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Abstract: For the problem of data accumulation caused by massive sensor data in transmission line
condition monitoring system, this paper analyzes the type and amount of data in the transmission
line sensor network, compares the compression algorithms of wireless sensor network data at home
and abroad, and proposes an efficient lossless compression algorithm suitable for sensor data in
transmission line linear heterogeneous networks. The algorithm combines the wavelet compression
algorithm and the neighborhood index sequence algorithm. It displays a fast operation speed and
requires a small amount of calculation. It is suitable for battery powered wireless sensor network
nodes. By combining wavelet correlation analysis and neighborhood index sequence coding, the
compression algorithm proposed in this paper can achieve a high compression rate, has strong
robustness to packet loss, has high compression performance, and can help to reduce network
load and the packet loss rate. Simulation results show that the proposed method achieves a high
compression rate in the compression of the transmission line parameter dataset, is superior to the
existing data compression algorithms, and is suitable for the compression and transmission of
transmission line condition monitoring data.

Keywords: transmission line; condition monitoring; data compression

1. Introduction

The rapid progress in the field of the Internet of Things and information technology
makes it possible to realize low-cost, low-power, densely distributed and autonomous
sensor nodes. The wireless sensor network (WSN) is the most representative Internet of
Things technology. It collects and analyzes data by setting up billions of nodes to realize
the vision of the interconnection of all things. A WSN is suitable for tracking and data
acquisition applications such as environmental monitoring, industrial automation, target
tracking, precision agriculture, disaster management, smart city, health monitoring, and
earthquake and structure monitoring. In the actual scene, it is mainly used to sense physical
parameters such as temperature, pressure, humidity, acceleration, vibration and sound
signal. Each sensor node is equipped with a battery, a wireless transceiver, a target sensor
and a micro-controller. After successful deployment, the sensor node begins to perceive
physical parameters and transmit the collected data directly or indirectly to the sink node
through multi-hop communication. Each terminal node of the monitoring system needs to
collect and send a large amount of data. Once the battery is exhausted, the sensor node
will no longer work and remove the monitoring network, resulting in the loss of network
data and some functions. The experimental results show that the energy consumed by the
wireless transmission transceiver is much higher than that consumed by data processing
in transmission line wireless sensor networks. According to the node test, the energy
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consumed by the ordinary sensor node for each bit of data transmitted is enough for the
node controller to process the data 551 times [1]. The sensor nodes in the transmission
line online monitoring system are not easy to obtain cable power supply because of their
wide laying range and long distance. Even some sensor nodes are deployed in harsh
environments and cannot charge or replace the built-in battery. Therefore, the limited
energy, mainly from batteries, has become the bottleneck of wireless sensor networks in
transmission line applications.

Data compression is an effective technology to reduce the amount of data transmission.
Using a data compression algorithm in wireless network can reduce the transmission
pressure of the whole network, reduce the packet loss rate in the transmission process and
improve the quality of wireless communication. In addition, using a data compression
algorithm in wireless sensor networks can save system energy consumption and prolong
the service life of the whole wireless sensor network. Therefore, data compression before
transmission is an important strategy to save node energy in wireless sensor networks.
The basic idea of data compression is to eliminate redundant and irrelevant data. Data
compression represents data in a more concise form and does not change the data structure
to a certain extent. Literature research shows that data compression technology can achieve
a good balance between computational energy and transmission energy, so as to improve
energy utilization efficiency.

Many scholars at home and abroad are committed to solving the problem of data com-
pression in wireless sensor networks. T. Schoellhammer et al. [2] introduces a Lightweight
Temporal Compression (LTC) technology, which provides an error with the last collected
data while transmitting the sensor data. The error range is controlled by the threshold
program. If the error is less than the threshold, the error value will replace the sensor data.
The higher the error limit, the greater the storage space saved by compression, However,
if the error threshold is not selected properly, it will cause serious data loss, which is not
suitable for applications with high-reliability requirements. Sensor-Lempel Ziv Welch
(S-LZW) is an improved LZW dictionary coding model and a lightweight compression
algorithm specially developed for resource constrained WSN [3]. However, the algorithm
is affected by the standard dictionary problem, and the compression performance needs to
be further improved. Lossless entropy compression (LEC) [4] is a predictive coding tech-
nology composed of predictor and encoder. The LEC algorithm can calculate the difference
between the measured values of continuous sensors and divide them into groups whose
size increases exponentially. Each group of data represents the number of bits required to
measure the difference, and then these groups are entropy encoded by a fixed compression
table. For S-LZW, LEC has better compression performance, but because LEC is a static
data compression algorithm, which is suitable for unified data compression after sensor
node sampling and collection, it cannot adapt to dynamic data compression in transmission
line online monitoring system.

