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Abstract: This paper presents an open architecture for a sensor platform for the processing, collection,
and image reconstruction from measurement data. This paper focuses on ultrasound tomography
in block-wise-transform-reduction image reconstruction. The advantage of the presented solution,
which is part of the project “Next-generation industrial tomography platform for process diagnostics
and control”, is the ability to analyze spatial data and process it quickly. The developed solution
includes industrial tomography, big data, smart sensors, computational intelligence algorithms, and
cloud computing. Along with the measurement platform, we validate the methods that incorporate
image compression into the reconstruction process, speeding up computation and simplifying the
regularisation of solving the inverse tomography problem. The algorithm is based on discrete
transformation. This method uses compression on each block of the image separately. According to
the experiments, this solution is much more efficient than deterministic methods. A feature of this
method is that it can be directly incorporated into the compression process of the reconstructed image.
Thus, the proposed solution allows tomographic sensor-based process control, multidimensional
industrial process control, and big data analysis.

Keywords: big data; inverse problem; internet of things; cloud computing; quality of experience;
optimisation; ultrasound tomography

1. Introduction

The paper’s principal research goal is to present a solution based on the design of
a proprietary Internet of Things device, data collection and storage mechanisms, and
their analysis in energy optimisation of technological processes such as crystallisation,
fermentation, two-phase flows, etc.

Advanced production process automation and control plays a crucial role in compa-
nies. They ensure high flexibility, rapid adaptation of manufacturing processes to evolving
market demands, and safety and efficiency at optimum resources and energy costs. The
development and implementation of advanced process monitoring mechanisms provide
greater production flexibility. New technologies offer great implementation possibilities
for industrial modernisation. They make the fourth industrial revolution possible. In
the framework of Industry 4.0 (DFKI, Kaiserslautern, Germany), it is envisaged to use all
types of intelligent devices supported by wired or wireless networks. Advances in the
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industrial Internet of Things and related fields such as industrial wireless networks (IWN),
large data sets, and cloud computing help create a new concept of industrial environments
based on constant monitoring processes. In particular, it is worth paying attention to
the architecture of the prototype of the platform implementation, functions and features
of each component layer, and the exchange of information between all types of devices.
Cyber-physical systems are a new generation of digital systems, mainly focusing on the
complex interdependence and integration between cyberspace and the physical world. A
cyber-physical system consists of highly integrated computing, communication, control,
and physical components. Related to the issue of a cyber-physical system is Industry
4.0 (DFKI, Kaiserslautern, Germany), which has created a revolution in manufacturing
processes by interconnecting elements that allow different worlds such as physical, human,
and digital to be linked together. Another of the terms to be noted is the Internet of Things
and IoT services. Its conception to industry brings some concepts and technologies to
develop industrial devices and device networks [1].

Industrial devices consist of sensors, actuators, and industrial robots connected
through communication lines. Through this connection, monitoring analysis, data col-
lection, and change are possible [2]. There are tremendous opportunities for change and
competitive advantage in many industries using IoT. Real-time data are collected while
the system is running to provide insights into system operations, which equipment is
working well, and where there is downtime and why. Industry 4.0 (DFKI, Kaiserslautern,
Germany) by itself, of course, does not have this information, and this information must
be drawn from many interconnected elements. It combines standardisation, automation,
smart devices, advanced diagnostics, and people into a common platform, which ultimately
enables automation and digitisation to be able to solve problems [3].

The developed solution makes it possible to monitor and control the quality of produc-
tion processes, analyze large data sets, and control through advanced interfaces. Current
sensor technologies are primarily based on magnetic resonance and electrical tomography,
including capacitive and resistive tomography. Electrical tomography measures voltage
drops at the edge of the area to solve the inverse problem to allow image reconstruction by
showing the corresponding conductivities. Ultrasound transmission tomography is more
suitable for detecting connections between materials, whereas electrical capacitance tomog-
raphy better characterises individual phases (liquid, solid, and gas). Electrical resistance
tomography works well when visualising the concentration profile [4–9].

1.1. Process Tomography

The tomographic problem belongs to the inverse problem associated with some wave
equations. The purpose of tomography is to analyze the properties of the object under study
by performing measurements at its boundary [10]. Thus, tomography enables monitoring
and a better understanding of industrial processes. Furthermore, tomographic imaging of
objects allows the complexity of the structure to be analysed without interfering with the
object.

