
energies

Article

Embedding an Electrical System Real-Time Simulator with
Floating-Point Arithmetic in a Field Programmable Gate Array

Janailson Queiroz 1,*, Sarah Carvalho 2, Camila Barros 2, Luciano Barros 2 and Daniel Barbosa 3

����������
�������

Citation: Queiroz, J.; Carvalho, S.;

Barros, C.; Barros, L.; Barbosa, D.

Embedding an Electrical System

Real-Time Simulator with

Floating-Point Arithmetic in a Field

Programmable Gate Array. Energies

2021, 14, 8404. https://doi.org/

10.3390/en14248404

Academic Editor: Ahmed Abu-Siada

Received: 23 October 2021

Accepted: 15 November 2021

Published: 13 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical and Computer Engineering Graduate Program, Federal University of Rio Grande do Norte,
Natal 59078-970, Brazil

2 Computer Systems Department, Federal University of Paraíba, João Pessoa 58055-000, Brazil;
sarahtoscano@eng.ci.ufpb.br (S.C.); camila.barros@ci.ufpb.br (C.B.); lsalesbarros@ci.ufpb.br (L.B.)

3 Electrical and Computer Engineering Department, Federal University of Bahia, Salvador 40170-115, Brazil;
dbarbosa@ufba.br

* Correspondence: janailson.maciel.111@ufrn.edu.br; Tel.: +55-84994220377

Abstract: Real-Time Digital Simulation (RTDS) is a powerful tool in modeling and analyzing electrical
and drive systems because it provides an efficient and accurate process. There are several hardware
devices for this type of simulation; however, their high costs have led to the increasing use of more
affordable and reconfigurable technologies. In this context, many logic blocks and storage elements
make the Field Programmable Gate Array (FPGA) an ideal device to perform RTDS. This work pro-
poses a technique to embed a real-time digital simulator in an FPGA through Hardware Description
Language (HDL) since it provides liberty in the architecture choice and no dependency on commer-
cial ready-made hardware–software packages. The approach proposed focuses on system design
developing with expression tree graph, synthesizing and verifying, prioritizing the performance
and design accuracy concerning area and power consumption. Thus, the result acquisition occurs
at a time step considered in real-time. A simulation of a direct current (DC) motor speed control
has been incorporated into this work as an example of application, which includes the embedding
and simulation of the electric machine and its drive system. Performance tests have shown that the
developed simulator is real-time and makes possible realistic analysis of the interaction between the
plant and its control. In addition, an idea of the hardware requirement for real-time simulation is
proposed based on the number of mathematical operations.

Keywords: real-time simulation; field programmable gate array; reconfigurable computing; dynamic
systems; hardware description language

1. Introduction

Scientific computing is characterized mainly by heavy computation tasks requiring
efficient number-crunching systems and rapid changes in the input data to be processed [1].
The RTDS is a powerful tool in scientific computing because it provides an efficient system
design process, higher accuracy when compared with an offline simulation tool, parallel
processing, and it is also being used due to its rapid prototyping [2]. To reproduce a
phenomenon faithfully, the simulator needs to solve grid-scale model equations for one
time-step within the same time as a real-world clock. Thus, the simulation execution time
must be shorter than the selected time-step [2].

The RTDS applied to the domain of electrical and drive systems can be classified as
(1) fully digital real-time (RT) simulation and (2) hardware-in-the-loop (HIL) RT simu-
lation [3]. The first one consists of supercomputer technology, which makes it able to
simulate transients in large networks. During the 90s, the production of fully digital RT
simulators started and some of these tools continue to be featured in simulations and re-
search today. The following can be cited: the RealTime Digital Simulator (RTDs) developed
by the Center of Research in the HVDC of Manitoba, the HYPERSIM simulator of the

Energies 2021, 14, 8404. https://doi.org/10.3390/en14248404 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0542-1723
https://doi.org/10.3390/en14248404
https://doi.org/10.3390/en14248404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14248404
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14248404?type=check_update&version=2

Energies 2021, 14, 8404 2 of 16

Electrical Research Institute of the HydroQuebec and eMEGAsim simulator developed by
the company OPAL-RT Technologies. Some of these simulators have standard features,
such as RTDs and HYPERSIM, which use the nodal electromagnetic transient program
(EMTP) solution, while the eMEGAsim uses the state-space representation to build the
power network and controls in Matlab/Simulink [4]. However, there are differences in its
hardware components.

The RTDs are composed of dedicated hardware platform NovaCor, custom-developed
and based on a powerful multicore processor. Inside each NovaCor unit is a custom-built
board featuring IBM®’s POWER8™ processor [5]. The HYPERSIM was explicitly devel-
oped for HIL testing and used a combination of Intel processors to enable RT computing of
extensive models and an FPGA to include ultra-fast loop time for fast-switching frequency
real-time simulation. Depending on its model, the simulator can have an FPGA of Kintex7,
Virtex7, Spartan3/Virtex6, or up to four units of Virtex6/Kintex7’s in the same plataform [6].
The eMEGASIM uses the unique ARTEMiS and SSN solvers developed by OPAL-RT to
increase speed, accuracy, and numerical stability for the simulation of critical systems. Pro-
cessors and a powerful FPGA [7,8] equipped this platform. Regarding the capacity of these
simulators, the HYPERSIM and eMEGAsim have network simulation capabilities with a
typical time step of 5–100 us and 10–100 us, respectively, whose maximum size of a tested
three-phase network is 9000 and 1500 nodes [7–9], respectively. Such processing capacity
gives these simulators a high acquisition price since they have competitive technologies in
the niche of RT simulators.