In order to overcome this problem, Liang Y et al. [5] proposed an efficient and robust
data compression technology Sequence Lossless Entropy Compression (S-LEC) technology,
which uses the sequence context information between adjacent data residuals to compress
the data in WSN. Adaptive lossless data compression (ALDC), which can dynamically
adapt to the modification of source data statistics, can improve the compression perfor-
mance [6]. ALDC can adaptively compress different data types through multiple codes at
one time. Although it has strong robustness, its compression performance is not as good as
LEC and other static data compression algorithms, and the compression algorithm needs
to be optimized. The data compression experiment of the online monitoring system is
carried out by using the adaptive linear filter compression (ALFC) algorithm in [7]. Firstly,
the adaptive linear filter is used to predict m samples of the dataset, and then the entropy
encoder is used to compress the prediction error. Finally, the results are quantified to meet
the limited computing power of the sensor nodes. The adaptive prediction process in
ALFC does not need to define the filter coefficients in advance, and allows the system to
dynamically adjust according to the changes of data sources. This method can adapt to
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the specific certainty of online monitoring data over time and eliminate more redundant
data. Compared with the existing methods, ALFC can obtain a better compression ratio.
However, it is easy to recover data, easy to be affected by external factors, and difficult
to adapt to the online monitoring system of transmission lines with many and complex
influencing factors. According to compressed and uncompressed modes, a two-modal
transmission (TMT) model for predictive coding is proposed in [8]. In the compression
mode, the error term of the prediction data error within the compression bit range specified
by the model will replace the original data transmission with the data error, while in the
non-compression mode, the error term outside the compression bit range of the prediction
data error will directly transmit the original data. This method solves the problem that the
prediction performance and coding efficiency of the system are reduced due to large error
terms. In order to realize the fast and low memory compression algorithm of WSN, Kolo
J G et al. [9] designed a fast and efficient lossless adaptive compression scheme (felacs).
Due to the Golomb rice encoding method, felacs can generate a temporary encoding table
when performing data compression, and has certain robustness to packet loss during data
transmission.

The above data compression methods are designed on the premise that the sensor
network data are not correlated. However, there is a strong correlation between the
data collected by the transmission line online monitoring network. Transmission line
state parameters include as air temperature, air humidity, tower base temperature and
humidity, wind speed, vibration signal, and leakage current. The numerical change of these
parameters in the time dimension is a continuous process, and for a specific parameter, the
data collected at several continuous acquisition points have great correlation. Therefore,
considering the correlation of transmission line monitoring data in the time dimension,
the space dimension and the parameter dimension can further eliminate redundancy,
improve the compression rate and reduce network transmission energy consumption.
Kasirajan et al. [10] proposed a data compression method based on source node and target
node estimation. The estimated value on the source node is similar to the data value of
each sample. The algorithm first quantifies the difference between the data sample and
its estimated value, and then transmits it to the next hop node instead of the actual data
sample, which reduces the amount of data transmission. Finally, the compressed data will
be restored to the original data in the estimator in the next hop node or the base station.
Marcelloni and Vecchio [11] proposed a simple compression algorithm for WSN nodes.
The scheme uses the high correlation of sample data to calculate the size of each data after
compression, and obtains a dynamic temporary compression dictionary from the sink
node. There is a high correlation continuously. Usually, the sample collected by a sensor
is on a node. The algorithm can calculate the dynamic obtained from the sensor by the
compressed version of each value. The size of the very small dictionary used is determined
by an Analogue-to-Digital Conversion (ADC) resolution.

Wavelet has a wide range of theoretical applications in the field of data compression in
wireless sensor networks. Most of the research is to compress data by mining the correlation
between time and space. In the transmission line monitoring environment, the coupling
relationship between parameters is relatively complex. Adding these relationships and
using them for data compression can better improve compression efficiency. Zhu et al. [12]
proposed an adaptive multi-modal data compression algorithm based on wavelet. The
algorithm uses the least square estimation method to estimate the relevant data. The
feature data are abstracted into a matrix, and then the wavelet transform is used for spatio-
temporal correction, which can effectively make use of the correlation between the data and
improve the compression ratio of the algorithm. Xiao et al. [13] improved the wavelet data
compression algorithm, pointed out the linear relationship between different data, and can
directly express the relationship between collected data with a straight line. However, in
practice, the interaction mechanism between related parameters is complex, and the simple
linear fitting method cannot express the correlation of parameters, which will cause serious
data compression error.
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According to the continuity characteristics of temporal and spatial changes of trans-
mission line WSN monitoring data and different degrees of correlation between monitoring
parameters, a wavelet correlation neighborhood index sequence algorithm (WCNIS) com-
pression algorithm for transmission line environmental data considering both time correla-
tion and parameter correlation of environmental data is proposed in this paper, Firstly, the
redundant data are removed by wavelet transform, and then the data are compressed by
dynamic compression algorithm. Data compression efficiency is further improved through
parameter correlation, so as to reduce the amount of data transmission in the network,
reduce node energy consumption and prolong network life.

2. Compression Algorithm of Transmission Line Online Monitoring Network
2.1. Network Architecture of the Algorithm

In order to realize real-time data transmission, this paper establishes the transmission
line transmission architecture of wireless transmission packet based on chain network struc-
ture. The system design framework is shown in Figure 1. The real-time data transmission is
realized on the premise of ensuring the transmission time. The data transmission network
model is established according to the transmission layer structure of the transmission line
condition monitoring system, and the data transmission network model is established by
using optical fiber, ZigBee and cellular network wireless communication. The network
with minimum delay and low cost is selected through multiple simulations. Since the data
are finally transmitted directly from the substation or base station to the data center, the
control center does not appear in the model. The default data transmission mode is that
the substation or base station transmits the data to the data center through the power grid
or high-speed and high-reliability transmission mode.
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In this paper, an improved wavelet threshold denoising algorithm is designed for the
sink node data of transmission line online monitoring system. Unlike other transmission
nodes, the sink node can store the collected data in a certain capacity before compression
transmission. Therefore, the proposed algorithm is different from compressed sensing
in sensor networks. The algorithm compresses a certain amount of data every time and
then transmits it. In fact, it works in the sink node of transmission line online monitoring
system. Therefore, the system in this paper has real-time performance while removing
redundant data.
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2.2. Improved Wavelet Threshold Denoising Algorithm

