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Abstract: Solar-powered air conditioners offer a high potential for energy-efficient cooling with
a high economic feasibility. They can significantly reduce the energy consumption in the building
sector, which is essential to meet the greater ambition of reducing greenhouse gas emissions by 80%
in the EU by 2050. This paper presents a computational model development capable of simulating
the behaviour of a photovoltaic-assisted heat pump in different locations and working conditions.
In addition, this model has been used to optimise a solar on-grid air conditioning system. The gener-
ated model has been validated with experimental data obtained in a real facility for a whole summer
of operation (more than 100 tested days) in a Mediterranean climate (Alicante, Spain). According to
the simulation results, the average Energy Efficiency Ratio (EER) of the system is 16.0, 10.7 and
7.8 in Barcelona, Madrid and Seville, respectively. The optimisation analysis has proven that the
severity of the climatic region increases the costs as well as the optimum PV power to drive the AC
unit. The obtained values for the the PV power and the annualised cost are 400 W and 506.2 € for
Barcelona, 900 W and 536.7 € for Madrid, and 1300 W and 564.7 € for Seville. The annualised cost
and the CO2 emission levels are higher for the conventional system (no PV panels) than for the solar
on-grid system, regardless of the installed PV power. This difference can be up to 66.64 € (10.55%)
and 112.94 kg CO2 (64.83%) per summer season in the case of Seville.

Keywords: solar cooling; energy efficiency; PV; heat pump

1. Introduction

The 2030 climate and energy framework includes EU-wide targets and policy ob-
jectives for the next decade. Key targets for 2030 are: at least 40% cuts in greenhouse
gas emissions (from 1990 levels); at least 32.5% improvement in energy efficiency, and at
least a share of 32% of renewable energy. The building sector is crucial for achieving the
EU’s energy and environmental goals. At the same time, better and more energy-efficient
buildings improve the quality of citizens’ life while bringing additional benefits to the
economy and the society. All new buildings must be nearly zero-energy buildings (NZEB)
from 31 December 2020. Since 31 December 2018, all new public buildings already need
to be NZEB (Energy Performance of Buildings Directive 2010/31/EU (EPBD)). The low
amount of energy that NZEB buildings require, must come mostly from renewable sources.

The use of energy for space cooling is growing faster than any other end use in
buildings, more than tripling in the last three decades. There is no doubt that global
demand for space cooling and the energy needed to provide it will continue to grow
for the years to come [1]. There are several applications in the tertiary sector, such as
offices or hospitals, where the thermal demand for heating and cooling is mainly produced
during the working hours, which coincides with sun hours. In these cases, the use of solar
energy to power the air conditioning systems could be a great idea. This solution could be
particularly interesting in places with high solar irradiance and long days.

According to the new generation solar cooling and heating systems task 53 issued by
International Energy Agency [2], PV-driven compression chillers are the most promising
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and close-to-market solar solutions today in the case of small to medium units (<50 kW
cooling). Until recently, it seemed that solar-assisted cooling had best chances for market
deployment in cases such as large buildings with central air conditioning systems, be-
cause of the unique development of solar thermal cooling solutions, either by absorption or
adsorption. However, with the huge market increase of the cooling equipment in the small
residential and small commercial sector, and the tremendous decrease in the cost of PV
modules, the situation has changed. The main benefits of PV systems are reported in [3].
The author focused on the energy efficiency of the system, which has highly increased in
the last years with great reliability and low cost of maintenance. In addition, this work
highlighted the reduction of the PV system price by almost 75% during the last 10 years.

In line with the previous paragraph, Wang et al. [4] recently reviewed and evaluated
the performance of various Air Source Heat Pump (ASHP) systems from three main solar
sources, such as Solar Thermal (ST), Photovoltaic (PV) and hybrid Photovoltaic/Thermal
(PV/T). They conducted a systematic review of the prevailing solar-assisted ASHP systems,
including their boundary conditions, system configurations, performance indicators, re-
search methodologies and system performance. The simulation models for a solar-assisted
ASHP system include TRNSYS, CFD, self-developed Matlab and mathematical model.
The comparison result indicated that the PV-ASHP system has the best techno-economic
performance, which performs best on average with a Coefficient Of Performance (COP).
Among the future lines of action, they include it to collect field testing data from pilot
projects and validate the simulation/experimental results.

