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Abstract: Heating, ventilating, and air conditioning (HVAC) units account for a significant con-
sumption share in buildings, namely office buildings. Therefore, this paper addresses the possibility
of having an intelligent and more cost-effective solution for the management of HVAC units in
office buildings. The method applied in this paper divides the addressed problem into three steps:
(i) the continuous acquisition of data provided by an open-source building energy management
systems, (ii) the proposed learning and predictive model able to predict if users will be working in a
given location, and (iii) the proposed decision model to manage the HVAC units according to the
prediction of users, current environmental context, and current energy prices. The results show that
the proposed predictive model was able to achieve a 93.8% accuracy and that the proposed decision
tree enabled the maintenance of users’ comfort. The results demonstrate that the proposed solution
is able to run in real-time in a real office building, making it a possible solution for smart buildings.

Keywords: building energy management systems; HVAC control; Internet of Things; occupancy
prediction; reinforcement learning

1. Introduction

Smart grids enable the active participation of end-users and allow them to actively
manage their demand using demand-side management [1,2]. By managing home available
energy resources and loads, the end-users are able to reduce energy costs [3], maximize the
use of renewable generation [4], participate in the smart grid [5], and transact energy with
other end-users [6].

The ability to manage their own resources enables end-users to take control over their
facilities and promote the dissemination of smart buildings [7]. Actions for demand-side
management and for the active participation of end-users can also be achieved using
internet of things (IoT) devices [8]. The possibilities of energy management are vast and
they represent a good opportunity for end-users to enable the reduction of energy costs
and optimization of energy usage [9].

One of the biggest contributions to the energy consumption in buildings comes from
heating ventilating air conditioning (HVAC) systems [10]. Therefore, the control of HVAC
systems is frequently found in the literature as a way to reduce energy costs and greenhouse
gas emissions [11,12]. The control of HVAC can also be used for the active participation
of end-users in smart grids [13]. Because of their characteristic preconditioning time, i.e.,
the preheating or cooling time of HVAC, the existing models for HVAC control usually
results in planned action ahead in time, demanding the use of prediction models to forecast
contexts. The use of prediction models, in smart grids, is common, in particular, to forecast
the consumption of end-user and individual loads, the generation of renewable resources,
and the flexibility of end-users [14].

The optimization of HVAC systems, as any other electrical load placed in the end-user
facility, needs to consider the users’ preferences and needs [15]. It is then necessary to
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balance the users’ comfort and the energy cost reduction. This is where prioritization
techniques come in, allowing energy consumption to be reduced and avoiding unnecessary
electricity expenses [16].

This paper proposes a novel model for HVAC control using a prediction reinforcement
learning algorithm and a decision tree for the consideration of building context, energy
costs, and preconditioning time. The prediction model is used to predict occupancy in
the building ahead in time. The occupancy prediction is then used in a decision tree to
control of the HVAC units, considering the energy prices and the current temperature of
the building. The proposed solution can intelligently control the HVAC units and promote
the reduction of energy costs.

The proposed solution, comprised of the prediction model and the decision tree, was
deployed in a real office building using a building energy management system (BEMS)
that was implemented based on the open-source platform Home Assistant (https://www.
home-assistant.io/, accessed on 6 December 2021). This BEMS enabled the integration of
multiple IoT devices and the implementation of the proposed models in a real building,
allowing a continuous operation. The proposed solution addresses some of the limitations
that were identified in the literature review, such as continuous learning, the consideration
of several contexts in the building, and the users’ comfort.

This paper is structured as follows. After this first introductory section, related works
regarding the management of HVAC systems, namely occupancy-based solutions, are
presented in Section 2. In Section 3, several solutions to develop a BEMS are presented
and the proposed BEMS, based on Home Assistant, is described. Section 4 presents the
proposed methodology including the prediction model and the decision tree. The results
of the case study, using a real building, are described in Section 5. Section 6 presents the
discussion of results, while the main conclusions are presented in Section 6.