In general, the changes of transmission line environmental parameters are periodic
and have strong correlation in time series. Because many monitoring parameters such as
temperature, humidity and vibration change slowly, the data at adjacent time points of
the same node and the same parameter are usually the same or similar [14]. However, in
the transmission line monitoring system, the correlation of sampling data such as wind
speed and leakage current in time series is weak, and only considering the correlation of
time series will cause large data error. Therefore, the establishment of a matrix composed
of multiple environmental monitoring parameters in time series can take into account the
correlation between time series and parameters at the same time.

Suppose a WSN is composed of N nodes, i.e., S0, S1, . . . , Si, ..., SN−1. The data moni-
tored by the sensor node Si can form an m-dimensional time series signal [15]. Assuming
that both M and N are even numbers, there is Ci, j = (c0, 1, c1, i, ..., cM−1, i)T, where ci,j
represents the jth data of the time series signal stored by the sensor node Si. Therefore, the
original data matrix C0 is represented by Equation (1):

C0 = (C0C1 · · ·Ci · · ·CN−1) =


c0

0,0 c0
0,1 · · · c0

0,N−1

c0
1,0 c0

1,1 · · · c0
1,N−1

...
...

. . .
...

c0
M−1,0 c0

M−1,1 · · · c0
M−1,N−1

 (1)

The matrix established by Equation (1) has good correlation and numerical similarity
in only one direction, and its matrix characteristics can be decomposed and analyzed by
wavelet. The original matrix C0 has good correlation and data change continuity in the
column direction, but there is no obvious correlation in the row direction. Therefore, firstly,
the column transformation of the matrix is carried out, the data compression is carried
out by using the time correlation, and then the row transformation of the matrix is carried
out. l(x) represents the low-pass filter coefficient of wavelet analysis, i = 0, 1, ..., Nl − 1
represents the high pass filter coefficient of wavelet analysis, i = 0, 1, ..., Nh − 1. Then,
the wavelet decomposition results of the original matrix C0 in the column direction are
as follows:

C1 =

[
C1,H

C1,L

]
(2)

The elements in matrix C1 can be represented by the following Equation:

c1,H
x,y =

1
Nh

Nh−1

∑
i=0

h(i)c0
(2x+i)modM,y (3)

c1,L
x,y =

1
Nl

Nl−1

∑
i=0

l(i)c0
(2x+i)modM,y (4)

where x = 0, 1, . . . , M−1
2 ; y = 0, 1, . . . , N − 1.

Continue to perform directional wavelet transform on C1 matrix, and the results are
as follows:

C11 =

[
C11,LLC11,LH

C11,HLC11,HH

]
(5)

c11,LL
x,y =

1
Nl

Nl−1

∑
i=0

l(i)c1,L
x,(2x+i)modN (6)

c11,LH
x,y =

1
Nh

Nh−1

∑
j=0

h(j)c1,L
x,(2x+j)modN (7)
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c11,HL
x,y =

1
Nl

Nl−1

∑
i=0

l(i)c1,H
x,(2x+i)modN (8)

c11,HH
x,y =

1
Nh

Nh−1

∑
j=0

h(j)c1,H
x,(2x+j)modN (9)

where x = 0, 1, . . . , M
2 − 1; y = 0, 1, . . . , N

2 − 1.
According to the correlation and continuous variation characteristics of the sampled

data, when the sample data are decomposed by wavelet, the correlation in the column
direction is poor and the value does not have continuity. The value of the high-frequency
part of the decomposed matrix is large, so it is difficult to obtain a coefficient of 0 or
approximately 0. When the matrix after wavelet decomposition is compressed, discarding
the data with a coefficient of 0 or approximately 0 will not affect the data reconstruction,
and discarding the data with a coefficient of not 0 will affect the compression accuracy.
Therefore, the high-frequency part of the original matrix after wavelet decomposition in
the column direction will seriously affect the data accuracy and compression efficiency. In
order to solve this problem, it is necessary to analyze the correlation of data in a complete
cycle. The acquisition times in period T are recorded as i, and the data sequence of any
parameter s in any node Pi acquisition period T is recorded as

Ps(T) =
{

pT
s (0), pT

s (−1), . . . , pT
s (−k + 1)

}
(10)

where Ps(T) is the data sequence of parameter s; pT
s (0) is the final sampling value of

parameter s; pT
s (−k + 1) is the initial sample value of parameter s. For any parameter S1

and i collected by node P, the correlation between the two sequences can be measured by
calculating the Pearson correlation coefficient:

ρ̂(Ps1(A), Ps2(A)) =
∑n

i=1

(
pA

s1
(i)− ps1

)(
pA

s2
(i)− ps2

)
√

∑n
i=1

(
pA

s1
(i)− ps1

)2
·∑n

i=1

(
pA

s2
(i)− ps2

)2
(11)

where A is the selected time period for collecting data; ρ̂(Ps1(A), Ps2(A)) is the correlation
coefficient; p̂s1 and p̂s2 are the average of sequence Ps1(A) and Ps2(A) respectively.