The use of FPGA in RTDS is noticeable in many engineering domains, such as electri-
cal power [2,3], drive systems [10,11], and artificial intelligence [12]. FPGAs have seen a
massive evolution since their inception almost three decades ago [13]. This device allows
the development of dedicated hardware, whose custom logic brings massively parallel
computation and faster processing. FPGA technology can embed parallel hardware com-
ponents or several IPs (Intellectual Property) due to many programmable logic fabrics
available on the chip [14]. In the face of power challenges, performance requirements
and demands for higher flexibility, hardware designers directed towards reconfigurable
computing using FPGAs that offer high computation rates per watt and adaptability to
the application constraints [14]. These features make it a device used to overcome the RT
processing constraints, mainly in complex modeling designs.

Considering that interactive simulations based on RT are becoming valuable test tools,
the development of an affordable RT simulation platform that the user themself can design
is essential.

In this context, this paper aims to describe the procedure used to develop a fully
digital RT low-cost simulator in an FPGA with HDL. The performance of the proposed
simulator is comparable to the renowned high-cost commercial simulators mentioned
above, thus making it a more affordable technology. Moreover, HDL provides liberty in
the FPGA architecture choice and no dependency on commercial ready-made hardware-
software packages. Thus, user’s autonomy for making their simulator with this flexibility
enables the testing and development of methods and products in an abrangent range of
scopes. The proposed method bases itself on the nodal EMTP solution and the methodology
used to develop it consists of five steps: 1. design specification; 2. design development;
3. functional simulation; 4. synthesis; 5. floor, planning and place and route, and execution.
The DC motor speed control is used as a test case to illustrate the embed and simulation
process and evaluate the proposed RT performance. The DC motor drive system modeling
considers the drive system consisting of the electric machine, power converter, low-pass
filter and Proportional–Integrative–Derivative (PID) controller.

2. DC Motor Drive System Modelling

The test system adopted in this work is the DC motor speed control. Hence, this section
gives a brief description of the whole system operation and modeling stages. The DC motor
is composed of a field winding in the stator and an armature winding in the rotor [14].

Energies 2021, 14, 8404 3 of 16

Figure 1 shows the equivalent circuit for the independent excitation DC motor type and
Table 1 presents all parameters and variables used in this modeling.

Energies 2021, 14, x FOR PEER REVIEW 3 of 16

2. DC Motor Drive System Modelling
The test system adopted in this work is the DC motor speed control. Hence, this sec-

tion gives a brief description of the whole system operation and modeling stages. The DC
motor is composed of a field winding in the stator and an armature winding in the rotor
[14]. Figure 1 shows the equivalent circuit for the independent excitation DC motor type
and Table 1 presents all parameters and variables used in this modeling.

Figure 1. Equivalent circuit of a separately excited DC motor.

Table 1. Units for motor modelling.

Symbol Parameter
Jm Inertia moment (Kg·m2)
ωr Angular speed (rad/s)
La Armature inductance (H)
Ra Armature resistance (Ω)
Va Armature voltage (V)
Ia Armature current (A)

Lf Field inductance (H)
Rf Field resistance (Ω)
Vf Field voltage (V)
If Field current (A)
Te Electrical torque (N·m)
Tm Mechanical torque (N·m)
Ea Back EMF (V)
Fm Friction coefficient (N)
Km Torque constant (Nm/A)

According to the Kirchhoff’s Voltage Law, the differential equations obtained from
Figure 1 are (1)–(2), where 𝐸𝑎 is given by (3). 𝑉௙(𝑡) = 𝑅௙𝐼௙(𝑡) + 𝐿௙ 𝑑𝐼௙(𝑡)𝑑𝑡 . (1)

𝑉௔(𝑡) = 𝑅௔𝐼௔(𝑡) + 𝐿௔ 𝑑𝐼௔(𝑡)𝑑𝑡 + 𝐸௔(𝑡). (2)

𝐸௔(𝑡) = 𝐾௠𝐼௙(𝑡)𝜔௥(𝑡). (3)

This back-emf is induced on the armature circuit due to its kinetic movement in rela-
tion to the field winding. The motor movement equation is represented as follows: 𝑇௘(𝑡) − 𝑇௠(𝑡) = 𝐽௠ 𝑑𝜔௥(𝑡)𝑑𝑡 + 𝐹௠𝜔௥(𝑡). (4)

Figure 1. Equivalent circuit of a separately excited DC motor.

Table 1. Units for motor modelling.

Symbol Parameter

Jm Inertia moment (Kg·m2)
ωr Angular speed (rad/s)
La Armature inductance (H)
Ra Armature resistance (Ω)
Va Armature voltage (V)
Ia Armature current (A)
Lf Field inductance (H)
Rf Field resistance (Ω)
Vf Field voltage (V)
If Field current (A)
Te Electrical torque (N·m)
Tm Mechanical torque (N·m)
Ea Back EMF (V)
Fm Friction coefficient (N)
Km Torque constant (Nm/A)

According to the Kirchhoff’s Voltage Law, the differential equations obtained from
Figure 1 are (1)–(2), where Ea is given by (3).