Over the past years, a large number of research studies have been carried out on
modelling, simulation, design and optimisation of solar photovoltaic air conditioning
systems. Demirkıran et al. [5] remarked that the unpredictable and intermittent nature of
solar power leads to the need for modelling and simulations of solar cooling systems in
various conditions. They modelled, using Simulink-Matlab, a solar-aided air conditioner
system consisting of a grid-connected PV/Battery hybrid system with a decision box
that switches between grid and battery depending on the state of charge of the battery.
They studied different scenarios combining PV panel numbers, battery capacity and control
logic. Roselli et al. [6] evaluated a system able to meet pure electric, space heating and
cooling loads of a small office building located in Southern Italy. They analysed the energy
and environmental performance of the system by means of a dynamic simulation software
(TRNSYS) changing the photovoltaic nominal power from 4.5 to 7.5 kW, battery capacity
from 3.2 to 9.6 kWh, and the reference electrical system. The analysis showed how monthly
variations of the electric reference system, due to different monthly Italian electricity mix
production, influence the energy and environmental performance of the solar-based system.
The proposed system guarantees high primary energy saving and an equivalent carbon
dioxide emissions reduction up to about 93%. Fernández et al. [7] optimised a photovoltaic
heat pump to leverage electric self consumption by harnessing building thermal mass
in the residential sector. For this purpose, an EnergyPlus model of a flat in Pamplona
(Spain) was used. The optimisation analysis was based on a set-point modulation control
strategy. Results show that under adequate climatological circumstances, the proposed
methodology can reduce the total electric energy from the grid between 60–80%. Again,
a gap between solely simulation or laboratory testing and real application is identified.

The works that face the study of PV air conditioning systems from an experimental
point of view are scarcer in the literature. Aguilar et al. [8] carried out an experimental
work based on the analysis of an air conditioning unit powered by PV energy and the
grid, simultaneously. This work, conducted in Alicante (Spain) from May to October,
was focused on maximising the solar contribution and optimising the performance of the
photovoltaic air conditioning (PV-AC) system. The system reached a total solar contribu-
tion of 64.5%, while the production factor was 65.1%, with a 100% reliability. The authors
showed that the efficiency of the system depends mainly on the solar irradiance, the am-
bient temperature and the load factor of the AC unit. Using these experimental data,
Aguilar et al. [9] carried out an environmental and techno-economic study focused on



Energies 2021, 14, 8054 3 of 17

quantifying the environmental benefits and evaluating the feasibility of the proposed
technology. In this work, the authors compared this solution with a conventional unit.
On the one hand, the primary non-renewable energy consumption and the CO2 emissions
of the PV-AC system were 74% lower than the conventional unit. On the other hand,
the reduction of the electrical consumption resulted in an annual cost of the proposed
system 16% lower than the reference unit. Opoku et al. [10] studied the performance of a
hybrid solar PV (with batteries) grid-powered air conditioner for daytime office cooling in
hot humid climates (Kumasi, Ghana) during one year. Li et al. [11] analysed the annual
performance of a chiller water plant powered by 1562 PV panels used to provide cooling
(April to November) to a 14,220 m2 tertiary building. The final solar contribution of the
study was 52%, even without taking into account the four months in winter during which
cooling was not necessary. Beyond a validation with laboratory data where, in the best of
cases, the models found in the literature are validated, this work shows a validated model
with experimental data obtained in a real building, both at the power level and at energy
level. Based on this validated model, it is proposed to evaluate the thermal performance
and economic viability in climatic conditions different from those tested and to optimise
the sizing of the installation based on these particular operating conditions.

The main innovation of this research is the combination of modelling, studying the
behaviour and performance in different ambient and operating conditions (simulation),
and optimising a solar air conditioning system that has been validated with experimental
data obtained in a real installation for a whole summer of operation (more than 100 days).
The experimental data are referred to an office located in Alicante (Spain), where the
summers are hot and mostly clear, and the winters are moderate (Mediterranean climate).
The model is used for the optimisation of the photovoltaic solar field in terms of PV
installed power. Furthermore, the behaviour of the system in different climatic zones is
analysed in terms of annual behaviour parameters.

This paper is organised as follows. Section 2 includes a brief description of the
experimental work carried out in the office and the description of the models used in this
investigation. Section 3 presents the experimental validation of the generated models and
the comparison of the system performing in different climatic zones. Section 4 is devoted
to the optimisation of the PV panel field. Section 5 presents the conclusion and discusses
future work.

2. Materials and Methods
2.1. Experimental Apparatus

Figure 1 depicts a schematic representation of the facility where the experiments
were conducted.

Subsystem A consists of an air conditioning system with a nominal cooling and
heating capacities of 3.52 kW and 3.81 kW, respectively. The performance indicators
are EER = 4.09 and COP = 3.83. This subsystem is connected to two different energy
sources: a PV system consisting of three panels connected in parallel (705 Wp, 24 V,
subsystem B) and the grid. The total electrical energy demanded by the air conditioning unit
is supplied by either one source or the other, since they work in parallel. The control system
guarantees that the renewable source has priority over the grid. Finally, subsystem C,
is identical to subsystem B. In this case, it is connected to the grid through a conventional
inverter (DC/AC) equipment, which worked using the Maximum Power Point (MPP) of
the PV panels. This subsystem is used as a reference to quantify the generation losses
that subsystem B may experience by following the operation of the equipment instead of
maximising its production using an MPPT inverter.