Definition 1. Mean square error (MSE): If the original signal S = {X(t)|t = 1, 2, 3, · · · k},
S∗ =

{
Xt(t)

∣∣t = 1, 2, 3, · · · k
}

is an estimate of S, then the MSE of the estimate is

MSES∗ =
1

K− 1

K

∑
t=1

[X(t)X∗(t)]2 (12)

Definition 2. Data change level: Set node i’s data in the tth sampling as Di
t, the data change level

Li
t defined as

Li
t = f loor

(∣∣∆Di
t
∣∣

α

)
+ 1 (13)

where ∆Di
t = Di

t − Di
previous, the variable Di

previous stores the last sample data of a node whose L

> 1, that is, Di
previous = Di

k,k = max
{

r
∣∣Li

r > 1, 2 ≤ r ≤ t− 1
}

, its initial value Di
previous = Di

1;
f loor(x) Return x rounding down; α is the threshold for determining the level, which is set
according to the specific application. This paper uses (MSE − 1) as a measure of data accuracy with
the following assumptions:

(1) The sampling frequency of nodes is 1
∆t ;

(2) The variable P is the Sink precision threshold for data processing;
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(3) The variable PP is the mark of precision processing.

For the data processing method in the wavelet cluster of wireless sensor networks
mentioned in this paper, it is assumed that sensor nodes can form different cluster areas
according to the data correlation. As a result, the data correlation between cluster areas
is relatively small, while the wavelet transformation has obvious advantages only when
the data correlation is high. Therefore, only data processing based on one-layer cluster
structure is considered. A node within each cluster is selected as the cluster head to process
the data within the cluster.

Let the data sampled by the node i in a cluster at time t be ∆Di
t. If Li

t = 1, only ∆Di
t data

will be transmitted to the cluster head; If Li
t, the Li

t and ∆Di
t are transmitted to the cluster

head together, and Di
previous = ∆Di

t. Set the vector Dt =
[
D1

t , D2
t , · · · , Dn

t ,
]T to represent

the data of the tth sampling of all n active nodes in the same cluster, corresponding to the
data change vector Lt =

[
L1

t , L2
t , · · · , Ln

t
]
. If the area of the original Voronoi polygon of the

corresponding node is: [V1
0 , V2

0 , · · · , Vn
0 ], then the cluster head generates a new Voronoi

polygon area of all n nodes in the tth order based on vector Lt:

[V1
t , V2

t , · · · , Vn
t ] = [L1

t ×V1
0 , L2

t ×V2
0 , · · · , Ln

t ×Vn
0 , ] (14)

When the [V1
t , V2

t , · · · , Vn
t ] is determined, the irregular wavelet transform basis func-

tion matrix Kt for the tth sampling within the cluster is calculated as

Kt =


k0 k0 k0 · · · k0
k′1 k1 k1 · · · k1
k2 k2 k2 · · · k2
...

...
...

. . .
...

kn kn kn · · · k′n

 (15)

where Ki


1

Vtot
, i = 0

Vi
t

Vtot
, i > 0

, Vtot =
n
∑

i=0
Vi

t ; k′i = −
ki(Vtot−Vi

t )
Vi

t
, 1≤ t ≤ n.

The row of matrix Kt defines the basis function of irregular wavelet transform, in
which the first row is a scale function with constant value, and the elements in row i and
column j represent the value (1 < i ≤ (n + 1), 1 ≤ j ≤ n) of the (i − 1) wavelet function in
the Voronoi region of the sensor node.

Then, a diagonal matrix V′t = diag
(
V1

t , V2
t , · · · , Vn

t
)

is defined and an analysis matrix
At is constructed as

At = KtVt
′ (16)

Using this matrix, according to the equation

ct = AtDt (17)

Calculate the irregular wavelet transform coefficient of data vector Dt: one (n + 1) ×
The one-dimensional transform coefficient vector ct =

[
st, w1

t , w2
t , · · · , wn

t
]T , where the first

element of ct is the scale coefficient wi
t(i = 1, 2, · · · , n) after irregular wavelet transform,

which is the wavelet coefficient, and let the vector wt =
[
w1

t , w2
t , · · · , wn

t
]
. Calculate the

composite matrix st as
St =

(
V′t
)−1

(At)
T (18)

The matrix can be used to reconstruct the transformation coefficients to the sampled datasets:

D′t = Stc′t (19)

where c′t coefficient vector consisting of scale coefficients and partial wavelet coefficients;
D′t is the reconstructed data vector.
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To sum up, after obtaining the sampling data and data change vector L of each member
in the cluster for the t time, the cluster head has the ability to process the sampling data by
wavelet. According to Equation (17), the cluster head obtains the coefficient vector ct by
wavelet transform of the sampled data vector Dt. Using the composite matrix and scale
coefficient, according to Equation (19), The cluster head reconstructs the area data to obtain
D′t, compares the original sampling data Dt, and calculates the MSE − 1 between the data
to obtain the reconstruction accuracy Pt. If Pt > P, PP = 1, otherwise PP = 0. Thereafter, the
cluster head transmits the obtained scale coefficients and PP to sink, and temporarily stores
the remaining wavelet coefficients wt and vector Lt. As shown in Figure 2, the cluster head
m6 transmits the scale coefficient and accuracy processing PP, and the wavelet coefficients
wt and Lt are retained.
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Finally, for the collected data, the threshold denoising method based on wavelet
compression is adopted. The main idea of this method is that the data and noise after
wavelet transform have different characteristics, that is, the amplitude of wavelet coefficient
corresponding to the energy of real data are too large, while the amplitude of wavelet
coefficient of interference noise is too small, which meets x ≥ λ, x represents the wavelet
decomposition coefficient and λ represents the set threshold. The denoising steps are
as follows:

(1) The noisy signal f (t) is decomposed into multiple layers by wavelet transform, and
the corresponding coefficient of each layer is ωj,k.