Vf (t) = R f I f (t) + L f
dI f (t)

dt
. (1)

Va(t) = Ra Ia(t) + La
dIa(t)

dt
+ Ea(t). (2)

Ea(t) = Km I f (t)ωr(t). (3)

This back-emf is induced on the armature circuit due to its kinetic movement in
relation to the field winding. The motor movement equation is represented as follows:

Te(t) − Tm(t) = Jm
dωr(t)

dt
+ Fmωr(t). (4)

where,
Te(t) = Km I f (t)Ia(t). (5)

The DC motor speed control requires a transfer function relating the state variable
ωr to the control variable Va to be imposed on the motor to establish the angular speed

Energies 2021, 14, 8404 4 of 16

tracking setpoint. Applying Laplace’s Transform in Equations (1)–(5) and rewriting them,
it is possible to reach the transfer function:

G(s) =
ωr(s)
Va(s)

=

Km I f
La Jm(

s + Ra
La

)(
s + Fm

Jm

)
+

(Km I f)
2

La Jm

. (6)

2.1. Model Description and Discretization

The DC motor drive system is composed of an electric machine, power converter,
low-pass filter and PID controller, whose structure is illustrated in Figure 2. To simulate
it in a programmable logic platform is necessary to apply a discretization method in the
whole system equations. For this purpose, the most straightforward and classic method is
used to solve numerically differential equations, Euler’s method.

Energies 2021, 14, x FOR PEER REVIEW 4 of 16

where, 𝑇௘(𝑡) = 𝐾௠𝐼௙(𝑡)𝐼௔(𝑡). (5)

The DC motor speed control requires a transfer function relating the state variable ωr
to the control variable 𝑉𝑎 to be imposed on the motor to establish the angular speed track-
ing setpoint. Applying Laplace’s Transform in Equations (1)–(5) and rewriting them, it is
possible to reach the transfer function:

𝐺(𝑠) = 𝜔௥(𝑠)𝑉௔(𝑠) = 𝐾௠𝐼௙𝐿௔𝐽௠ቀ𝑠 + 𝑅௔𝐿௔ ቁ ቀ𝑠 + 𝐹௠𝐽௠ ቁ + (𝐾௠𝐼௙)ଶ𝐿௔𝐽௠
 . (6)

2.1. Model Description and Discretization
The DC motor drive system is composed of an electric machine, power converter,

low-pass filter and PID controller, whose structure is illustrated in Figure 2. To simulate
it in a programmable logic platform is necessary to apply a discretization method in the
whole system equations. For this purpose, the most straightforward and classic method
is used to solve numerically differential equations, Euler’s method.

Figure 2. Block diagram of the DC motor drive system simulated.

2.1.1. DC Motor
Applying Euler’s method to the DC motor equations, (2)–(4), (7)–(9) are obtained,

where h represents the sampling time. 𝐼௙(𝑡) = 𝐼௙(௧ିଵ) + ቈ− 𝑅௙𝐿௙ 𝐼௙(௧ିଵ) + 1𝐿௙ 𝑉௙(t-1) ቉ ℎ. (7)

𝐼௔(𝑡) = 𝐼௔(௧ିଵ) + ቈ− 𝑅௔𝐿௔ 𝐼௔(௧ିଵ) − 𝐾௠𝐿௔ 𝐼௙(௧ିଵ)𝜔௥(௧ିଵ) + 1𝐿௙ 𝑉௔(௧ିଵ) ቉ ℎ. (8)

𝜔௥(𝑡) = 𝜔௥(t-1) + ൤− 𝐹௠𝐽௠ 𝜔௥(௧ିଵ) + 𝐾௠𝐽௠ 𝐼௔(௧ିଵ)𝐼௙(௧ିଵ) − 1𝐽௠ 𝑇௠ ൨ ℎ. (9)

2.1.2. PID Controller
The PID controller calculates the reference armature voltage, Va*, to be sent to the

converter. The controller plant is described in (10). 𝑐(𝑠) = 𝐾௣ + 𝐾௜𝑠 + 𝐾ௗ𝑠. (10)

The PID discrete implementation is obtained through backward finite differences
and algebraic manipulations. Thus, (10) is transformed in (11)–(13). These three equations

Figure 2. Block diagram of the DC motor drive system simulated.

2.1.1. DC Motor

Applying Euler’s method to the DC motor equations, (2)–(4), (7)–(9) are obtained,
where h represents the sampling time.

I f (t) = I f (t−1) +

[
−

R f

L f
I f (t−1) +

1
L f

Vf (t−1)

]
h. (7)

Ia(t) = Ia(t−1) +

[
−Ra

La
Ia(t−1) −

Km

La
I f (t−1)ωr(t−1) +

1
L f

Va(t−1)

]
h. (8)

ωr(t) = ωr(t−1) +

[
− Fm

Jm
ωr(t−1) +

Km

Jm
Ia(t−1) I f (t−1) −

1
Jm

Tm

]
h. (9)

2.1.2. PID Controller

The PID controller calculates the reference armature voltage, Va*, to be sent to the
converter. The controller plant is described in (10).

c(s) = Kp +
Ki
s
+ Kds. (10)

The PID discrete implementation is obtained through backward finite differences and
algebraic manipulations. Thus, (10) is transformed in (11)–(13). These three equations act to
regulate the error of different instants of time, been (11) responsible for the current instant,
(12) previous instant and (13) for the instant before the PD.