Process tomography allows for analysing internal processes with no interference
in the production process, identifying and diagnosing defects, flaws, and anomalies of
various kinds. Reconstruction of images and individual elements of studied objects with
tomography is possible even when we do not have access to their interior. More and
more industrial processes require continuous monitoring and control. Furthermore, safety
considerations require that such substances as oil, water, or gas be transported in an
environmentally safe manner. It seems that new developments in the field of tomography
can meet these demands. Thanks to developed, non-invasive techniques, it is possible to
perform area studies of fluid flow, temperature distribution, or concentration of different
substances without interfering with the technological process. In many cases, it is not
possible to use other measuring techniques, such as optical tomography, which is not
suitable for monitoring light-impermeable substances, or even X-ray tomography, in which
the measurement time is so long that the observation of some processes is impossible. It
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seems then that impedance tomography, capable of spatial imaging of the distribution of
electrical parameters of the studied medium, is the only solution [11].

The technique of process tomography is currently being attempted in various branches
of industry, such as chemical, pharmaceutical, food, refinery, environmental protection,
geology, and archaeology. Examples of practical applications include: measuring product
homogeneity; visualisation of processes: mixing, separation, or polymerisation; liquid
and gas flow control; monitoring of water bodies; rock and soil topography; groundwater
contamination control; substrate investigations for the planning of gas pipelines drilling
and directional drilling; examination of the condition of tree trunks; flame temperature
testing; and detection of corrosion and damage in pipelines.

There is an overall tendency to grow the importance of predictive algorithms in indus-
trial applications [12–18]. Industrial tomography is a non-destructive [19], non-invasive
imaging technique applied to different industrial technologies to study physical and chem-
ical processes without interfering with their interiors. The tomographic monitoring system
continuously measures data, which allows for a better understanding and control of pro-
cesses, enabling a quick response to any problems [20–22]. It simplifies process control in
real-time and provides practical responses to system malfunctions. Industrial tomography
may be turned into a powerful sensor for controlling dynamic processes. Distributed
hardware infrastructure needs to perform various process discovery and startup tasks
and is typically characterized by the spatial organization. Wireless sensor network (WSN)
technology offers great opportunities for a wide range of devices to work together [23].

1.2. Ultrasound Transmission Tomography

The main purpose of tomographic studies is to non-invasively measure the inte-
rior properties of objects at their edges without interfering with their physicochemical
characteristics [24]. Ultrasound waves are short waves and have properties of radiation
and propagation. The wavelength depends on the medium under study, and the range
varies from a few micrometres into tens of centimetres depending on the properties of the
environment under study.

Moreover, using ultrasound, it is possible to perform multiple non-invasive mea-
surements of the tested objects. The technology allows for measurement of the signal
transit time, damping factor, and its derivatives after the frequency allow (with appropriate
reconstruction transformations) for imaging the internal structure of the tested object. The
image generated using appropriate reconstruction methods presents the internal structure
of a given medium, resulting from measurements of scanning data at different angles after
the ultrasonic pulses pass through the tested medium.

Ultrasound tomography, and in particular ultrasound computer tomography (UCT),
can be broadly classified into two basic classes: diffraction and classical, and these in turn
are divided into reflection and transmission [25–30].

1.3. Architecture System

The architecture of the presented solution consists of a cyber-physical system model,
measurement sensors, and methods of analysis and classification of algorithms and image
reconstruction. The system design was based on containers in the cloud computing model.
The use of containers allows the use of public clouds. Using a distributed system using
microservices and containers increases the system’s flexibility in which individual modules
perform clearly defined tasks. Failure of one of the modules does not cause the failure of
the entire system. This architecture increases the level of reliability of the new IT system. It
enables forecasting changes based on the analysis of historical data from the system and
based on data obtained from devices in real-time.

Algorithms for manual and automatic control relate to issues related to data pro-
cessing acquired from different probes placed at key nodes in the installation. The main
feature of using wireless methods is obtaining essential information about the status of the
process and installation by people of strategic importance in the management and technical
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supervision process. The transmitted data are analysed by an expert system and used to
optimise production processes (Figures 1–3).
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As part of the research, an expert system within the industrial tomography platform
was designed for diagnostics and control of technological processes. To analyze the data
collected during the technological process, based on their values and historical data, pa-
rameters are introduced to control the technological process, e.g., selecting the mixer’s
appropriate speed and adding substrates. The system enables mapping of the technolog-
ical process in a digital twin, where the proposed settings are continuously verified and
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monitored. In addition, a streaming platform was created to transmit messages between
microservices. The microservices include microservices responsible for image reconstruc-
tion, for technological process control, and for validation of user models, along with a
database where all data received or sent are stored. The microservices include microser-
vices responsible for image reconstruction, data interpretation, process control, and user
model validation. The user can control the technological process using the microservice
providing the user interface.