(2) Through the threshold processing of wavelet decomposition coefficient ωj,k, the esti-
mated wavelet coefficient ω j,k is obtained to make ωj,k −ω j,k as small as possible. The
soft threshold function is selected as the threshold function:

f (x) =

{
sgn(x)(|x| − λ), |x| > λ,

0, |x| ≤ λ,
(20)

Among them, sgn(x) is the symbolic function. The threshold is selected as the local
adaptive threshold. In this paper, the threshold is 3α, that is, arrange the coefficients of
each layer according to the size, then take the median, and finally divide the median by
0.6745 to obtain that the α. |x| > 3α of the corresponding layer is generated by the signal,
and the |x| ≤ 3α is generated by the noise

(3) The estimated wavelet coefficient ω j,k is used for wavelet reconstruction to obtain the
estimated signal f (t), that is, the denoised signal.

In the process of transmission line condition monitoring, parameter correlation
presents a many to many mapping state, and the correlation between parameters is rela-
tively complex. Therefore, after the parameter classification analysis is carried out according
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to the change characteristics of parameter values, the correlation between this parameter
and other parameters in the same category is calculated by selecting the main parameter in
the category, The parameter clustering and correlation ranking in the category can reduce
the information loss in the compression process and improve the compression accuracy.
However, the wavelet correlation compression algorithm proposed in this paper mainly
reduces the amount of data transmission and achieves the effect of data compression
by eliminating the high-frequency component of the data matrix. In the process of data
transmission, the ordinary coding algorithm is still used for transmission. Therefore, the
compression ratio does not reach the best.

2.3. The Neighborhood Index Sequence Algorithm

Based on the wavelet correlation data compression algorithm, this paper proposes
a neighborhood index sequence (NIS) algorithm for data compression in transmission
line wireless sensor networks as the connection of data transmission compression. After
analyzing the correlation information between the adjacent bits of the input characters, the
algorithm can assign a shorter length codeword to each character of the input sequence,
which is in the two shorter codewords generated by 0 to 1 traversal. The optimal codeword
is selected according to the lowest bit number required to store the codeword of each
character. For the input sequence with length N, the NIS algorithm needs Cbits to store
compressed data, as shown in Equation (21):

Cbits =
N

∑
i=1

NISopt(i) + control bits (21)

where NISopt represents the number of bits in the codeword. The proposed NIS algo-
rithm requires an additional 8 control bits to calculate the optimal bits in the compressed
data. The average number of bits required to store a single character can be calculated
from Equation (13):

NISch_av =
Cbits

N
, 1 ≤ NISch_av ≤ 4 (22)

The lower the value of Cbits and NISch_av, the higher the compression performance of
the algorithm. According to Equation (22), the NIS algorithm needs to store one character in
4 bits at most. However, in most cases, the NIS algorithm only needs to store one character
in 1 bit, so it has better compression effect.

The overall process of NIS compression and decompression is shown in Figure 3. First,
the algorithm gives priority to input text that may contain alphabetic characters and special
symbols. After reading the characters in the data, convert them to the corresponding ASCII
value, and then convert the ASCII value to the equivalent binary form. Then, perform the
process of “traversal based on 0 and 1 data”. Bit traversal starts with the first bit of the
binary of the input character and identifies whether the bit is 0 or 1. Then, start the 0-based
traversal and store the control bit as 00 (when the first bit recognized is 0) or 10 (when the
first bit recognized is 1). Taking the first bit as the reference, the algorithm starts to traverse
from the second bit, mainly identifying 0 and storing its position when finding the value of
0. Once the value of 0 is recognized, its position (z) will be stored in the codeword (00-z),
and then restart the program until the last bit is recognized. When traversing to the last bit,
store all currently recognized codewords, end the 0-based traversal process and start the
1-based traversal, which is the same as the 0-based traversal process. When two codewords
are stored, the algorithm compares them and selects the codeword with the minimum
number of bits as the optimal codeword. Finally, the optimal codeword of all generated
coded characters is connected with the control bit and a compressed file is generated.



Energies 2021, 14, 8275 10 of 18

Energies 2021, 14, x FOR PEER REVIEW 10 of 18 
 

codeword with the minimum number of bits as the optimal codeword. Finally, the opti-

mal codeword of all generated coded characters is connected with the control bit and a 

compressed file is generated. 

 

Figure 3. NIS Compression and Decompression Program Flow Chart. 

The better compression performance of the NIS algorithm is mainly because it re-

quires less bits to represent each character in the input sequence. As can be seen from 

Equation (13), any character compressed by the NIS algorithm can be stored by at least 1 

bit or at most 4 bits. For example, the character “o” and the space character only need 1 

bit codeword to represent; Characters “t” “h” “k” “p” need 2 bit; 3 bit can represent “e” 

“I” “u” “c” and other characters. Characters such as “f” “v” “a” “2” “6” can be represented 

by 4 bit codewords. Overall, the NIS algorithm uses an average of 3.4 bit to represent any 

character. 