2. Related Works

The occupancy of the building and/or of different building zones can be used by
energy management systems to promote the contextual optimization of resources [15].
The information regarding occupancy allows systems to better understand the building
context and provide better resource optimization [17]. The exact occupation of the building
and the location of people is hard to achieve, but estimates can be obtained using several
techniques, using equipment already installed in the building or that requires new equip-
ment to be installed [18]. In [19], a machine learning classification model is proposed for
week-ahead occupancy prediction using real-time smart meter data. Applied to HVAC
systems, [20] proposed a control model based on students’ location inside auditoriums.
This model uses Wi-Fi data to determine the number of connected devices and enables a
noninvasive approach that does not require the installation of new equipment. In [21], a
model for HVAC control inside buildings is proposed using a rule-based approach sup-
ported by a deep learning algorithm that predicts the preconditioning time. These solutions
address the prediction and identification of occupancy in buildings. However, they lack
the ability to consider multiple contexts. The contextual reinforcement learning predictive
model proposed in this paper addresses the dynamics of the building usage considering
several contexts.

A reinforcement learning model for occupant behavior is proposed in [22] using a
Q-learning model to allow automated control of the building’s thermostat. This work com-
pared the prediction of the reinforcement learning model with an artificial neural network
(ANN) prediction model. The results showed that the ANN had better results. In [23] the
use of reinforcement learning models to directly control the HVAC units demonstrated an
increase in energy costs, even when dealing with on/off control. However, the best results
were achieved when the model was used to control five flow levels.

Other contextual data, beyond occupancy, can be used to control HVAC systems [24].
A model for HVAC control considering not only the building occupancy but also the
characterization of the building, namely the mean radiant temperature of building rooms

https://www.home-assistant.io/
https://www.home-assistant.io/
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is proposed in [25]. In [26], it is proposed the use of IoT devices to obtain contextual
information regarding outdoor temperature to improve the efficiency of HVAC control
and achieve lower payback times, when compared to occupancy-based models. However,
these solutions lack the ability to learn from historical data, and more importantly, the
ability to be able to continuously learn. The proposed solution addresses this limitation by
conceiving a reinforcement learning model.

The control and management of HVAC systems are usually used in the energy do-
main as a way to reduce energy costs [27], due to the high energy consumption of HVAC
equipment. A day-ahead HVAC control model for industrial buildings, to decrease en-
ergy costs considering on-peak and off-peak tariffs and weather conditions, is proposed
in [28]. A multiperiod optimization model for supervisory control and data acquisition
(SCADA) systems is proposed in [29] to minimize energy costs while complying with users
constraints. In [30], HVAC systems are controlled using market-based transactive controls
in commercial buildings to promote grid balance and stability. Although energy costs are
an important aspect of the building, the user comfort needs to be considered, as well as
the building’s context. The proposed solution addresses the users’ comfort considering
ahead HVAC control signals to prepare the building for the users’ arrival while trying to
minimize energy costs. The context of the building is considered in the proposed solution,
for instance, the HVAC units’ control considers the status of the windows.

The control of HVAC units can also be done to improve air quality. In [31], a computer
vision-based system is used to get the occupancy of a room and a neural network is used
to classify the users’ activities. This solution enables the prediction of CO2 levels and
controls the HVAC unit to prevent potentially dangerous situations. In [32], a solution
for commercial buildings is proposed where a scalable model, based on multiagent deep
reinforcement learning, is used to minimize energy costs while considering user comfort
and air quality.

More complex solutions can also be implemented to enable the combined management
of multi-HVAC systems. In [33], a data-driven mathematical model using contextual sensor
data is used to optimize multi-HVAC systems that serve the same space. In [34], several
optimization models are compared for multi-HVAC systems management considering the
outdoor temperature, building ambient temperature, and occupancy. The compared models
were a multiobjective genetic algorithm, two nondominated sorting genetic algorithms, an
optimized multiobjective particle swarm optimization, a speed-constrained multi-objective
particle swarm optimization, and a random search. The authors were not able to identify a
unique best solution but presented the benefits of each model.