PID = Kp +
Kd
h

+ Kih. (11)

Energies 2021, 14, 8404 5 of 16

PD = −Kp − 2
Kd
h

. (12)

D =
Kd
h

. (13)

Applying (11)–(13) in (2), Va is now represented by (14).

Va(t) = Error (t)PID + Error (t−1)PD + Error (t−2)D + Va(t−1). (14)

2.1.3. Power Converter

The converter used is of the H-bridge type, which has the schematic diagram shown
in Figure 3. The pair of switches S1 and S4 work as the asynchronous buck mode while the
pair S2 and S3 work as the boost mode. Thus, this circuit can impose a two-level output
voltage. Pulse-width modulation (PWM) signals are used to control the switching to obtain
the average value of the output equal to Va*.

Energies 2021, 14, x FOR PEER REVIEW 5 of 16

act to regulate the error of different instants of time, been (11) responsible for the current
instant, (12) previous instant and (13) for the instant before the PD. 𝑃𝐼𝐷 = 𝐾௣ + 𝐾ௗℎ + 𝐾௜ℎ. (11)

𝑃𝐷 = −𝐾௣ − 2 𝐾ௗℎ . (12)

𝐷 = 𝐾ௗℎ . (13)

Applying (11)–(13) in (2), 𝑉𝑎 is now represented by (14). 𝑉௔(𝑡) = 𝐸𝑟𝑟𝑜𝑟 (௧)𝑃𝐼𝐷 + 𝐸𝑟𝑟𝑜𝑟 (௧ିଵ)𝑃𝐷 + 𝐸𝑟𝑟𝑜𝑟 (௧ିଶ)𝐷 + 𝑉௔(௧ିଵ). (14)

2.1.3. Power Converter
The converter used is of the H-bridge type, which has the schematic diagram shown

in Figure 3. The pair of switches S1 and S4 work as the asynchronous buck mode while
the pair S2 and S3 work as the boost mode. Thus, this circuit can impose a two-level output
voltage. Pulse-width modulation (PWM) signals are used to control the switching to ob-
tain the average value of the output equal to Va*.

Figure 3. Schematic of the modeled dynamic system.

Considering the duty-cycle ratio T1/T [10], T1 being the time interval for pair S1 and
S4 turned on and T the PWM period, the average value of armature voltage can be con-
sidered as in (15). 𝑉௔ഥ = 𝑉௖௖𝑇ଵ − 𝑉௖௖(𝑇 − 𝑇ଵ) 𝑇 . (15)

From (15), it is possible to obtain (16), where the instant T1 calculation can be seen
based on Va*. In this way, it is possible to determine the exact time of switching for each
PWM period. 𝑇ଵ(𝑡) = ൤𝑉𝑎∗(௧)2 𝑉௖௖ + 12 ൨ . (16)

2.1.4. Filter
As shown in Figure 3, after Va* is converted into a physical value, it is also addressed

by a low-pass filter. This filter attenuates the ripple produced by the converter switching,
allowing the passage only of low frequencies. Using converter output voltage, Vc, and the

Figure 3. Schematic of the modeled dynamic system.

Considering the duty-cycle ratio T1/T [10], T1 being the time interval for pair S1
and S4 turned on and T the PWM period, the average value of armature voltage can be
considered as in (15).

Va =
VccT1 − Vcc(T − T1)

T
. (15)

From (15), it is possible to obtain (16), where the instant T1 calculation can be seen
based on Va*. In this way, it is possible to determine the exact time of switching for each
PWM period.

T1(t) =

[Va∗(t)
2 Vcc

+
1
2

]
. (16)

2.1.4. Filter

As shown in Figure 3, after Va* is converted into a physical value, it is also addressed
by a low-pass filter. This filter attenuates the ripple produced by the converter switching,
allowing the passage only of low frequencies. Using converter output voltage, Vc, and the
filter current, Ic, and applying the Kirchhoff’s Voltage Law on the filter circuit, it is possible
to find the converter voltage, described in (17):

Vc = L f
dIc(t)

dt
+ R f Ic(t). (17)

Energies 2021, 14, 8404 6 of 16

Utilizing Euler’s Method in (17) and performing algebraic manipulations with Ic,
we can obtain (18):

Ic(t) = Ic(t−1) +

[
−

R f Ic(t−1) + Va(t−1)

L f

]
h. (18)

where Vc is considered to meet the same value as the average output control signal, Va.
Thus, the necessary electric current that will scroll thought the converter is determined.

3. FPGA Features

In this section all the relevant points in FPGA architecture and numerical patterns are
discussed, considering their applications to RT simulator development.

The hardware device employed to embed this digital system design was chosen
based on the desired performance, amount of logic cells, hardware efficiency, intellec-
tual property (IP) and memory blocks. The FPGA is composed of 220 K logic elements,
80,330 adaptive logics, 162 variable-precision DSP blocks, 38,418 × 19 multipliers,
312,320 registers, 11,740 M20K and 284 GPIO. This device is optimized for high-bandwidth
performance applications and provides 12 units of 12.5 G transceiver-based functions,
1.4 Gbps Low Voltage Differential Signaling (LVDS), and up to a 72 bits wide DDR3 SDRAM
interface at up to 1866 Mbps [15].