The IoT ecosystem includes systems at many levels. These include sensors and IoT
devices, edge devices, cloud computing systems, mobile applications, network interfaces,
and software. The tasks facing IoT security systems are very extensive. These include,
for example, avoiding situations where the acquisition of a single device can lead to the
acquisition of an entire device collection.

However, if such a situation occurs, it is necessary to prevent subsequent attacks by the
devices taken over (particularly Distributed Denial of Service (DDoS) attacks). Threats may
cause irregularities to the following elements of the IoT system infrastructure: insufficient
security level of Internet interfaces for IoT platforms; the low-security level of IoT devices
and network interfaces misinterpreted security of protocols and communication channels;
low-security level of ecosystem services cloud computing; low-security level of applications
running in the cloud, on mobile platforms, and IoT devices; incorrectly functioning IoT
system interface security (API) systems; erroneously designed ways to secure data transfer
over the network; and insufficient security level of transport layer security.

Transport layer security (TLS) ensures secure data transmission over the network. The
data are encrypted to prevent eavesdropping and analysing the content. TLS (also known
as SSL) is widely used to provide secure access to, for example, websites. TLS ensures
a trusted connection between the server and client before transferring data. It does this
by using server certificates that clients must verify. In some cases, the server also checks
client-specific certificates.

The MQ Telemetry Transport (MQTT) data transfer protocol uses TCP as the transport
protocol, but by default, the connection between the device and the broker and the broker
and the downstream client does not use encrypted communication. The implementation of
TLS affects data transfer performance and server load; however, for security reasons, most
MQTT brokers support the use of TLS to allow applications to exchange confidential data
securely. It is assumed that port 8883 is used for secure communication, and the normalised
name is accepted as “secure-MQTT”. However, security is associated with greater CPU
utilisation and increased communication costs. Although the additional use of processor
resources is usually irrelevant to the broker, this can be a problem for devices with low
computing performance that are not designed for tasks that require increased computing
power.

WebSocket is a communication protocol that ensures a full-duplex connection over
a single TCP connection. In addition, WebSocket (Computer Communications Protocol)
allows sending message streams via TCP. WebSocket is different from the HTTP protocol,
but it is compatible with it to communicate through ports 80 and 443. Similarly, for secure
communication, TLS and port 443 will be used. Furthermore, WSS (WebSockets over
SSL/TLS) is encrypted, which protects against man-in-the-middle attacks. Unfortunately,
WebSocket does not support authorisation or authentication. One of the schemes that
seemed to solve the WebSocket authentication problem is an authentication system based
on encrypted strings called “tickets”. The accepted authentication standard for WebSocket
and Rest-Ful API is JSON Web Token (JWT).

In its compact form, JSON Web Token consists of three parts separated by dots (.):
header, load, and signature. When a user logs on using his credentials during authenti-
cation, the JSON network token will be returned. Because tokens are credentials, special
care should be taken to prevent security problems. The operator agent needs to send
a JWT, usually in the authorisation message header, by the Bearer scheme every time a
user requests access to a secured route or resource. In some cases, this may be a stateless
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authentication mechanism. Resources protected by the server will require validation of
the header. The whole process can be presented in the following steps: (a) The client
or application asks for authorisation from the authorisation server. It is done by one of
several authorisation methods (e.g., OpenID Connect); (b) Once authorisation is granted,
the authorisation server returns an access token to the application; (c) The application then
uses the access token to access a protected resource (e.g., Restful API).

The concept of the Internet of Things assumes intelligent communication and analysis
of the collected data, which in response is to ensure the improvement of decision-making
processes. An adequately designed technological line is designed to transfer the read
results between devices. These data are processed and analyzed in an appropriate IT
system that communicates and integrates individual elements of an intelligent production
line. However, this communication is not limited only to the devices operating in the
enterprise but goes beyond the internal infrastructure, e.g., by analyzing data received from
external suppliers to optimize production or logistics processes. Production lines consist
of sequences of stations or machines that are used for serial and mass production when
combined. The designed model of optimization and pre-processing enables for process
optimization. This approach allows to create customized analyses and optimizations by
automating system operation using measurement and control data.

The measurement system can collect data from different variants of object distribution
and anomalies as historical data that can be used in deep learning processes. Two variants
are possible here, the first by collecting data from the numerical model with appropriate
noise and using them later in the training process. The second option is collecting real data
from the measurement system, which can also be used in the machine learning process.