The experimental tests were conducted in a 35 m2 office (Alicante, Spain). This office
is located on the second (top) floor of an office building. It has only one external facade
facing north, with a length of 4.5 m.
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Figure 1. Experimental facility. A air-conditioning heat pump. B PV panels connected to the heat
pump. C PV panels connected to the grid. Reprinted from Aguilar et al. [8] with permission,
2017, Elsevier.

The indoor unit was placed inside the office, while the outdoor unit was installed on
the building’s roof. Typical occupancy profiles were observed as in office hours, from 8 to
20 h. The indoor temperature (thermostat) was set to 23 ◦C in cooling mode.

Several sensors and measurement devices were used to record data. The main sensors
used during the experimental campaign are depicted in Figure 1. The variables related
to the performance of the system can be divided into electrical, ambient conditions and
refrigerant (compression vapour cycle) measurements. All the sensors and measured
magnitudes are included in Table 1. The current was measured using a shunt resistance
(class 0.5), while the voltage was taken directly by the data acquisition system, where the
voltage channel is accurate to ±5.1 mV. The refrigerant cycle temperatures were measured
with thermocouples type K and the pressures using pressure transducers. A meteorological
station was used for the measurement of the ambient conditions.

Table 1. Specifications of the sensor used during the experimental tests (Aguilar et al. [8]).

Variable Symbol Unit Uncertainty Range

Compressor Inlet temperature T1 ◦C ±1.5 −40 ÷ 1000 ◦C
Compressor Outlet temperature T2 ◦C ±1.5 −40 ÷ 1000 ◦C
Condenser Outlet temperature T3 ◦C ±1.5 −40 ÷ 1000 ◦C
Evaporator Inlet temperature T4 ◦C ±1.5 −40 ÷ 1000 ◦C
Ambient Temperature Tamb

◦C ±0.3 −20–80 ◦C
Indoor Temperature Tin

◦C ±1.5 −40 ÷ 1000 °C
Evaporator Pressure pevap bar ±0.14 25 bar, class 0.5
Condenser Pressure pcond bar ±0.17 30 bar, class 0.5
Grid Power Pgrid W ±11.5 1000 W, class 1
Voltage of the PV-EQ Veq,PV V ±5.1 mV
Current of the PV-EQ Ieq,PV A class 0.5
Voltage of the PV-GRID Vgrid,PV V ±5.1 mV
Current of the PV-GRID Igrid,PV A class 0.5
Solar Irradiance G W/m2 ±1% RD 0–1400 W/m2

Wind velocity vW m/s ±(0.2 m/s + 3% RD) 0–10 m/s
Wind direction DW

◦ ±3◦ 0–360◦
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This system was tested throughout a whole year, taking into account winter and
summer conditions. Refer to Aguilar et al. [8] for a detailed description of the facility,
building and experimental procedure.

2.2. Modelling

This section covers the description of the mathematical models used in this investiga-
tion. Firstly, the model of the building is described. Secondly, a mathematical characterisa-
tion of the PV-driven heat pump system is provided. Finally, the interaction between them
is described.

2.2.1. Building Modelling

The geometric modelling of the building has been carried out with the LIDER/CALENER
unified computer tool (HULC), [12]. The geometric model of the building includes the 3D
representation of the building in the energy analysis software. Likewise, the definition
of the main architectural parameters of the building is included, such as the dimensions
(floor plans and height), the distribution of the indoor spaces and the composition of the
opaque and transparent thermal envelope. The opaque envelope covers walls, roofs, floors,
and insulation and the transparent envelope includes windows, skylights, and glass doors.
Software HULC is the official tool used in Spain for both verifying compliance with buildings
regulation and for energy certification of buildings, which includes the calculation engine
DOE-2, which is one of the most prestigious energy analysis software packages worldwide.
With the help of the experimental data, the building plans and the measurements conducted
in the building, the characteristic parameters of the building have been defined, taking into
account, among others: the thermal insulation, the use profile and the internal thermal loads
(occupation, lighting and equipment). It was determined that the thermal envelope includes a
double-sheet facade with a 4-millimetre thermal insulation layer. The glazed area consists of a
3 × 1.5 m2 double glazed window (4/6/4) equipped with sunscreen slats. The ceiling height
is 2.8 m. The installed lighting power is 14 W/m2 of fluorescent technology.

The use profile of the building is 12 h, between 8 in the morning and 8 in the afternoon
uninterruptedly. The building has the main facade facing west and has another office
building attached to the east side. To the south, there is an industrial building that gen-
erates shade at certain times of the year, while the north facade is completely exposed.
The photovoltaic panels located on the roof of the building generate a shade on it. All this
information was taken into account when generating the 3D modelling of the building.