3.1. FPGA Architecture

The most basic configuration of an FPGA is based around a two-dimensional ar-
ray of configurable logic blocks (CLBs) and I/O blocks interconnected via a switching
matrix of wires. The modern FPGAs comprise many memory blocks and specialized
circuits that enhance the efficiency of digital signal processing (e.g., transceivers channels,
DSP blocks, etc).

Figure 4 [15] depicts the Intel Cyclone 10 architecture; it has adopted a column I/O
structure with 12.5 Gbps transceivers on the left-hand side of the die. The GPIO in vertical
columns is in banks of 48 I/Os, each with a high-efficiency memory controller and an I/O
phase-locked loop (PLL) [16].

Energies 2021, 14, x FOR PEER REVIEW 6 of 16

filter current, Ic, and applying the Kirchhoff’s Voltage Law on the filter circuit, it is possible
to find the converter voltage, described in (17): 𝑉௖ = 𝐿௙ 𝑑𝐼௖(𝑡)𝑑𝑡 + 𝑅௙𝐼௖(𝑡). (17)

Utilizing Euler’s Method in (17) and performing algebraic manipulations with 𝐼௖, we
can obtain (18): 𝐼௖(௧) = 𝐼௖(௧ିଵ) + ቈ− 𝑅௙ 𝐼𝑐(௧ିଵ) + 𝑉𝑎(௧ିଵ)തതതതതതതതത𝐿௙ ቉ ℎ. (18)

where Vc is considered to meet the same value as the average output control signal, Va.
Thus, the necessary electric current that will scroll thought the converter is determined.

3. FPGA Features
In this section all the relevant points in FPGA architecture and numerical patterns

are discussed, considering their applications to RT simulator development.
The hardware device employed to embed this digital system design was chosen

based on the desired performance, amount of logic cells, hardware efficiency, intellectual
property (IP) and memory blocks. The FPGA is composed of 220 K logic elements, 80,330
adaptive logics, 162 variable-precision DSP blocks, 384,18 × 19 multipliers, 312,320 regis-
ters, 11,740 M20K and 284 GPIO. This device is optimized for high-bandwidth perfor-
mance applications and provides 12 units of 12.5 G transceiver-based functions, 1.4 Gbps
Low Voltage Differential Signaling (LVDS), and up to a 72 bits wide DDR3 SDRAM inter-
face at up to 1866 Mbps [15].

3.1. FPGA Architecture
The most basic configuration of an FPGA is based around a two-dimensional array

of configurable logic blocks (CLBs) and I/O blocks interconnected via a switching matrix
of wires. The modern FPGAs comprise many memory blocks and specialized circuits that
enhance the efficiency of digital signal processing (e.g., transceivers channels, DSP blocks,
etc).

Figure 4 [15] depicts the Intel Cyclone 10 architecture; it has adopted a column I/O
structure with 12.5 Gbps transceivers on the left-hand side of the die. The GPIO in vertical
columns is in banks of 48 I/Os, each with a high-efficiency memory controller and an I/O
phase-locked loop (PLL) [16].

Figure 4. Intel Cyclone 10 GX FPGA architecture © [15]. Figure 4. Intel Cyclone 10 GX FPGA architecture © [15].

3.2. DPS—Floating-Point Precision

The Institute of Electrical and Electronics Engineering (IEEE) published the 754 stan-
dards for binary floating-point arithmetic in 1985 [6,7]. This standard went through a
series of updates until the name of the 32 bits binary baseversion was renamed to “32-bit
single-precision” [8]. The IEEE 754 single and double precision formats are shown in

Energies 2021, 14, 8404 7 of 16

Figure 5a,b, respectively. The floating-point representation allows use of a wide dynamic
range automatically. In contrast, the fixed-point representation is limited and requires
the user to track the magnitude of numbers and deal with the problems that arise during
operations with numbers of different magnitudes [8,16].

Energies 2021, 14, x FOR PEER REVIEW 7 of 16

3.2. DPS—Floating-Point Precision
The Institute of Electrical and Electronics Engineering (IEEE) published the 754

standards for binary floating-point arithmetic in 1985 [6,7]. This standard went through a
series of updates until the name of the 32 bits binary baseversion was renamed to “32-bit
single-precision” [8]. The IEEE 754 single and double precision formats are shown in Fig-
ure 5a,b, respectively. The floating-point representation allows use of a wide dynamic
range automatically. In contrast, the fixed-point representation is limited and requires the
user to track the magnitude of numbers and deal with the problems that arise during op-
erations with numbers of different magnitudes [8,16].

(a) (b)

Figure 5. (a) IEEE 754 Single-precision 32-bit format. (b) IEEE 754 Double-precision 64-bit format.

The both versions of IEEE 754 single and double precision convert the value of the
decimal number into one floating through its three parts: signal, exponent and mantissa.

The signal is equal to 1 if the number is negative or 0 otherwise.
The Exponent is the component of a finite floating-point representation that signifies

the integer power; the radix is raised in determining the value of that floating-point rep-
resentation. It is used when the significand is regarded as an integer digit and fraction
field, and the exponent q is used when the significand is regarded as an integer [16].

Lastly, the mantissa contains the significant digits except for the leading digit. The
board devices are enhanced with hardened floating-point operators in the digital signal
processing (DSP) block. In this work, the DSPs slices were used through the Ips’ instances
to include the Multi-Cycle Custom Instruction for Floating-point embedded system. Fig-
ure 6 shows the circuit designed to execute a floating-point operation.