The designed solution will serve to improve the production processes of enterprises
using technological processes consisting in mixing liquid or lose ingredients and using
physical or chemical reactions at the stage of the technological process. According to the
available data on the market, there are developed systems for monitoring the technological
processes of production enterprises. However, these solutions use methods other than
tomography, which is associated with lower measurement accuracy. Furthermore, the
methods used limit the functionality and possibilities of the existing systems. Our system
is the only complimentary solution based on a holistic approach to the processing system.
The system will make it possible to check whether the processes related to the production
of beverages, food, cosmetics, and medicines are carried out correctly in industrial installa-
tions and will optimize these processes. It will non-invasively examine the processes in
closed flows in a complex system of pipes and reactors. These will be processes related
to, inter alia, dairy products, beverages, cosmetics, and medicines. The system will enable
monitoring of mixing, crystallization, filtration, separation processes, level detection on
dispersed surfaces, multiphase fluids of oil, water and gases, and pneumatic transport
analysis. The system is especially useful when small changes to the recipe lead to sig-
nificant changes in the physical properties of the product components, and it allows the
determination of changes in concentration over time. Studying the suspension deposition
process and flavour extraction is important for food, cosmetic, and drug manufacturers.
The information provided by the system will be used to select different mixing options,
optimize performance, and measure product quality. The validation was carried out in
laboratory conditions. For this purpose, a measuring stand was prepared as a tank (reactor),
and various types of phantoms and technological processes were tested. The research
aimed to analyze the quality of the reconstruction of the properties of the studied envi-
ronment in order to be able to make an optimization decision in an expert system on this
basis.

1.4. Structure of the Paper

This article is organised as follows: Section 1 shows state of the art regarding tomo-
graphic algorithms used to reconstruct images, emphasising the Industry 4.0 concept and
the Internet of Things. A description of the research and novelty contributions included
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in the concept presented is given in Section 2. This section includes a characterisation of
the test rig as well as the algorithm used. Section 3 shows some example reconstructions
achieved by the BWTR method based on accurate measurements. An evaluation of the
quality of the reconstructions obtained by the BWTR method is also performed. Three
metrics were applied as image reconstruction quality measures: mean square error (MSE),
image correlation coefficient (ICC), and relative image error (RIE). Finally, Section 4 sum-
marizes the highlights of the research work, the results developed, and the conclusions
drawn. Plans for future research are also presented.

2. Materials and Methods
2.1. Measuring System

The ultrasonic tomograph is entirely responsible for measuring sequence manage-
ment, setting up active probes, and capturing and collecting data from the probes. It is
additionally equipped with a USB A port for saving results on a portable drive; a USB B 2.0
port for controlling and transferring results; and an Ethernet port for transferring results
via TCP and UDP protocols. Figure 4 shows an active measuring transducer. The active
transducer acts as both receiver and transmitter of the ultrasonic signal.

The control of the probe and the readout of its measurements is done via the CAN
2.0A bus. (Figure 4).
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The measuring setup presented includes a dedicated measuring architecture, including
transducers (Figure 5).
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2.2. Block-Wise-Transform-Reduction Method Based Image Reconstruction

A major problem with non-invasive tomographic methods is the small number of
measurements relative to the pixels reconstructed. The image reconstruction problem often
leads to a redundant system of algebraic equations. The radical matrices appearing in the
equations are numerically very sparse, including the consolidation of the inverse operation
range [31–34]. Instead of reconstructing the whole image inaccurately pixel by pixel, by
using lossy image compression, the number of unknowns is reduced, which is the main
feature of the presented method.

As the name of the method suggests, the compression involves partitioning the picture
into square-shaped blocks and using a transformation (which enables compression) to
apply to each block individually. The discrete cosine transform (DCT) was applied for
such compression, and 48 × 48 pixel resolution tomograms were divided into 8 × 8 pixel
blocks as a starting point, giving 36 blocks distributed on a 6 by 6 grid. It was verified that
the application of the block transform enables correct compression and decompression
of tomograms, which provided a basis for testing on real measurement data. The tests
performed showed that the application in tomographic imaging is feasible and can produce
satisfactory results. In order to test the effect of image compression on the overall quality
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of reconstructed images typical for industrial tomography applications, we can create an
example synthetic image containing three oval inclusions, each with a different value in
the reference image. We subject the master image to a lossy compression process and verify
that the basic image properties are preserved after decompression.

The results of the test are shown in Figure 7.
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Figure 7. Examples of direct image decompression with filtering for three phantoms.

The upper left corner shows the master image. The lower-left corner shows the
decompressed image that was additionally segmented (red lines in the image). The image
in the bottom right corner shows the desegmented areas—the colour of the desegmented
area results from averaging the values in the decompressed image. Finally, the image in
the upper right corner is different between the desegmented areas and the reference image.