3. Building Energy Management System Based on Home Assistant

A BEMS can be installed in a variety of ways, normally this is done using dedicated,
commercial platforms such as DEXMA Energy Intelligence (https://www.dexma.com/,
accessed on 6 December 2021) or Entronix (https://entronix.io/, accessed on 6 December
2021). However, for the purposes of this paper, a home automation system was used,
enabling the combination of Internet of Things (IoT) devices with the ability to gather data
and affect the environment around them with rules created by the user to manage the
smart home.

There are a variety of home automation system software solutions, both open and
closed source. The biggest open-source solutions available are:

• openHAB (https://www.openhab.org/, accessed on 6 December 2021), created by
Kai Kreuzer, which is built using Java and was initially released in 2010;

• Home Assistant, created by Paulus Schoutsen, based on Python and configurable with
the use of YAML files, which was first released in 2013;

• Domoticz (https://www.domoticz.com/, accessed on 6 December 2021), created by
Gizmocuz, is written in C++ and configurable with Blockly or Lua, and with the first
release date at the end of 2012.

https://www.dexma.com/
https://entronix.io/
https://www.openhab.org/
https://www.domoticz.com/
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There are also a wide variety of commercial closed source solutions, with the biggest
ones being owned by large players:

• Google Assistant (https://assistant.google.com/, accessed on 6 December 2021),
Google’s solution for home assistant software, allows the use of Google Assistant
software together with Google Home devices to control a house with voice com-
mands and using a graphical user interface (GUI). It also enables the customization of
automation rules;

• Alexa (https://www.amazon.com/b?ie=UTF8&node=21576558011, accessed on 6
December 2021), Amazon’s solution for home automation, works similarly to Google
Assistant, by using an Alexa device to allow the user to control their smart home with
voice commands and with GUI;

• HomeKit (https://www.apple.com/ios/home/, accessed on 6 December 2021), de-
veloped by Apple, allows users to integrate their houses with the Apple Ecosystem,
allowing the use of voice commands through Siri but also providing a GUI for more
powerful smart home management.

For the purposes of this paper, Home Assistant was chosen due to its many advantages
such as being open-source, easily customizable with simple YAML files, and the powerful
but still simple set-up GUI.

First, some IoT devices were installed and configured in a docker containerized Home
Assistant installation, with their uses described in Table 1. The IoT devices integrated can
be seen as actuators and sensors, depending on the type of actions they allow. Additionally
to market-available IoT devices, the Home Assistant configuration also integrates a SCADA
system, developed by the researchers of the authors’ research center, that was already
present in the building. This SCADA system is represented in Table 1 as GECAD API. This
API enables the reading of other IoT devices that are already integrated into the SCADA
system by using REST-based HTTP requests. The last device identified in Table 1 is a
simulated sensor that was integrated into Home Assistant as a file sensor, enabling the
reading of a file and the publishing of that information. The file sensor is a dataset of real
electricity prices that were obtained from MIBEL, the Iberian electricity wholesale market.

Table 1. Devices configured for the Home Assistant installation.

Device Name Monitoring Data Actions

RM Pro + Any IR or RF signal Emission of IR or RF signal
Sonoff Pow R2 Current (A), power (W), voltage (V), load status (on/off) Turn on/off

D-Link DSP-W115 Load status (on/off) Turn on/off
D-Link DSP-W215 Power (W), total power consumption (kWh), temperature (◦C) Turn on/off
Sonoff RF Bridge N/A N/A

Sonoff Sensor DW1 Door/window open triggered/A

GECAD API (REST Sensors)
Exterior temperature (◦C)

Interior temperature of individual rooms (◦C)
Light switch states (%)

N/A

File Sensor (JSON Source) Electricity price on a specific month, time, day, and hour
(EUR/kWh) N/A

To manage the energy of a building in an intelligent way using Home Assistant,
complex logic needs to be integrated. However, Home Assistant has some constraints,
namely the fact that it is configured by YAML files, which can turn simple scripts into a
large amount of complex virtual sensors that are tightly interconnected and have little use
outside of single automation. This difficult the setting-up of the installation and makes it
very hard to share the logic with other Home Assistant installations.