Figure 2 shows the geometric representation of the building (Figure 2a), highlighting
in the northeast corner of floor 2, the 35 m2 office in which the air conditioning equipment
with photovoltaic support is installed, and the real office building (Figure 2b). As it can be
seen, it is a building with 3 floors above ground and a non-habitable basement. The ground
floor is intended for the use of a workshop and warehouse, while floors 1 and 2 have the
use of offices and are habitable.

(a) (b)

Figure 2. (a) Building model generated with the HULC computer tool. (b) Real building (office).



Energies 2021, 14, 8054 6 of 17

2.2.2. Air Conditioning Unit Modelling

A mathematical characterisation of the PV-driven heat pump system is provided in
this section. The general system consists of 2 subsystems: PV panels and heat pump.

According to Skoplaki and Palyvos [13], the solar panels can be modelled by a large
number of correlations expressing the temperature dependence of the PV module’s electri-
cal efficiency, ηPV, or electrical power, ẆPV. In this work, the solar collectors are modelled
via their power generation, as in Equation (1):

ẆPV = ẆPV,ref(1 − β(TC − 25))
G

1000
(1)

It has been often reported in the literature that the cell/module temperature, which is
not readily available, can be replaced by the normal operating cell temperature (NOCT).
Again, according to Skoplaki and Palyvos [13], the relationship between the PV cell tem-
perature and the normal operating cell temperature can be written as,

TC = Tamb + (NOCT − 20)
G

800
(2)

The quantities ẆPV,ref, β, and NOCT are normally given by the PV manufacturer.
In this study, the following values were considered in the simulations: ẆPV,ref = 235 W
(each panel), β = 0.004 1/K, and NOCT = 47 ◦C.

Concerning the air-to-air heat pump, the performance of a refrigeration cycle is usually
described by the Energy Efficiency Ratio (EER), Equation (3), which measures the ratio of
cooling power to electrical power.

EEReq =
Q̇ref

Ẇeq
(3)

As mentioned in Aguilar et al. [8] and Underwood et al. [14] among others, the EER
depends mainly on condensation and evaporation temperatures, Tcond and Tevap, as well
as the Load Factor, LF (i.e., ratio of the actual to maximum capacity). According to several
authors [15,16], the EER depends quadratically on the condenser–evaporator temperature
difference, ∆Tcond-evap, and linearly with the load factor. In line with EnergyPlus [17],
the EER can be correlated by means of a standard two-variables quadratic equation, as in
Equation (4):

EEReq = a0 + a1∆Tcond-evap + a2LF + a3∆T2
cond-evap + a4∆Tcond-evapLF (4)

Constants a0−4 were obtained by fitting Equation (4) to the experimental data from
Aguilar et al. [8], and can be found in Table 2. The fitting coefficients have been determined
with 95% confidence bounds.

Table 2. Constants for Equation (4).

Constants an in Equation (4)

0 1 2 3 4

11.41 −0.2528 4.14 0.001344 −0.01488

Several Key Performance Indicators (KPIs) are defined in order to characterise the
system’s performance. Each KPI can be calculated in either power or energy basis. Let Θ
be any magnitude involved in the analysis. The procedure for converting power data
to energy data is shown in Equation (5), where ∆t refers to the time step used in the
experimental measurements:

Θ = ∑ Θ̇∆t (5)
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The Solar Contribution, SC, or just the contribution of solar energy expresses the
fraction of renewable energy used to drive the compressor. In other words, it is the ratio of
the renewable to the total energy consumed by the compressor:

SC = 100
Ẇeq,PV

Ẇeq
(6)

The Production Factor, PF, is defined as the ratio of the renewable energy consumed
by the compressor to the energy generated by the modules. The PF accounts for those
intervals of operation when the PV generation is not used in the facility:

PF = 100
Ẇeq,PV

ẆPV
(7)

The system Energy Efficiency Ratio (EERsyst), Equation (8), indicates the grid electricity
needed for producing the energy demand. This parameter, calculated on an energy basis,
can be considered as a mean EER, but in working conditions:

EERsyst =
Q̇ref

Ẇeq,grid
(8)

2.2.3. Building–System Interaction

Both models building and system are directly interconnected and they are used
to know the behaviour of the proposed technology (PV-HP) under different working
conditions. First of all, the building simulation allows us to know the hourly thermal load
in June, July, August and September. In addition, the simulation program gives other
results as the hourly solar irradiance, the outdoor temperature and the indoor temperature.
All of them are used as input variables in the analytical model of the system defined in
Section 2.2. Figure 3 shows the output variables of the analytical model that will be used
as Key Performance Indicators to analyse the system behaviour.