The test shows that despite the use of lossy compression, the reconstructed image
retains its most salient features: position, size, and shape of the inclusions, and it is possible
to reconstruct the original values of each inclusion. Further tests and analyses of the effect
of compression on the quality of the reconstructed image are presented later in this paper.

2.2.1. Discrete Cosine Transform (DCT)

A fragment of an image (8 × 8 pixels) of the picture can be treated as an 8 × 8 matrix,
which can be thought of as a linear combination of matrices from the canonical basis, that
is, a set of matrices filled with zeros except for one element equal to one (Figure 8). The
visualisation of all 64 base vectors of DCT for 8 × 8 pixels images is shown in Figure 9.
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Mathematically:

Im =
8,8

∑
p,q=1

wpq Fpq (1)

where Im is an image block,wij are numerical factors, and Fpq are base images.
The discrete cosine transform involves changing the canonical basis to an orthonor-

mal one, which encodes the image content at increasingly higher frequencies instead of
encoding individual pixel information.
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Equations describe base images Fpq in DCT:

Fpq = αpαq cos
π(2m + 1)p

2M
cos

π(2n + 1)q
2N

(2)

where:

αp =

{
1/
√

M√
2/M
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p = 0

1 ≤ p ≤ M− 1

αq =

{
1/
√

N√
2/N

q = 0

1 ≤ q ≤ N − 1

Equations can describe the matrix of coefficients in the DCT base:

Bpq = αpαq

M−1

∑
m=0

N−1

∑
n=0

Amn cos
π(2m + 1)p

2M
cos

π(2n + 1)q
2N

(3)

The concept of discrete cosine transform is to change the fundamental matrix Fpq into
another base of non-dependent pictures with the feature that the successive base functions
bring less information with high frequencies. By getting the information out of a particular
pixel, the image degrades significantly as we lose information about the pixel’s value.
By moving to frequency decomposition, we can eliminate the high frequencies (without
affecting image quality).

2.2.2. Compression Tests

We used a tomographic measurement system that contained 16 measurement probes,
from which one can obtain 120 measurements per one frame. Using the first 3 (of all 64)
coefficients of the transform, we have 108 (3 × 36) coefficients to determine, and thus, the
problem ceases to be overdetermined.

Using only 3 of 64 coefficients makes such compression seem to be quite drastic, raising
the question of whether we can get any satisfactory image with such a severe compression.
Because of that, several synthetic tests were conducted. First, it was verified what shapes
could be obtained with only three base functions. The convex envelope of these functions is
then visualised in Figure 10 according to the following definition (allowing for meaningful
visualisation):

span2d{F11, F12, F21} = {w11F11 + w12F12 + w21F21 : w11 = 0, w12 ∈ [−1, 1], w21 ∈ [−1, 1]} (4)
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Notice that despite only three components, we should reconstruct the oval shapes in
the image.

A synthetic image of very good quality can be seen as the two circular inclusions in
Figure 11 on the left. In contrast, on the right is a compressed image of the left one (up
to 3 factors for each 8 × 8 block of pixels) with no additional processing. The image left
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much to be desired, but the location of the bores is approximately retained. Values over the
images are the entropy computed for the picture.
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After direct decompression, the image can be further processed by filtering with a
static high-pass filter and further segmentation, as seen in Figure 12.
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Figure 12. Filtering and image segmentation.

The picture achieved after filtering differs from the tomogram standard quality of
other algorithms [31–35]. In addition, an exact image can be obtained after segmentation.
The filtering gives satisfactorily high-quality results.

The last element worth checking is how the combination of compression and filtering
can reproduce more complex shapes than simple ovals.

The results of experiments for more complex objects (Figure 13) are very positive.
Despite the apparent loss of detail, the overall shape is reproduced correctly.

The only drawback is that narrow elements lose their fill uniformity after decompres-
sion due to the filtering method. Nevertheless, it is a basis for exploring other ways of
filtering the images in future work.
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2.2.3. Mathematical Model

Previous studies conducted by different teams on the simple problem in ultrasonic
transmission tomography have shown the effectiveness of methods based on radial mod-
els [7,23,32].

Techniques for determining the sensitivity of a tomographic system along rays may
vary depending on the method adopted; however, regardless of the method adopted, all
ray models of the simple problem can be reduced to matrix form:

m = Jr (5)

where r—vector encoding the image values (reconstruction),
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m—vector encoding the measurement values,
J—matrix whose rows are obtained from individual sensitivity maps (determined by radial
methods).

For this study, the smoothed thick lines model [32] was used as a starting point. The
application of the selected sensitivity map is shown in Figure 14.