To solve this issue, Pyscript (https://github.com/custom-components/pyscript, ac-
cessed on 6 December 2021), an add-on to Home Assistant, has been used for the work
presented in this paper. This add-on can import standard Python libraries and interact
with Home Assistant triggers and events when IoT devices or Home Assistant itself create

https://assistant.google.com/
https://www.amazon.com/b?ie=UTF8&node=21576558011
https://www.apple.com/ios/home/
https://github.com/custom-components/pyscript
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them. In this way, the user can create applications that can be configured with YAML when
there is a need to replicate them multiple times, and, most importantly, it allows the use of
Python to write the scripts that can interact in real-time with Home Assistant. This enables
the Home Assistant to be integrated with all kinds of external services that can manage
its resources.

Home Assistant was configured with ten views, which resulted in tabs inside the
Home Assistant dashboard, one for each building zone, and a general view with data
that is not specific to any zone. The building is divided into nine zones, where each has
from two to three rooms that can be offices, meetings rooms, server rooms, or laboratories.
Figure 1 presents the aspect of the interface for zone 1 of the considered building.

Figure 1. The Home Assistant interface for Zone 1.

The view for each zone contains multiple panels for IoT device monitoring and control.
It has a ‘temperature control’ panel where the users can activate and control the proposed
HVAC control model, allowing:

• The activation of the proposed HVAC control model;
• The activation of continuous learning, to enable the reinforcement learning prediction

model to learn;
• The setting of user temperature preferences;
• The setting of user temperature elasticity;
• The current status of the system (e.g., “On, heating up” or “Off” or “Off, the window

is open”).

The general view of the Home Assistant interface can be seen in Figure 2 where
electricity market-related data are presented. In the general view, it is also possible to
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control the maximum price for the system to run autonomously, to save money, and avoid
turning on the energy-expensive HVAC systems when energy costs are too high.

Figure 2. The Home Assistant interface for general data.

4. Method and Proposed Solution

Currently, most HVAC systems are manually controlled by users who are on-site and
find themselves at an uncomfortable temperature level. The user must manually configure
the HVAC system and wait for it to effectively adjust the temperature up or down to a
more comfortable level. Alternatively, there is a central system that can be configured
with sensors to detect temperature changes and automatically control the HVAC system.
However, central systems also raise some issues, such as the waiting time until the HVAC
system successfully regulates itself back to a comfortable temperature. An even bigger
issue is the fact that it may be turning the HVAC system on when there are no users in the
room/building, thus resulting in the waste of energy.

The proposed solution considers three components that will enable the individual
intelligent management of each HVAC unit present in the building. The first component is
the deployment of the open-source BEMS that is presented in Section 3. The BEMS enables
the continuous monitoring and control of the building’s resources and the storing of the
data. The historical data of the BEMS is fed to a predictive model supported by machine
learning. The predictive model is proposed to enable the prediction of office space usage.
The last component of the proposed solution is the proposed decision tree that will act on
the HVAC units considering the prediction, current environmental context, the limits and
preferences of the users, and the current energy prices.

Figure 3 shows the complete flowchart of the proposed solution. The flowchart
represents three threads that are executed. The first one is executed in every instant to
allow Home Assistant to have continuous monitoring of the building. The second one is
used to improve the reinforcement learning algorithm used as a predictive model, and it is
executed once every period. This flow monitors the room’s occupancy, stores the data, and
recalculates the rewards. In the last flow, the control over the HVAC units is performed.
The last thread is executed once every period and is able to collect the energy price, predict
the room’s occupancy, apply the decision tree, and control the HVAC units accordingly.