This work was adopted the IEEE 754 single-precision format. Thus, to realize a float-
ing-point operation the IP’s module was instated: Multi-Cycle Custom Instruction for
Floating point. It is passed the operands and the code of arithmetic operation to identify
the type of arithmetic computation, which could be a sum, multiplication, subtraction or
division. Then, these values performed the process illustrated in Figure 6 and as the out-
put module, which had obtained the result of its operation. In this case, the inputs abide
by the IEEE 754 standard, and consequently, the output returns in the same standard for-
mat.

The Multi-cycle custom instruction supports operations (add, sub, multiply, divide)
and adds support for square root, comparisons, negate and other functions [8,17]. Each of
these operations has a different processing time, which is illustrated in Table 2. This way,
to perform more than one operation during the same clock cycle, several modules of the
multi-cycle can be instated and organized to be processed in parallel. This architecture
can be customized using the Dynamic Partial Reconfiguration (DPR) feature, a reconfigu-
ration that can be performed all or for a subset of the IPs [18,19].

Figure 5. (a) IEEE 754 Single-precision 32-bit format. (b) IEEE 754 Double-precision 64-bit format.

The both versions of IEEE 754 single and double precision convert the value of the
decimal number into one floating through its three parts: signal, exponent and mantissa.

The signal is equal to 1 if the number is negative or 0 otherwise.
The Exponent is the component of a finite floating-point representation that signifies

the integer power; the radix is raised in determining the value of that floating-point
representation. It is used when the significand is regarded as an integer digit and fraction
field, and the exponent q is used when the significand is regarded as an integer [16].

Lastly, the mantissa contains the significant digits except for the leading digit. The board
devices are enhanced with hardened floating-point operators in the digital signal process-
ing (DSP) block. In this work, the DSPs slices were used through the Ips’ instances to
include the Multi-Cycle Custom Instruction for Floating-point embedded system. Figure 6
shows the circuit designed to execute a floating-point operation.

Energies 2021, 14, x FOR PEER REVIEW 8 of 16

Figure 6. Single-precision floating-point mode (adapted from © [15]).

Table 2. Cycle numbers to execute an instruction.

Operation Cycles Code
Division 16 255

Subtraction 5 254
Add 5 253

Multiply 4 252
Square root 8 251
Int to float 4 250
Float to Int 2 249

Fmins 1 233
Fmaxs 1 232
Fnegs 1 225
Fabss 1 224

4. Hardware Development
The Quartus Prime Pro software 19.4 edition was the programming environment

used to develop the codes regarding the real-time simulator implementation. Its compiler
transforms the project algorithm into hardware commands through fast and straightfor-
ward operations. Thus, it allows reconfigurable computing in fixed hardware that adapts
to the algorithm.

The methodology used for the FPGA design flow consisting of 6 stages: design spec-
ification, design development, functional simulation, synthesis and the floor, planning
and place and route. This setup is shown in Figure 7.

The specification stage is the reference used for development design. It defines func-
tional characteristics, defining its functionalities (development of a DC motor), perfor-
mance required (real-time execution) and the device used.

During the development, the circuit must have its definition and description con-
ducted by an HDL. In this work, the DC motor’s real-time simulator was divided into
three modules: the DC motor, controller and the converter with filter. Figure 8 illustrates
this. These blocks are connected by a Datapath and instantiated in the top-level design.
The internal structure of each module is composed of its respective operating equations
that were previously described in Section 2.

Figure 6. Single-precision floating-point mode (adapted from © [15]).

This work was adopted the IEEE 754 single-precision format. Thus, to realize a
floating-point operation the IP’s module was instated: Multi-Cycle Custom Instruction for
Floating point. It is passed the operands and the code of arithmetic operation to identify
the type of arithmetic computation, which could be a sum, multiplication, subtraction or
division. Then, these values performed the process illustrated in Figure 6 and as the output
module, which had obtained the result of its operation. In this case, the inputs abide by the
IEEE 754 standard, and consequently, the output returns in the same standard format.

The Multi-cycle custom instruction supports operations (add, sub, multiply, divide)
and adds support for square root, comparisons, negate and other functions [8,17]. Each of
these operations has a different processing time, which is illustrated in Table 2. This way,

Energies 2021, 14, 8404 8 of 16

to perform more than one operation during the same clock cycle, several modules of the
multi-cycle can be instated and organized to be processed in parallel. This architecture can
be customized using the Dynamic Partial Reconfiguration (DPR) feature, a reconfiguration
that can be performed all or for a subset of the IPs [18,19].

Table 2. Cycle numbers to execute an instruction.

Operation Cycles Code

Division 16 255
Subtraction 5 254

Add 5 253
Multiply 4 252

Square root 8 251
Int to float 4 250
Float to Int 2 249

Fmins 1 233
Fmaxs 1 232
Fnegs 1 225
Fabss 1 224

4. Hardware Development

The Quartus Prime Pro software 19.4 edition was the programming environment used
to develop the codes regarding the real-time simulator implementation. Its compiler trans-
forms the project algorithm into hardware commands through fast and straightforward
operations. Thus, it allows reconfigurable computing in fixed hardware that adapts to the
algorithm.

The methodology used for the FPGA design flow consisting of 6 stages: design
specification, design development, functional simulation, synthesis and the floor, planning
and place and route. This setup is shown in Figure 7.