Energies 2021, 14, x FOR PEER REVIEW 14 of 21 
 

 

𝑚 = 𝐽𝑟 (5)

where r—vector encoding the image values (reconstruction), 
m—vector encoding the measurement values, 
J—matrix whose rows are obtained from individual sensitivity maps (determined by 
radial methods). 
For this study, the smoothed thick lines model [32] was used as a starting point. The 
application of the selected sensitivity map is shown in Figure 14. 

 
Figure 14. Example sensitivity maps. 

It is extremely important to analyse the process of solving the inverse problem. This 
section presents how to transform the computational model so that compression is a 
uniform image reconstruction. 

It is worth noting that the BWTR method can be applied to any model of the simple 
problem expressed by Equation (5). Thus, starting from the formulation of the simple 
problem for 16 sensors and a 48 × 48 pixel resolution, we have model (5), where 𝑚 ∈ℝଵଶ଴×ଵ, 𝐽 ∈  ℝଵଶ଴×ଶଷ଴ସ, 𝑟 ∈ ℝଶଷ଴ସ×ଵ. If one divides a 48 × 48 pixel image into 8 × 8 pixel 
blocks, it can be seen that, according to Equation (5), the measurement vector can be 
expressed as a superposition of the individual influences from each 8 × 8 pixel block: 

𝑚 =  ෍ ෍   𝐽௜௝𝑟௜௝଺
௝ୀଵ

଺
௜ୀଵ  (6)

where 𝐽௜௝ ∈  ℝெ×ସ଼ is a minor matrix of J, constructed from the columns of J 
corresponding to the pixels in block indexed with i,j; 𝑟௜௝is the part of vector r, which corresponds to the pixels of block i,j. 

If we apply the compression to the 𝑟௜௝ vector-based on the three basis vectors, then 
we obtain the projection described by the equation: 𝑟̃௜௝ = 𝑏௜௝(ଵ)𝐵ଵ + 𝑏௜௝(ଶ)𝐵ଶ + 𝑏௜௝(ଷ)𝐵ଷ (7)

where: 𝑏௜௝(௞), 𝑘 = 1,2,3  are the coefficients of the  𝑟௜௝  a vector in  compression base. 
Returning to the forward model equation, we obtain: 

𝑚 ≅  ෍ ෍ 𝑏௜௝(ଵ) 𝐽௜௝𝐵ଵถ௃ವ಴೅భ೔ೕ[ெ×ଵ]
+ 𝑏௜௝(ଶ) 𝐽௜௝𝐵ଶถ௃ವ಴೅మ೔ೕ[ெ×ଵ]

+ 𝑏௜௝(ଷ) 𝐽௜௝𝐵ଶถ௃ವ಴೅య೔ೕ[ெ×ଵ]
଺

௝ୀଵ
଺

௜ୀଵ  
(8)

which can be expressed as: 

Figure 14. Example sensitivity maps.

It is extremely important to analyse the process of solving the inverse problem. This
section presents how to transform the computational model so that compression is a
uniform image reconstruction.

It is worth noting that the BWTR method can be applied to any model of the sim-
ple problem expressed by Equation (5). Thus, starting from the formulation of the sim-
ple problem for 16 sensors and a 48 × 48 pixel resolution, we have model (5), where
m ∈ R120×1, J ∈ R120×2304, r ∈ R2304×1. If one divides a 48 × 48 pixel image into
8 × 8 pixel blocks, it can be seen that, according to Equation (5), the measurement vector
can be expressed as a superposition of the individual influences from each 8 × 8 pixel
block:

m =
6

∑
i=1

6

∑
j=1

Jijrij (6)

where Jij ∈ RM×48 is a minor matrix of J, constructed from the columns of J corresponding
to the pixels in block indexed with i, j;

rij is the part of vector r, which corresponds to the pixels of block i, j.
If we apply the compression to the rij vector-based on the three basis vectors, then we

obtain the projection described by the equation:

r̃ij = b(1)ij B1 + b(2)ij B2 + b(3)ij B3 (7)

where: b(k)ij , k = 1, 2, 3 are the coefficients of the rij a vector in compression base. Returning
to the forward model equation, we obtain:

m ∼=
6

∑
i=1

6

∑
j=1

b(1)ij JijB1︸︷︷︸
Jij
DCT1

[M× 1]

+ b(2)ij JijB2︸︷︷︸
Jij
DCT2

[M× 1]

+ b(3)ij JijB2︸︷︷︸
Jij
DCT3

[M× 1]

(8)
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which can be expressed as:

m ∼=
N

∑
i=1

N

∑
j=1

[
Jij
DCT1

Jij
DCT2

Jij
DCT3

]
︸ ︷︷ ︸

Jij[B1 B2 B3]
[M× 3]


b(1)ij

b(2)ij

b(3)ij


[3×1]