This paper proposes the use of a contextual reinforcement learning algorithm to
predict the occupancy of the rooms of a building. The use of reinforcement learning
enables the proposed model to have a continuous learning process, suitable to adjust the
prediction to new routines or the addition of team members working in the same office
space. Moreover, the proposed model is a contextual reinforcement learning algorithm that
is able to have predictions considering the context of the office.

The reinforcement learning algorithm’s configuration and tuning are described and a
test between linear and neural models is done to obtain the best learning accuracy. The
paper also proposes a novel decision tree to enable the ahead control of HVAC units taking
into consideration energy prices and user preferences, namely the desired temperature.
This proposed methodology was integrated into the proposed building energy management
system, presented in Section 3.
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Figure 3. Solution flowchart.

4.1. Reinforcement Learning Model for Occupancy Forecast

The proposed HVAC control model is based on the reinforcement learning algorithm
published in [35], enabling the use of contextual reinforcement learning, used in this paper
to predict the building’s occupancy. In this paper, the algorithm was configured and trained
to enable queries, using a specific date and time, to return an occupancy prediction as a
response. The combination of this occupancy model with the previously described home
automation system will allow for the setup of an intelligent HVAC system management
system capable of correctly setting the temperature while still avoiding the situation of
energy waste.

The biggest advantage of this model is that when the model wrongfully predicts the
occupancy of the building, it will also be capable of learning from its mistakes and adapting
itself over time, eventually figuring out the new pattern of occupation. This enables the
system to self-adjust itself to new realities of the building, such as the changing of usage
patterns created by new collaborators.

The model is executed every 30 min, every day of the week in a continuous fashion.
Every time it is queried it will attempt to predict if a group of rooms, henceforth called a
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zone, will be occupied or not on the next 30 min period, thus giving ample time for the
HVAC to adjust the room temperature, if needed.

4.2. Hyperparameter Tuning

After the initial training of the model, it was further refined with a process of hyper-
parameter tuning. In this way, the model can achieve the highest possible accuracy score
and the correct amount of learning/exploring so it can keep high accuracy scores in the
future. For this, a specific set of parameters were tuned:

• The number of hidden layers of the neural model;
• The size of each hidden layer;
• The learning rate;
• The decay of the learning rate;
• A 0 and β 0 which are used to calculate the inverse γ and Gaussian inference used by

the model to perform exploration;
• The λ prior.

4.3. Decision Tree

After the prediction of occupancy, a decision tree is used to identify the need for
HVAC control. The decision tree is shown in Figure 3, being executed after the predictive
model. There are three possible actions resulting from the decision tree: turn off the HVAC
unit of the room, turn it on in cooling mode, and turn it on in heating mode.

The decision tree is used to control the HVAC system considering several contextual
variables. The decision tree is applied 15 min ahead and during the targeted period,
enabling a continuous monitoring and feedback loop between the context and the HVAC
control. The decision tree was constructed to consider more parameters than just whether
the zone will be occupied or not, taking into consideration:

• Current room temperature to check if there is even a need for the HVAC to be turned
on in the first place;

• If there are open windows which would represent a significant waste of energy due to
the outside–inside temperature differential;

• If the current electricity price is too high;
• Whether it will turn the heating on or the cooling on.

The variables used in the decision tree are a combination of sensor data and user
specifications. The users of each office space are responsible to agree, converge, and define
the temperature comfortable limits. The building’s owner needs also to define the energy
price threshold used for the decision tree.

5. Case Study

The proposed solution was deployed in a multiple office building with IoT sensors
that were configured with the used home automation software (i.e., Home Assistant). The
building is organized into nine zones. The proposed HVAC model was tested on Zone
1, which contains three office rooms named N101, N102, and N103. An overview of the
floorplan of the building and an aerial photo (Figure 4) demonstrates how the building is
laid out.

5.1. Training Dataset

The dataset used to train the learning model consists of one-year data collected in 2019.
The decision to use the year 2019 data is due to the SARS-CoV-2 restrictions that have been
in use since March 2020. In this way, during 2020 the building had usage patterns radically
different from the ones occurring during a normal year. The structure of the dataset can be
seen in Table 2.
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Figure 4. Aerial view of the building and its floorplan.