3. Experimental Results and Analysis 

The software and hardware environment of this paper are shown in Table 1, and 

MATLAB language is used for programming. 

Table 1. Software and hardware environment. 

Category Edition 

Operating system Windows10 

CPU Intel Core i9-10900k 

GPU NVIDIA GeForce GTX 3080 

RAM 32 Gb 

In order to verify the advantages of the algorithm proposed in this paper in the com-

pression of transmission line condition monitoring data, 1089 groups of transmission line 

condition monitoring data in a place in 2020 are used as experimental samples. Four types 

of data are mainly used for compression analysis: transmission line temperature, trans-

mission line humidity, transmission tower base temperature and transmission line wind 

speed. The statistics of sample data are shown in Figure 4. 

Figure 3. NIS Compression and Decompression Program Flow Chart.

The better compression performance of the NIS algorithm is mainly because it requires
less bits to represent each character in the input sequence. As can be seen from Equation
(13), any character compressed by the NIS algorithm can be stored by at least 1 bit or
at most 4 bits. For example, the character “o” and the space character only need 1 bit
codeword to represent; Characters “t” “h” “k” “p” need 2 bit; 3 bit can represent “e” “I”
“u” “c” and other characters. Characters such as “f” “v” “a” “2” “6” can be represented
by 4 bit codewords. Overall, the NIS algorithm uses an average of 3.4 bit to represent
any character.

3. Experimental Results and Analysis

The software and hardware environment of this paper are shown in Table 1, and
MATLAB language is used for programming.

Table 1. Software and hardware environment.

Category Edition

Operating system Windows10
CPU Intel Core i9-10900k
GPU NVIDIA GeForce GTX 3080
RAM 32 Gb

In order to verify the advantages of the algorithm proposed in this paper in the
compression of transmission line condition monitoring data, 1089 groups of transmission
line condition monitoring data in a place in 2020 are used as experimental samples. Four
types of data are mainly used for compression analysis: transmission line temperature,
transmission line humidity, transmission tower base temperature and transmission line
wind speed. The statistics of sample data are shown in Figure 4.
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Before data compression, it is necessary for us to select several universal and objective
evaluation criteria to evaluate the effect of data compression and reconstruction, and as
the basis for the comparison of different compression algorithms to draw an objective and
credible conclusion. Generally, the performance of all compression algorithms is calculated
by using compression ratio (CR), which can be expressed by the following Equation (23).

CR = 100× (1− Number of bits of compressed data
Number of bits of uncompressed data

) (23)

3.1. Wavelet Compression Analysis

Firstly, the correlation of sample data is calculated on MATLAB2016a platform accord-
ing to Equation (11). The correlation between parameters is shown in Table 2.

Table 2. Correlation coefficient of sample parameters.

Correlation Coefficient
^
ρ

Transmission
Line

Temperature

Ambient
Relative

Humidity

Leakage
Current

Ambient
Wind Speed

Conductor
Wind Speed Rainfall

Transmission line
temperature 1 0.137 0.913 0.102 0.155 0.015

Ambient relative humidity 0.137 1 0.318 0.067 0.132 0.365

Leakage current 0.913 0.318 1 0.118 0.142 0.102

Ambient wind speed 0.102 0.067 0.118 1 0.914 0.043

Conductor wind speed 0.155 0.132 0.142 0.914 1 0.073

Rainfall 0.015 0.365 0.102 0.043 0.073 1

The wind speed data and leakage current data collected by the wind speed sensor are
taken as the samples for analysis. The denoising effect is shown in Figure 5. The leakage
current can still retain the leakage current in case of fault through denoising. The error
value of wind speed data is deleted by denoising, and the effective value is retained, which
improves the quality of data.
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Figure 5. Comparison of Denoising Effects of Leakage Current and Wind Speed Data. (a) Original value of leakage current.
(b) Original value of wind speed. (c) Leakage current data processing results. (d) Wind speed data processing results.

According to the coefficients in Table 1, considering the correlation strength, the
transmission line temperature has the strongest correlation with other parameters, and the
wind speed has the weakest correlation with other parameters. The four parameters can
be divided into two groups according to the correlation strength. The transmission line
temperature and tower base temperature constitute a strong correlation group, and the
ambient relative humidity and ambient wind speed constitute a weak correlation group.

After the parameter ranking table is obtained, the data matrix can be reorganized, and
the original matrix can be represented by Equation (24).

c0
p(T) =


pT

sTL
(0) pT

sTT
(0) pT

sAR
(0) pT

sEW
(0)

pT
sTL

(1) pT
sTT

(1) pT
sAR

(1) pT
sEW

(1)
...

...
...

...
pT

sTL
(k) pT

sTT
(k) pT

sAR
(k) pT

sEW
(k)

 (24)

where STL represents the transmission line temperature; STT represents the temperature
of transmission tower foundation; i represents ambient relative humidity; SEW stands for
ambient wind speed. pT

STL
is the main parameter vector. The vector pT

STT
has strong correla-

tion with the main parameter vector, and the vector pT
SAR

and pT
SEW

have weak correlation
with the main parameter vector. The resulting parameter matrix can be calculated by
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two-dimensional discrete wavelet transform to remove redundant data. This paper selects
a group of 8 × 8 and the wavelet compression test is carried out on the sample data of 8,
and the test results are shown in Figure 6.
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Figure 6. An Example of Wavelet Change Compression.