(9)

and further using the notation:

Jij
DCT = Jij[B1 B2 B3], bij =


b(1)ij

b(2)ij

b(3)ij

 (10)

and switching to single-index numbering

m ∼=
N2

∑
k=1

Jk
DCTbk (11)

we can see that this equation can be rewritten as:

m ∼= [ J1
DCT︸︷︷︸

[M×3]

J2
DCT︸︷︷︸

[M×3]

. . . JN2

DCT︸︷︷︸
[M×3]

]

︸ ︷︷ ︸
[M×3N2]


b1
b2
...

bN2


[3N2×1]

(12)

and thus, we can obtain a reconstruction model based on the coefficient vector in the new
basis (i.e., a compressed model). We can reformulate it as follows:

m ∼= JDCTb (13)

For convenience, by changing the indexing method from 2-index to 1-index, the parts
of Equation (13) can be represented as:

JDCT =
[

J1
DCT J2

DCT . . . J62

DCT

]
, b =


b1
b2
...

b62


108

(14)

where:
bi, i ∈

{
1 . . . 62} are column vectors for the coefficients of the DCT transform in the

block with index i;
Ji
DCT represents the transformation of the matrix Jij from a canonical base into a DCT.

Having a model, the vector b can be reconstructed. The compressed image is the result
of the direct representation of the reconstructed vector. Because we know from Hilbert
space theory that two spaces of equal dimensionality are isometric concerning l2 norms of
coordinates, the proper inverse operator can be obtained by minimising the second norm
in the transform space:

brec = Jinv
DCTm (15)

Thus, Jinv
DCT is a matrix expressed by the formula:

Jinv
DCT =

(
JT
DCT JDCT + λI

)−1
JT
DCT (16)
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It is important to note that in connection with the transition to an overdetermined
system, regularisation of the solution by adding the λI term is only necessary due to the
poor conditioning of the JDCT but is not required due to the ambiguity of the mean square
solution.

Thus, the scalar λ is chosen only to minimise the effect of numerical errors in matrix
inversion, and thus the process of selecting the parameter λ is simplified and can be based
on the observation that the conditioning of the JT

DCT JDCT + λI is easily expressed as a
function of λ:

cond
(

JT
DCT JDCT + λI

)
= C(λ) =

λmax + λ

λmin + λ
, (17)

where λmax, λmin are the greatest and the smallest eigenvalues of JT
DCT JDCT .

Thus, one can easily see that setting the regularisation parameter to λ = 100 or higher
should be sufficient to obtain a satisfactory result. The conditioning of the equation as a
function of the regularisation parameter is shown in Figure 15.
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2.3. Innovation of the Solution

The novelties in this paper are both the apparatus (sensors, computer systems) and
the algorithm used to solve the inverse problem. Given the frequency and number of
novel research developments for innovative process solutions in the industry, UST is
less advanced than other tomographic methods. It could be because of the difficulty
in developing an effective system incorporating the sensors and algorithms to enable
precise image reconstruction in a medical setting. The traditional approach to modelling
an ultrasonic tomograph is to approximate the system behaviour with a model of simple
propagation rays between two ultrasonic probes. Publications verify the effectiveness of
this solution reliably being able to image the positions of inclusions and the domain of the
tomographic system [27–35]. Moreover, the effectiveness of such models can be verified by
a practical study from measurement data. Despite these facts, it is still the case that there is
no ideal physical model of UST, so a better understanding of this domain is desirable.

The presented method uses lossy image compression to reconstruct the number
of unknowns by dividing the image into square sides. By applying a transform, we
enable compression on each block. This paper uses DCT for compression, but it is worth
emphasizing that this method is not restricted to this particular orthonormal base.
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3. Results

Specific tests using ultrasonic transmission tomography were performed, which con-
firm the correctness of the proposed method. The tank, which was made of acrylic glass,
was used for the experiments. The reservoir with the placed air artefacts was filled with
water. They were made of PVC pipe and sealed on one side. The results of the tests
are shown in Figure 16, which shows single and double inclusions and reconstruction
combined with segmentation.
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The first reconstruction on the left is without filtering. The result of the algorithm with
filtering and thresholding is shown in the next figure. The last one shows the reconstruction
obtained presented in our previous work [31,32,35].

Presented image reconstructions are of good quality in spite of performing reduction
of the system of equations. Therefore, it can be seen that the results are stabilising, and there
is an improvement in quality and a reduction in artefacts, which means that the method is
robust to measurement noise [35]. It also saves memory by archiving the results directly
into compressed form, where no server-side compression is required. Furthermore, it
enables the archived result to be obtained in less time due to reduced systems of formulas.