Table 2. Breakdown of the preprocessed dataset.

Column Description

Weekday The day of the week as an integer (i.e., from 0 to 6)

Time The time that marks the start of the interval in seconds
counting from midnight (i.e., from 0 to 86,400)

Occupied A Boolean representing whether the zone was occupied
during the interval or not (i.e., true or false)

The dataset consists of 17,520 entries, each entry corresponding to a single 30-min
interval of the year 2019. The occupation value was not directly provided by any IoT inte-
grated into the proposed solution but has been inferred from the ceiling lamp consumption.
If during the 30-min interval the power draw of any lamp in the zone was higher than
0 watts, the zone was assumed to be occupied, which is a sensible approach in face of the
building usage patterns.

The initial dataset was then split into two. A subdataset of 16,176 entries (92.32%)
was used for the training of the reinforcement learning model. The remaining 1344 entries
(7.68%), representing 4 weeks, were used for evaluation. The split of the dataset was done
by weekly periods, meaning that the evaluation subdataset has four weeks of random
months, but where each counts with seven sequential days.

As the building is not usually open outside business hours, the majority of the entries
have the building marked as unoccupied, meaning that the used dataset was unbalanced.
A density graph of the occupation of the building elaborated from this dataset can be
viewed in Figure 5.
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Figure 5. Occupancy graph of the building during 2019.

5.2. Forecast Errors Evaluation

Every time the model is executed, it takes in two input parameters, the current day of
the week represented as an integer, ranging from 0 representing Monday to 6 representing
Saturday, and the number of seconds that have passed since midnight of the current day
up until the desired 30-min prediction interval.

Two different models were evaluated based on [36]: a linear model that simply
attempted to regress the inputs and predict an output, and a more complex neural linear
model that was able to learn a representation of the inputs and make a prediction based on
that representation.
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The training dataset was used on both reinforcement learning models to compare and
evaluate their results. This evaluation step allowed the identification of the model that best
performs under our case study.

The linear model was faster to train but it was limited by its ability to represent
the problem and accurately predict whether the zone would be occupied or not, mostly
predicting that it would be empty. Because an unbalanced dataset was used, the linear
model managed to achieve an accuracy of around 68% as can be seen in its confusion matrix
in Table 3. The neural linear model, using its default configuration of hyperparameters,
was able to learn from the training dataset and achieve an accuracy of 92% (Table 4). From
this step forward, the linear model was discarded due to its low accuracy score and the
focus was set on improving the result of the neural linear model.

Table 3. Confusion matrix for the linear prediction model.

True Label
Predicted Label

Empty Zone Occupied Zone

Empty zone 855 64
Occupied zone 373 80

Accuracy 68.15%

Table 4. Confusion matrix for the neural linear prediction model.

True Label
Predicted Label

Empty Zone Occupied Zone

Empty zone 873 46
Occupied zone 60 393

Accuracy 92.27%

5.3. Hyperparameter Tuning Results

To tune the hyperparameters, Python’s Optuna library was used due to its flexibility
and learning curve, along with the ability to provide useful data and information at the
end of a hyperparameter tuning session.

First, a selection of hyperparameters to tune was made, and then a range of appropriate
values was chosen for each of the hyperparameters to be tuned. Then, using a loop, a
random combination of hyperparameters was chosen and the model was trained and
evaluated. To avoid wasting time in nonviable trials, the algorithm continuously checks
the current accuracy and if it were lower than the average accuracy of the previous trials
the entire trial would be pruned and the next trial starts.

In this case study, a hyperparameter tuning session with 500 trials was executed. From
the obtained results, more sensible ranges were defined to achieve more accurate models.
After another 400 trials, the most accurate model to come out of the hyperparameter tuning
sessions was able to achieve an accuracy of 93.8%.

The configuration with the best result uses a network with three hidden layers with
26 nodes in the first and in the second layers, and with 12 nodes for the last layer. The
chosen network had a learning rate of 0.03473 and a lambda of 0.20787.