Figure 3. Schematic representation of the interaction building–system.

3. Results and Discussion
3.1. Validation
3.1.1. Building Model Validation

Figure 4 shows the summer monthly comparison (June, July, August, and September),
in terms of cooling thermal demand, between the results predicted by the building model
and the experimental measurements. As it can be observed, the predicted results for July
and August are in excellent agreement with the experimental results, obtaining differences
lower than 5%. The reported results for June and September, however, are underpredicted
when compared to the observed values. This may be due to the fact that the actual
experimental climatic conditions during these months were more severe than those taken
into account in the simulation tool.
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Figure 4. Comparison between experimental and predicted results. Building model.

3.1.2. AC System Model Validation

Figure 5 shows the comparison between the experimental (solid) and predicted
(dashed) electric instant values during the 31 July (Figure 5a) and the 2 August (Figure 5b).
Both days had completely different heat demand profiles, so they can help better under-
stand the system’s behaviour. On the one hand, the 31 July had the main thermal demand
during the morning hours, when the solar contribution is low. At noon, the energy con-
sumption decreased, which modified the operating point of the PV panels connected to
the equipment to adapt their production to the equipment’s consumption. On the other
hand, on the 2 August, the thermal demand was higher and was mainly concentrated on
the hours of sunshine, which was beneficial for the performance of the PV panels.

(a) (b)

Figure 5. Experimental (solid, Aguilar et al. [8]) and simulated (dashed) electrical curves registered along: (a) the 31 July
and (b) the 2 August. Reprinted from Aguilar et al. [8] with permission, 2017, Elsevier.

This figure includes four series of experimental ([8]) and simulated data: the total
power consumed by the air conditioning unit, Ẇeq (blue), the power consumed by the
unit and provided by the grid, Ẇeq,grid (yellow), the photovoltaic power consumed by the
unit, Ẇeq,PV (purple) and, finally, the photovoltaic power generated by the reference panels
connected to the electricity grid through an MPPT inverter, ẆPV (red). It can be seen that
the total power consumed by the unit is greater than the photovoltaic generation and the
PV production of the panels connected to the unit has a very similar performance to that of
the panels connected to the grid. The only power loss was due to the lower efficiency of the
unit converter which is not an MPPT inverter. However, when the thermal demand drops
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and the power consumed by the unit decreases, the PV panels connected to it reduce their
production to adapt it to the power consumed by the unit. In these cases, the PV panels
connected to the grid have a greater use since they keep working under the MPPT algorithm.
During the day shown in Figure 5a, the total energy consumed by the air conditioning unit
was 5.7 kWh, of which 3.2 kWh was provided by the photovoltaic installation, while the
remaining 2.5 kWh was provided by the grid. Thus, the solar contribution for this day was
56.8%. The panels connected to the grid produced 4.3 kWh. The production factor was
76.0%. The day shown in Figure 5b reveals a different behaviour of the proposed system.
During this day, the total energy consumed by the unit was 8.4 kWh, of which 4.0 kWh
was provided by the photovoltaic installation and 4.4 kWh by the grid. During this day,
the grid-connected photovoltaic panels produced 4.2 kWh, only slightly more than those
connected to the unit. Thus, the solar contribution was 47.8%, while the production factor
remained at 94.3%. The EERsyst on the 31 July was 9.9, while on the 2 August was 7.0.
This behaviour has been explained in detail in [8,9]. As it can be seen, the results predicted
by the models (PV and heat pump) are in good agreement with the experimental results.

Figure 6 depicts the comparison between experimental and predicted overall power
consumption (instant values) for the analysed day in July. A perfect match between
experimental and calculated results involves that the points would be located in a straight
line passing through the origin with gradient equal to 1. The dashed lines represent the
threshold of 10% difference between the calculated and predicted value. The averaged
differences between simulated and experimental results are 4.54% for the system’s overall
power consumption and 4.61% for the PV generation. The maximum observed difference
is lower than 10%.

Figure 6. Comparison between experimental and predicted instant overall power consumption.

Figure 7 depicts the daily variation of the system EER with the solar contribution for
July. Each point represents one day. As it can be seen, the system EER increases expo-
nentially with the solar contribution. This can be explained through Equations (6) and (8).
A higher solar contribution implies that the system is using less energy from the grid,
increasing the system EER. The imaginary situation corresponding to SC = 1 would lead
to an EERsyst = ∞ since no energy from the grid would be required to drive the system.
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Figure 7. Comparison between experimental and predicted daily values. EER vs. SC curve.