Energies 2021, 14, x FOR PEER REVIEW 9 of 16

Figure 7. Design flow.

Figure 8. Project Structure in modules.

The module architecture must be planned in order to consider the trade-off between
time, power and area. Given the physical area constraint of a chip, architecture designers
need to determine parameters, such as the size and the amount of the logic and routing
resources, so that the designed architectures support high system integration, high per-
formance, and high resource utilization [6,20]. In this work, the system described is a real-
time simulator, so it is fundamental to have several operations in parallel. Consequently,
there will be higher power consumption and a larger area occupied by the projected cir-
cuit.

This work applied a technique similar to the expression of three solutions to optimize
the computation process of Figure 9. As it is a hardware project and the logic used to
represent the model describes its physical circuit, it is necessary to use an instance of the
Multi-Cycle Custom Instruction DSP block for each arithmetic floating operation. Once

Figure 7. Design flow.

The specification stage is the reference used for development design. It defines func-
tional characteristics, defining its functionalities (development of a DC motor), performance
required (real-time execution) and the device used.

During the development, the circuit must have its definition and description con-
ducted by an HDL. In this work, the DC motor’s real-time simulator was divided into
three modules: the DC motor, controller and the converter with filter. Figure 8 illustrates
this. These blocks are connected by a Datapath and instantiated in the top-level design.

Energies 2021, 14, 8404 9 of 16

The internal structure of each module is composed of its respective operating equations
that were previously described in Section 2.

Energies 2021, 14, x FOR PEER REVIEW 9 of 16

Figure 7. Design flow.

Figure 8. Project Structure in modules.

The module architecture must be planned in order to consider the trade-off between
time, power and area. Given the physical area constraint of a chip, architecture designers
need to determine parameters, such as the size and the amount of the logic and routing
resources, so that the designed architectures support high system integration, high per-
formance, and high resource utilization [6,20]. In this work, the system described is a real-
time simulator, so it is fundamental to have several operations in parallel. Consequently,
there will be higher power consumption and a larger area occupied by the projected cir-
cuit.

This work applied a technique similar to the expression of three solutions to optimize
the computation process of Figure 9. As it is a hardware project and the logic used to
represent the model describes its physical circuit, it is necessary to use an instance of the
Multi-Cycle Custom Instruction DSP block for each arithmetic floating operation. Once

Figure 8. Project Structure in modules.

The module architecture must be planned in order to consider the trade-off between
time, power and area. Given the physical area constraint of a chip, architecture designers
need to determine parameters, such as the size and the amount of the logic and routing
resources, so that the designed architectures support high system integration, high perfor-
mance, and high resource utilization [6,20]. In this work, the system described is a real-time
simulator, so it is fundamental to have several operations in parallel. Consequently, there
will be higher power consumption and a larger area occupied by the projected circuit.

This work applied a technique similar to the expression of three solutions to optimize
the computation process of Figure 9. As it is a hardware project and the logic used to
represent the model describes its physical circuit, it is necessary to use an instance of
the Multi-Cycle Custom Instruction DSP block for each arithmetic floating operation.
Once this information is processed, the same optimization can be performed with level 1,
in which the division and multiplication operations occur in parallel. Thus, all independent
operations can be processed simultaneously, as illustrated by levels 2–3. The three modules
highlighted in Figure 9 contain this methodology.

Energies 2021, 14, x FOR PEER REVIEW 10 of 16

this information is processed, the same optimization can be performed with level 1, in
which the division and multiplication operations occur in parallel. Thus, all independent
operations can be processed simultaneously, as illustrated by levels 2–3. The three mod-
ules highlighted in Figure 9 contain this methodology.

Eventually, the latency time for processing different arithmetic operations will be
distinctive, so it is necessary to delay on the system to ensure that all the results are already
ready.

In the development stage, a relevant subtask consists of an analysis of the RTL viewer
to ensure that the interconnection between the gates and project modules is correct. Thus,
with the right setup, the hardware description must be performed according to the pref-
erences and needs of the application.

In the subsequent stage, the functional simulation should be performed by testbench
(TB) verification, which demonstrates that a model has met the requirements of the spec-
ification. In this work, two types of testbench were developed, one for the blocks of the
microarchitecture stage and the other for the complete system.

Figure 9. Expression tree schematic.

The TB provides incentives in the model (blocks or top, whole system) and analysis
of its response compared to the ideal results. If there is a large discrepancy between them,
the modeling needs to be reviewed (debugging process). These tests are also described in
HDL and guarantee the functional correctness of the model.

Then, in stage 4, the timing analysis is performed with the TimeQuest Timing Ana-
lyzer to verify circuit performance and detect possible timing violations. The TimeQuest
analyzer determines the timing relationships and checks arrival times against the times
required to verify timing [21–23]. If the report describes that there is no violation of the
requirements imposed by the designer, the project is almost finished.

On the last stage of the design flow, the place and route, floor and planning are per-
formed. Then, the project is embedded on the FPGA device.

Thus, it was initialized, after the design flow conclusion, to obtain the simulation data
via Signal Tap. Implementing the simulator in real-time is extensive and its proposed al-
gorithm is described in Figure 10.

Figure 9. Expression tree schematic.

Energies 2021, 14, 8404 10 of 16

Eventually, the latency time for processing different arithmetic operations will be
distinctive, so it is necessary to delay on the system to ensure that all the results are already
ready.