The group of 8 × 8 is shown in Figure 6. After wavelet compression, 93.75% of the
high-frequency components are eliminated, and a group of 2 is needed, except that the data
of 2 × 2 needs multi-byte coding, and the other data only needs single-byte transmission.

3.2. NIS Compression Analysis

In order to verify the actual compression performance of the algorithm, this paper
uses the NIS algorithm to transmit a user-defined string “Hello world”, and records its
compression process step by step, as shown in Figure 7. The original data “Hello world”
contains 10 alphabetic characters and two space characters. First, convert all characters into
ASCII code and binary code, and then determine that the control bit is “0” or “1” according
to the first place of the binary code. If the control bit is determined to be “0”, start the
data traversal based on “0”; If it is determined that the control bit is “1”, the data traversal
based on “1” is started. After data traversal, two codeword tables will be generated. By
comparing the number of bits of each codeword and using the smallest codeword, the
optimal codeword table will be generated. Finally, compressed packets are generated for
wireless transmission. The compression process and decompression process of the WCNIS
algorithm are symmetrical. During decompression, first identify the codeword in the
compressed packet to obtain the optimal codeword, then determine the position of 0 and 1
in the recovered binary data according to 0 and 1 in the control bit, then recover the binary
code and ASCII code in turn, and finally obtain the recovered original data “Hello world”.
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According to Table 3, the byte size of the original data “Hello world” is 80 bit, and the
optimal codeword size compressed by the NIS algorithm is 27 bit. According to Equation
(23), the compression ratio of NIS compressed data is 66.25%.

Table 3. WCNIS codeword structure.

Character ASCII Binary Based on ‘0’
Ergodic

Traversal
Codeword
Bits of ‘0’

Based on ‘1’
Ergodic

Traversal
Codeword
Bits of ‘1’

Optimized
Codeword Bit

H 104 1101000 10-1,1, 0, 0 4 11-0, 1 2 2

e 101 1100101 10-1, 0, 1 3 11-1, 10, 0 4 3

l 109 1101100 10-1, 10, 0 4 11-0, 1, 0 3 3

o 111 1101111 10-1 1 11-0, 1, 0, 0, 0 5 1

w 119 1110111 10-10 2 11-0, 0, 1, 0, 0 5 2

space 32 0100000 00-1, 0, 0, 0, 0 5 01-0 1 1

r 114 1110010 10-10, 0, 1 4 11-0, 0, 10 4 4

d 100 1100100 10-1, 0, 1, 0 4 11-0, 10 3 3

3.3. WCNIS Compression Analysis

In this paper, the WCNIS compression algorithm is composed of the wavelet cor-
relation compression algorithm and the neighborhood index sequence algorithm. The
wavelet correlation compression algorithm is used as the front end to calculate the correla-
tion between source data and eliminate redundant data; the NIS algorithm is used as the
back-end compression coding to further increase the compression rate. This paper tests
the efficiency and reconstruction accuracy of compression algorithms, and focuses on data
compression methods in sensor networks, which are application layer problems and do
not involve the underlying protocols. Compared with the traditional NIS algorithm, the
WCNIS algorithm in this paper greatly improves the transmission efficiency on high data
volume. The two algorithms are run separately in Matlab to transmit a section of irregular
data, and the results are shown in the following graphs. The proposed algorithm in this
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paper greatly reduces the transmission time of large volume of text compared with the
original algorithm, and its running time is compared as follows Table 4. The runtime of the
algorithm is visualized in Figure 8 below

Table 4. NIS and WCNIS data volume.

Running Time of
Algorithm T/s

Amount of Data
Transmitted

512 1024 1536 2048 2560 3072 3584 4096 4608 5120

NIS 0.0243 0.0472 0.0648 0.0854 0.1402 0.1657 0.2053 0.2548 0.3251 0.3458

WCNIS 0.0186 0.0352 0.0453 0.0563 0.0701 0.0832 0.0964 0.1147 0.1532 0.1632
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In the simulation experiment, a set of multi-parameter transmission line datasets are
used for testing, and the compression performance and power consumption are compared
with the recently proposed LEC, S-LZW, ALDC and FELACS algorithms. In addition, they
are also compared with the traditional compression algorithms Gzip [14], Bzip [16], rar,
Huffman [17] and arithmetic coding [18]. This paper uses MATLAB 2016a simulation plat-
form to run the WCNIS algorithm to compress the dataset, and compares the results before
and after compression. The size, uncompressed size, compressed size and compression
ratio CR of each dataset are shown in Table 5.

Table 5. Compression ratio of the WCNIS algorithm on different datasets.

Dataset Name Dataset Size before
Compression (Bit)

Compressed Dataset
Size (Bit)

Compression Ratio
CR (%)

Line temperature 8920 7874 88.27

Ambient humidity 8712 6681 76.69

Rainfall 8836 7441 84.21

Wind speed 8933 6113 68.43

Leakage current 8156 6912 84.48

In order to evaluate the compression performance of the WCNIS algorithm, run other
compression algorithms in MATLAB 2016a software to process the original dataset and
compare with the NIS algorithm. The comparison results are shown in Tables 6 and 7. It can
be seen from Tables 6 and 7 that the method used in this paper obtains better compression
performance than other methods on all application datasets.
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Table 6. Comparison between this method and existing compression algorithms.