Comparison of Image Reconstructions

Three well-known indicators were used to assess the quality of the reconstruction
from the BWTR method: relative image error (RIE), mean square error (MSE), and image
correlation coefficient (ICC). The MSE metric was evaluated according to the equation:

MSE =
1
n

n

∑
i=1

(
y′ i − y∗ i

)2 (18)

where: n—number of pixels in the image, y′ i—reference of ith pixel, and y∗ i—value of ith
reconstructed pixel.

The next measure of reconstruction quality RIE was calculated according to the equation:

RIE =
‖y′ − y∗‖
‖y′‖ (19)

The quality ICC was calculated according to the equation:

ICC =
∑n

i=1
(
y∗i − y∗

)(
y′ i − y′

)√
∑n

i=1
(
y∗i − y∗

)2
∑n

i=1
(
y′ i − y′

)2
(20)

where y′ is the mean value for reference pixels and y∗ is the mean value for reconstructed
pixels. ICC is used to determine the correlation between the reference image and the
reconstruction image based on Pearson’s correlation coefficient. If the ICC is closer to 1, the
correlation of the output image to the reference image is better, resulting in a more accurate
reconstruction. Image quality is better the smaller the values of the MSE and RIE metrics.

Table 1 shows the reconstruction quality analysis of the reconstructed images using
the BWTR method. The corresponding column headings present data on the number of
hidden objects (O1, O2, O3, O4).

Table 1. Image reconstruction indicators—BWTR method.

Method of Reconstruction Indicator
Variant

O1 O2 O3 O4

BTWR

MSE 0.0087 0.0156 0.0300 0.0466
RIE 0.2538 0.2340 0.2962 0.3618
ICC 0.8588 0.8873 0.8506 0.8131

Time of reconstruction [s] 0.0014896

BWTR has been demonstrated for efficient compression and decompression of typical
tomograms, allowing testing on real measurements. The BWTR method changes the
canonical base to an orthonormal base and encodes the image content instead of individual
pixels.

For comparison, the values of the quantitative coefficients for the Corrected Uniform
Ray Integration (CURI) method were added in Table 2 due to the fact that the visual
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evaluation of the reconstruction is not precise and insufficient to compare the two methods
analyzed objectively.

Table 2. Image reconstruction indicators—CURI method.

Method of
Reconstruction Indicator

Variant

O1 O2 O3 O4

CURI
MSE 0.0105 0.0266 0.0554 0.0694
RIE 0.3066 0.3984 0.5482 0.5385
ICC 0.8285 0.7873 0.6788 0.6562

4. Conclusions

This paper presents an innovative idea of an open architecture sensor platform for vi-
sualising processes in the industry. The method is presented in various aspects, considering
the hardware and algorithmic layers as a cyber-physical system with a cloud computing
mechanism for data acquisition, collection, and analysis.

The reconstruction method implemented in transmission tomography is modelled on
the block-wise-transform-reduction. For this purpose, a measuring device was designed
together with an original algorithm of image reconstruction.

The research has shown that UST effectively analyses test objects in closed tanks and
allows process analysis to be performed inside the test object without interfering with it.
The presented technique works well in practice and has some important benefits. First, it
enables rapid, real-time visualization. The result is received very quickly in compressed
form. Second, the algorithm is amenable to modification for particular implementations.
This makes it possible to change the fundamentals within selective imaging. It also allows
sensor information to be used directly, allowing more measurements to be taken, thus
increasing the number of basis vectors. This arrangement expands the range of shapes in the
compression subspace and enables a faithful representation of the shapes in the image. The
individual results show that the compression process produces more robust reconstruction
results. A thorough understanding of the precise nature of this type of phenomenon
requires continued research work. Considering the Internet of Things, distributed systems
and computer networks, direct compression in reconstruction methods reduces the amount
of data sent between network elements.

Fast acquisition of measurement data in combination with fast and accurate image
reconstruction algorithms allows for precise spatial determination of material parameters
necessary to control the mixing phases of liquid and gaseous substances. Tomographic
technologies can be used offline to monitor the performance of independent devices or for
online measurement, control, and analysis of industrial processes. Therefore, it can be used
to monitor mixing, separation, flow, and reactor dynamics in both single and multiphase
processes. The obtained data can monitor process responses, improve product quality and
performance, monitor flow concentrations, and provide data for process control.

Future work will address improvements to the block-wise-transform-reduction algo-
rithm in deep learning image reconstruction and ultrasound tomography measurement
devices.
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