5.4. HVAC Control Test

The control of HVAC units was done using Broadlink RM pro devices that were
integrated into the Home Assistant solution. The Broadlink RM pro devices were located
in each room of the building in Figure 4. The control of HVAC units was done, by the
proposed solution, considering the decision tree shown in Figure 3. The decision tree was
continuously executed in the proposed BEMS. However, the prediction value was only
updated every 15 min and it considered the predicted presence of users for the next 15-min



Energies 2021, 14, 8210 12 of 14

period. Therefore, the control was done ahead of time, i.e., to prepare the room for the next
period by considering the time that HVAC units take to reach the desired temperature.

For this case study, the business day of Friday, 27 August 2021, was considered.
Figure 6 shows the results for 24 h. The orange area represents the hours where users are
predicted to be inside the office N101, part of Zone 1. The case study data considered two
temperature limits of 25 and 23 ◦C, with a range of +3 ◦C, meaning that at the beginning
of the day the temperature limit was from 25 ◦C to 28 ◦C, and it was changed to a limit
between 23 ◦C and 26 ◦C. The energy threshold was set to 0.24 EUR/kWh.

Figure 6. HVAC control signals for N101 during 27 August 2021.

6. Discussion

The results shown in Figure 6 indicate that the HVAC unit of room N101 was turned
on seven times and turned off seven times over the 24 h. As can be seen, these actions
happen during the hours where the predictive model forecasts the presence of users inside
the office space of room N101, i.e., from 9:00 a.m. to 8:00 p.m. The turning on of the
HVAC units also matched the increase of temperature above the upper user limit, while
the turning off matched the below limit.

At 3:18 p.m., the user updated the temperature limit to a range between 23 ◦C and
26 ◦C, changing the system performance. This action tested the system’s ability to adjust to
the users’ needs. However, as future improvement, the authors suggest the use of building
thermal modeling to increase the intelligence of the management model.

The windows of room N101 were open between 4:07 p.m. and 4:45 p.m., leading to
an early turn-off of the HVAC unit at 4:08 p.m. when the temperature was 24.93 ◦C (i.e.,
1.93 ◦C above the lower limit of 23 ◦C). When the windows were closed, the HVAC almost
immediately started once again to decrease the room’s temperature.

The system demonstrated its ability to continuously manage the HVAC unit consid-
ering the current context of the room while also considering the predictive data of the
proposed model. The control of the temperature inside the room was not only made ac-
cording to the current context. If the predictive model did not forecast the presence of users
during the next period, no control would be made in the HVAC units. All control signals,
to turn the unit on, were made because the predictive model forecasted the presence of
users during the next period.

The BEMS, based on the open-source solution of Home Assistant, was able to provide
real-time monitoring and control while providing historical data to train the reinforcement
learning algorithm. The proposed predictive model and the decision tree were deployed
in BEMS using Python language and were able to cooperate with the BEMS to provide a
continuous intelligent operation without the need for manual actions.
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7. Conclusions

This paper proposes a novel model for the control of HVAC units based on a prediction
model and a decision tree. The control of the units is performed ahead of time to minimize
the units’ waiting times (i.e., the time they take to reach the desired temperature). The
prediction model uses a reinforcement algorithm that can provide continuous learning
according to several contexts. The high accuracy of the model, 93.8%, demonstrates the
ability of such algorithms to be used in smart buildings to efficiently manage energy loads
and resources across different contexts.

Using the prediction result, a decision tree is proposed to consider the current context
and the predicted context, inside a building’s zone, to control the HVAC units. The
proposed model was tested and evaluated using real data from one year in an office
building. The validation of the proposed solution for 24 h is presented to demonstrate the
use of the proposed solution as a whole.

Moreover, the work described in the paper demonstrated the ability to have open-
source-based automation solutions to deploy complex models of artificial intelligence and
energy management to operate in real-time and also ahead of time. This combination of
technologies provides a complete tool to test and validate energy management models in
real buildings.
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