Dataset Name
Compression Ratio CR (%)

LEC [19] S-LZW [20] ALDC [21] FELACS [22] NIS [23] This Paper

Line temperature 64.54 31.36 67.43 68.12 72.31 88.27

Ambient humidity 51.98 23.14 58.35 56.41 59.87 76.69

Rainfall 62.86 32.45 66.38 67.31 70.87 84.21

Wind speed 49.37 22.05 51.79 62.77 55.68 68.43

Leakage current 50.35 31.24 65.34 58.66 78.21 84.48

Table 7. Comparison of compression performance of each compression algorithm.

Dataset Name
Compression Efficiency (Bit/Sample)

LEC [19] S-LZW [20] ALDC [21] FELACS [22] NIS [23] This Paper

Line temperature 5.6432 11.1734 5.2245 5.2484 5.1259 1.9268

Ambient humidity 7.3498 12.5673 6.5869 6.8251 5.9822 3.5189

Rainfall 6.1322 11.6715 5.4136 5.3349 4.7554 2.4656

Wind speed 8.2334 12.5322 7.8045 7.5812 7.5431 4.0643

Leakage current 9.6523 11.3654 6.9635 6.7452 5.3329 3.5841

In the existing methods, S-LZW compression efficiency is as high as 12 bits/sample,
resulting in the negative compression of the S-LZW algorithm and cannot adapt to the
dynamic changes of dataset. Therefore, the S-LZW algorithm has poor robustness and the
compression ratio is the lowest among all algorithms. In addition, the S-LZW algorithm
also faces an increasingly serious dictionary problem, but NIS does not need to consider
this problem. ALDC usually needs additional space to store the encoding dictionary.
Each encoding needs to access the examples in the dictionary to obtain the required code.
Therefore, the processing speed of the ALDC algorithm is slow, and more energy will
be consumed due to repeated access to the encoding dictionary. The LEC algorithm has
stronger compression performance than the ALDC and FELCAS algorithms. However,
the algorithm is a static compression algorithm and always uses a coding table, so its
compression ratio cannot surpass the NIS algorithm. The compression ratio of the FEL-
CAS algorithm for wind speed dataset is significantly higher than that of other existing
algorithms. The main reason is that the Golomb rice coding used in the FELCAS algorithm
can have a better compression effect on parameters with poor time correlation, but its
compression performance is still inferior to the WCNIS algorithm. The comparison results
are shown in Table 8.

Table 8. Comparison between this method and traditional compression algorithm.

Dataset Name
Compression Ratio (%)

Gzip [24] Bzip2 [25] Rar Huffman [26] Count [27] This Paper

Line temperature 34.76 55.27 61.95 22.43 21.01 88.27

Ambient humidity 31.35 45.87 52.31 22.34 22.87 76.69

Rainfall 37.96 58.28 60.05 22.87 23.98 84.21

Wind speed 27.58 43.22 45.26 18.52 18.21 68.43

Leakage current 23.56 50.36 51.32 18.67 20.53 66.45

In the text file to be transferred, the space character always repeats the most frequently,
which significantly affects the overall size of the file. The algorithm proposed in this paper
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cannot only remove the repeated space characters through wavelet transform, but also
the space characters that must be transmitted. The NIS algorithm can compress and store
only 1 bit. However, compared with the compression algorithm proposed in this paper, the
compression performance of the compression algorithm is lower than that of the algorithm
proposed in this paper because the compression efficiency of a large number of repeated
white space characters is obviously insufficient.

The performance comparison between the WCNIS algorithm proposed in this paper
and the traditional compression algorithm is shown in Table 6. The compression ratio of
the Huffiman, Gzip and arithmetic coding algorithms in the four datasets is small, all less
than 40%. Although the compression performance of bzip2 and Rra is higher than that of
the Huffiman, Gzip and arithmetic coding algorithms, the maximum compression ratio
still cannot exceed 70%. The algorithm proposed in this paper has obvious advantages in
compression ratio because of its dynamic characteristics suitable for the input data.

Additionally, considering the complex situation this paper designs, when one or
more sensors fail, the data transmitted by the sensors will be divided into three categories.
(1) Jump data—there is a large difference between the data received in a short period of
time and the last data transmitted or the data from neighboring nodes. (2) Disturbed
data—a sharp increase in the rate of change of the data within a short period of time. (3) No
data—where the sensor completely loses its data sampling capability or communication
capability and is considered to have transmitted empty or missing data. The wavelet
algorithm proposed in this paper can set the threshold range of the window function when
filtering data, which can effectively filter jump data and disturbance data. If there are
no data within the threshold range set by the window function, the algorithm will wait
cyclically for new data and upload fault information. Since transmission line condition
monitoring does not need to focus on the time series of data, this method can effectively
solve the case of no-data faults.

4. Conclusions

This paper proposes an efficient lossless compression technology for wireless sensor
networks. The algorithm combines the wavelet compression algorithm and the NIS algo-
rithm. It displays a fast operation speed and requires a small amount of calculation. It is
suitable for battery powered wireless sensor network nodes. Since each packet is decom-
pressed independently, the algorithm is robust to packet loss. In addition, this method
has high compression performance, which helps to reduce the network load and reduce
the packet loss rate. Simulation results show that the proposed method has achieved
effective results on the transmission line parameter dataset, is superior to the existing
data compression algorithms, and is suitable for data compression and transmission in
transmission line wireless sensor networks.
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