Finally, Figure 8 presents the monthly comparison (June, July, August, and September)
between experimental and predicted results. This figure includes the system total energy
consumption (Ẇeq) and the renewable (PV) energy consumption (Ẇeq,PV). Small differences
are found between the simulation and the experiments. Concerning the total energy
consumption, a maximum deviation of 6.45% is observed for June, whereas a minimum
of 2.17% is obtained for August. The average difference for the analysed months is 4.23%.
Regarding the PV energy consumption, the minimum, average and maximum difference
are 0.64%, 2.20%, and 4.49%, respectively. Therefore, in the light of the results shown,
the model was considered validated.

Figure 8. Comparison between experimental and predicted results. Monthly total energy consump-
tion (Weq) and monthly PV energy consumption (Weq,PV).

3.2. Influence of the Climatic Region

Once the models of both the building and the system were validated, they were used
to analyse the behaviour of the proposed solution under different climatic conditions.
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Thus, in this section, the results obtained from the simulation in three Spanish cities
with different summer climates are compared, such as Seville, with high summer climatic
severity, Madrid, with medium summer climatic severity, and Barcelona, where the severity
of the weather in summer is low. These are three cities with representative climates of the
Mediterranean geography, the results of which can be extrapolated to other locations with
similar climates.

For the three simulations, the same operational characteristics were used as in the
experimental study, both for the definition of the building (surfaces, insulation, etc.), and for
the HVAC system with PV (panel power, orientation, inclination, etc.).

As can be seen in Table 3, the greater climatic severity in Seville is shown in the value
of the cooling thermal load, since it has a cooling load of 2218.7 kWh/year, in Madrid
1684.6 kWh/year and, in Barcelona, 949.8 kWh/year. Although the average temperature
during the working hours is similar in the three cases, Seville reaches the highest of the
three, with 23.4 ◦C, followed by Madrid with 22.7 ◦C and this, in turn, by Barcelona,
where the average temperature is 22 ◦C. This temperature difference affects both the
operation of the refrigeration equipment and the photovoltaic solar panels.

Table 3. Results concerning the influence of the climatic region analysis.

Magnitude Barcelona Madrid Seville

Qref (kWh) 949.8 1684.6 2218.7
I (kWh/(m2 day)) 5.78 6.18 5.98
Tamb (◦C) 22.0 22.7 23.4
tON (h) 756.0 975.0 1070.0
Weq (kWh) 170.7 364.5 526.3
Weq,grid (kWh) 59.3 156.7 285.9
WPV (kWh) 428.8 451.8 439.0
Weq,PV (kWh) 111.4 207.7 240.5
EEReq (-) 5.6 4.6 4.2
EERsyst (-) 16.0 10.8 7.8
ηPV (-) 0.121 0.120 0.120
SC (%) 65.3 57.0 45.7
PF (%) 26.0 46.0 54.8

Figure 9 compares the results of thermal demand and energy consumption of the
model. Since the annual (seasonal) irradiation is similar in the three cases, the photovoltaic
production is significantly the same in the three analysed locations. However, the higher
thermal demand in Seville leads to a higher electrical consumption of the equipment and,
therefore, to a greater use of photovoltaic solar energy. On the opposite side, Barcelona has
lower thermal demand, which translates into less use of the renewable source.

As reflected in the defined analytical model, the EER of the equipment depends on the
thermal load and the operation temperatures. Thus, when the equipment operates at low
load, its efficiency improves, in the same way that when the outside temperature increases,
the EER is reduced. This is evident in the simulation results. It can be seen that, in the
Barcelona simulation, the equipment works with a lower thermal load and a lower outside
temperature, so its EER is 5.6 compared to 4.6 in Madrid and 4.2 in Seville.

The EER of the system is directly related to the EER of the equipment, which we have
seen was higher in the case of Barcelona and the solar contribution, which is also higher
for this location (SCBarcelona = 65.3%, SCMadrid = 57.0%, and SCSeville = 45.7%). Therefore,
the average EER of the system in Barcelona is 16.0, while in the case of Madrid, it is 10.8
and, in Seville, it remains at 7.8. The three points maintain the trend of the curve shown in
Figure 7.
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Figure 9. Results concerning the influence of the climatic region analysis.

From the point of view of photovoltaic panels, these have a higher level of use in
Seville, since their production factor is 54.8%, while in Barcelona it is only 26%. This indi-
cates that this PV installation is oversized in the case of Barcelona and the optimal power
for this location would be below the 705 Wp used in the simulation.

The average performance of the panels has been very similar in all three cases, al-
though their performance is slightly better in the case of Barcelona due to the lower outside
temperature during sunny hours.

4. Optimisation Analysis

In this section, an optimisation analysis is conducted in order to determine the opti-
mum PV power in each of the locations considered. This analysis takes into account the
annual costs for investment, maintenance, and energy cost (linked to the performance of
the air conditioning unit) during the system lifetime. It should be noted that the term
annual for this application refers to the four-month summer period (June–September).

