the dust storm dataset.
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Figure 20. Prediction models for QU with the dust storm dataset.
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Figure 21. Prediction models for TU with the dust storm dataset.

5. Conclusions

This paper presents hybrid machine learning approaches for solar radiation estimation
by utilizing numerical methods. The numerical models, particularly the WRF models, are
widely used in forecasting weather data. One of the main achievements of this paper is to
show the extent to which the use of machine learning models can improve predictions for
numerical methods. This has been achieved by building hybrid models through several
layers of methodology design. First, a feature selection and dimensionality reduction
approach was proposed for parameters associated with solar radiation estimation. The pro-
posed attribute reduction is based on using an adaptive memory programming approach
to optimize the input feature space of a solar radiation model. Then, different classification
models are used to predict the solar radiation classes. The proposed methodologies are
evaluated using a real environmental temporal dataset collected from diverse regions in
Saudi Arabia. The feature selection has played an important role in increasing the class
prediction rates. The class prediction rates increased, after using feature selection, by val-
ues up to 8.5% ∼ 15% depending on the used classifier and the considered test region.
Finally, the WRF data were used in the proposed regression models to obtain improved
prediction results that are generally better than the predictions of pure machine learning
and WRF models. The prediction improvements of the average root mean square error
reached up to 5.6% and in the mean absolute error values up to 8.3%. The obtained results
proved the effectiveness of the proposed hybrid model in improving the prediction of the
GHI values. The hybrid models could reduce the root mean square errors by 70.2% and
4.3% than the numerical and machine learning models, respectively, when these models
are applied to some dataset. For some reduced feature dataset, the hybrid models could
decrease the root mean square errors by 47.3% and 14.4% than the numerical and machine
learning models, respectively. For discrete classes, attribute reduction, which combines
few low-dependency degree single-reduct attributes with other attributes, results in very
good quality solutions. On the other side, attribute reduction did not contribute much to
performance improvement. when discretization is used with the input data classes.
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