The idea behind this optimisation process is that, by increasing the installed PV
power, the grid power consumption required to drive the air conditioning unit is reduced,
decreasing the costs associated to energy consumption. It involves, however, an increase of
the investment costs due to PV panel acquisition. It is, therefore, expected that an optimum
value for the PV installed power will be obtained attending to the economic criterion. As it
has been outlined in the previous section, the severity of the summer conditions changes
dramatically depending on the location where the facility is installed. Hence, the optimum
PV power will be different for the locations considered.

The annualised cost or equivalent annual cost of the system is the cost that, if it were
to occur equally in every year of the project lifetime, would give the same net present cost
as the actual cash flow sequence associated with that system. The annualised costs for the
entire system are calculated by means of the annuity method in this paper. According to
this method, the annualised cost (Cannual) is computed by multiplying the Net Present Cost
(NPC) to the Capital Recovery Factor (CRF),

Cannual = NPC ·CRF (9)
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The Net Present Cost is defined in Equation (10). This definition is equivalent to that
of the well-known Net Present Value (NPV). However, in economic engineering, there
are some kinds of projects in which there are no sales or incomes due to their inherent
characteristics [18].

NPC =
N

∑
t=0

AATC

(1 + i)n (10)

Here, i is the discount rate, n is the year number and AATC is the adjusted annual
total costs. As inflation is being considered, AATC is calculated using Equation (11),

AATC = ATC

(
1 + i f

)n
(11)

where ATC is the non-adjusted annual total costs and i f is the inflation rate.
The Capital Recovery Factor is defined as:

CRF =
i(1 + i)n

(1 + i)n − 1
(12)

In order to calculate the non-adjusted annual total costs, investment, maintenance
and operation, and energy costs were considered in the analysis. The investment costs
cover the acquisition of the PV panels, air conditioning unit, design, planning and commis-
sioning costs, general costs associated to works and indirect costs and industrial benefits.
The considered values are shown in Table 4. As it can be seen, all of the investment costs
are constant with the exception of the PV panel cost. A market price of 0.6 € per watt-peak
was considered.

Table 4. Investment costs considered in the analysis.

Concept Cost

PV panels 0.6 €/Wp
Air Conditioner 2600 €

Design, planning and commissioning 200 €
General costs associated to works 760 €

Indirect costs and industrial benefits 190 €

TOTAL (€) 3750 + 0.6ẆPV

The maintenance cost for the PV panels was quantified as 10 €/year, while 40 €/year
were considered for the air conditioning unit. Those prices were provided by companies
that work at local level.

The energy costs (variable term in the energy bill) were obtained by determining the
hourly electricity price during the period June–September 2021, Figure 10, and multiplying
it to the grid energy consumption in the same one-hour period. As it can be seen, the price of
electricity rose to 350 euros per megawatt-hour in September. The prices correspond to the
new tariffs that came into force in Spain on 1 June 2021. The new tariff TD2.0 (access tariff
for domestic consumers and small businesses, power up to 15 kW), includes three different
rates: high, mid, and low. To give this values some context, in August 2020, a mega-
watt hour of electricity cost three times less than in 2021. These figures have had a huge
impact on consumers. The corresponding taxes were applied to the calculated price:
21% VAT and 5% electricity tax. The fixed term of the bill, related to the hired power,
was 27.04 €/kW per year. It was considered that the hired power is 4.6 kW.
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Figure 10. Hourly electricity prices during the period June–September 2021 with the tariff TD2.0.

The period under consideration is n = 25 years, which is also the lifetime of the PV
panels and the air conditioning unit. A discount rate of i = 0.03 and an inflation rate of
i f = 0.031 (averaged value for 2021 in Spain) were considered in the calculations.

Figure 11 shows the variation of the annualised cost of the system during its lifetime
as a function of the installed PV power. This figure also includes the annualised cost for the
conventional system scenario when no photovoltaic panels are installed and the air condi-
tioning equipment is driven only by the grid (ẆPV = 0 W, filled markers). As expected,
an optimum value for the PV installed power is obtained in each location. This value is
a trade-off value between the investment costs of the PV panels and the energy savings
in the electricity bill. The obtained values are 400 W, 900 W and 1300 W for Barcelona,
Madrid and Seville, respectively (red dashed line in Figure 11).

The corresponding values for Cannual are 506.2 €, 536.7 €, and 564.7 €. The contribution
of the different concepts to the global cost of the system for the optimum case is shown
in Table 5. For all the cases, the highest cost is for the initial investment (∼45–47%),
followed by the electricity and power costs (∼40%) and, finally, by the operation and
maintenance costs (∼13–15%).

Table 5. Contribution of the different concepts to Cannual.

Cannual (€)

Concept/Location Seville Madrid Barcelona

Investment 260.15 246.37 229.14
Energy & Power 231.85 217.64 204.39

O & M 72.7 72.7 72.7

TOTAL 564.71 536.70 506.22

It is worth noting that Cannual is higher for the case of no PV modules being installed
(ẆPV = 0 W) than for any other value of PV power, regardless of the location analysed.
This difference can be up to 66.64 €/year (10.55%) in the case of Seville. This fact involves
that, from an economic point of view, the use of PV panels to drive the AC unit is profitable.
Furthermore, the investment in the PV panels would be interesting due to the reductions
in primary non-renewable energy consumption and CO2 emissions (112.94 kg CO2 per
year (season) in Seville for the optimal scenario). Then, the economic savings reinforce
this conclusion.

With regard to the location comparison, Cannual increases with the severity of the
summer conditions as a result of two different factors. On the one hand, a more severe
summer involves a higher cooling demand and a worse performance of the AC unit.
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Accordingly, the energy consumption is higher. On the other hand, the increase in the
energy consumption leads to a higher PV surface (power) needed. This fact increases the
investment costs and, as a consequence, Cannual.

Figure 11. Results of the optimisation process for the different locations considered. The filled
markers correspond to the values for the conventional system (ẆPV = 0 W), and the dashed red line
links the optimum values for the PV installed power in the locations analysed.

5. Conclusions

In this paper, a combination of modelling, simulation and optimisation was used to
analyse the performance of a solar on-grid air conditioning system in different Spanish
locations. A thorough validation of the model using experimental data was conducted and
an optimisation approach based on the annualised cost of the system is provided. The main
findings obtained during this investigation can be summarised as follows:

• The average EER of the equipment in Barcelona is 5.6, in Madrid is 4.6 and in
Seville is 4.2. Thus, the AC unit performs better in locations with lower summer
severity conditions.

• The EER of the system is directly related to the EER of the equipment and the solar
contribution. Both of them are higher in Barcelona, leading to an average EER of the
system of 16.0, 10.7 and 7.8 in Barcelona, Madrid and Seville, respectively.

• The optimisation analysis based on the annualised cost has proven that the severity
of the climatic region increases the costs as well as the optimum PV power to drive
the AC unit. The obtained values for the PV power and the annualised cost are 400 W
and 506.2 € for Barcelona, 900 W and 536.7 € for Madrid, and 1300 W and 564.7 €
for Seville.

• The annualised cost and the CO2 emissions level are higher for the conventional
system (no PV panels) than for the solar on-grid system, regardless of the installed PV
power. This difference can be up to 66.64 € (10.55%) and 112.94 kg CO2 (64.83%) per
year (summer season) in the case of Seville.

• The proposed optimisation analysis can be extended to other locations with Mediter-
ranean climatic conditions to obtain the optimum size of the solar-driven AC system.

Future Works

The future work will be focused on modifying the design, size and selection of the
components of the system in order to improve its efficiency. The researchers will develop
a control logic capable of adapting the operation of the air conditioning equipment to
the availability of solar energy. This work will be focused on reducing the electricity
consumption of the grid, increasing the solar contribution of the system and improving its
energy efficiency. Thinking of applications for domestic use, where the thermal demand
profile is predominantly centred on night hours, it is intended to carry out an experimental
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study of the thermal storage capacity of the enclosures. The aim is, thus, to analyse
the possibility of transferring the consumption curve of air conditioning equipment in
residential buildings to the hours of solar availability.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbols
an constants in Equation (4)
ATC non-adjusted annual total costs (€)
AATC adjusted annual total costs (€)
CRF capital recovery factor
Cannual annualised cost (€)
COP coefficient of performance
EEReq equipment (AC unit) energy efficiency ratio
EERsyst system (solar on-grid AC) energy efficiency ratio
G irradiance (W/m2)
i discount rate (%)
i f inflation rate (%)
I annual (seasonal) irradiation (kWh/m2)
LF load factor
n number of years
NOCT normal operating cell temperature (ºC)
NPC net present cost (€)
NPV net present value (€)
PF production factor (%)
Q̇ heat rate (W)
SC solar contribution (%)
tON period of time where the system operates during the summer season (h)
T temperature (◦C)
ẆPV electric power generated by PV the panels (W)
ẆPV,ref electric power generated by PV the panels at reference conditions (W)
Ẇeq equipment (AC unit) total power consumption (W)
Ẇeq,PV equipment (AC unit) power consumption coming from the PV panels (W)
Ẇeq,grid equipment (AC unit) power consumption coming from the grid (W)
Greek symbols
β temperature coefficient (1/K)
ηPV electrical efficiency of the PV panels
Θ dummy magnitude
Subscripts
amb ambient
C cell
cond condenser
evap evaporator
ref refrigeration
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Superscripts
average

Abbreviations
AC air conditioning
HP heat pump
HVAC heating, ventilation and air conditioning
PV photovoltaic
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