In the development stage, a relevant subtask consists of an analysis of the RTL viewer
to ensure that the interconnection between the gates and project modules is correct. Thus,
with the right setup, the hardware description must be performed according to the prefer-
ences and needs of the application.

In the subsequent stage, the functional simulation should be performed by testbench
(TB) verification, which demonstrates that a model has met the requirements of the spec-
ification. In this work, two types of testbench were developed, one for the blocks of the
microarchitecture stage and the other for the complete system.

The TB provides incentives in the model (blocks or top, whole system) and analysis of
its response compared to the ideal results. If there is a large discrepancy between them,
the modeling needs to be reviewed (debugging process). These tests are also described in
HDL and guarantee the functional correctness of the model.

Then, in stage 4, the timing analysis is performed with the TimeQuest Timing Analyzer
to verify circuit performance and detect possible timing violations. The TimeQuest analyzer
determines the timing relationships and checks arrival times against the times required to
verify timing [21–23]. If the report describes that there is no violation of the requirements
imposed by the designer, the project is almost finished.

On the last stage of the design flow, the place and route, floor and planning are
performed. Then, the project is embedded on the FPGA device.

Thus, it was initialized, after the design flow conclusion, to obtain the simulation
data via Signal Tap. Implementing the simulator in real-time is extensive and its proposed
algorithm is described in Figure 10.

Energies 2021, 14, x FOR PEER REVIEW 11 of 16

Figure 10. Pseudo-algorithm used.

Verifying a block-based design requires planning to ensure visibility of logic inside
partitions and communication with the Signal Tap logic analyzer [24,25]. The Signal Tap
logic analyzer captures and displays the real-time signal behavior in an FPGA design [26].
This platform connects with the FPGA, which already has the program running, and can
access the physical addresses of the entity that have the required information [27].

In this application, the number of samples is required according to the clock as de-
fined in the GUI. Thus, this information traveled through the cable connection from the
FPGA device to the computer and was interpreted by Signal Tap. This information was
standardized according to the floating-point representation format.

Finally, as the last step in developing of the simulator, a conversion program from
the IEEE 754 standard to real decimal numbers was performed using Python as a pro-
gramming language. The verification of the results of this converter was carried out ac-
cording to [28]. Thus, with all the information standardized to real numbers, it was possi-
ble to plot the data for results analysis.

Such a procedure for the development of a real-time simulator can be replicated for
tests and studies proposed in other works of power system area and mathematical mod-
eling techniques. For example: in [4], an RT simulation of an asymmetrical phase domain
synchronous machine on FPGA was proposed; the development of automated HIL tests
with RTDS for verifying the protective relay performance is described in [4]; techniques
for implementing elliptic curve point multiplication on hardware are presented in [29]
and an electric field evaluation using a finite element method and proxy models to design
stator slots in a PMSG is reported in [30].

5. Results and Discussion
The algorithm was configured to optimize arithmetic operations in parallel using the

same clock cycle. Thus, in (12), for example, the first operation of multiplication was per-
formed in parallel with the subtraction, that is, both operations were processed during the
same five clock cycles. Then, three other operations were performed sequentially, multi-
plication, subtraction and division, so the result was computed with 30 clock cycles.

Similarly, this parallelization was applied to all modules. Thus, it is possible to syn-
chronize the response time of the arithmetic operations of each computation through a
delay, which is defined to ensure that all values were finalized at the moment the longest
operation is processed. Therefore, when using the 125 MHz clock with the dynamic sys-
tem with about 45 operations per cycle for this model, the time wasted to process one
time-step calculation was approximately 360 ns.

Figure 10. Pseudo-algorithm used.

Verifying a block-based design requires planning to ensure visibility of logic inside
partitions and communication with the Signal Tap logic analyzer [24,25]. The Signal Tap
logic analyzer captures and displays the real-time signal behavior in an FPGA design [26].
This platform connects with the FPGA, which already has the program running, and can
access the physical addresses of the entity that have the required information [27].

In this application, the number of samples is required according to the clock as
defined in the GUI. Thus, this information traveled through the cable connection from the
FPGA device to the computer and was interpreted by Signal Tap. This information was
standardized according to the floating-point representation format.

Finally, as the last step in developing of the simulator, a conversion program from the
IEEE 754 standard to real decimal numbers was performed using Python as a programming

Energies 2021, 14, 8404 11 of 16

language. The verification of the results of this converter was carried out according to [28].
Thus, with all the information standardized to real numbers, it was possible to plot the
data for results analysis.

Such a procedure for the development of a real-time simulator can be replicated
for tests and studies proposed in other works of power system area and mathematical
modeling techniques. For example: in [4], an RT simulation of an asymmetrical phase
domain synchronous machine on FPGA was proposed; the development of automated
HIL tests with RTDS for verifying the protective relay performance is described in [4];
techniques for implementing elliptic curve point multiplication on hardware are presented
in [29] and an electric field evaluation using a finite element method and proxy models to
design stator slots in a PMSG is reported in [30].

5. Results and Discussion

The algorithm was configured to optimize arithmetic operations in parallel using
the same clock cycle. Thus, in (12), for example, the first operation of multiplication was
performed in parallel with the subtraction, that is, both operations were processed during
the same five clock cycles. Then, three other operations were performed sequentially,
multiplication, subtraction and division, so the result was computed with 30 clock cycles.

Similarly, this parallelization was applied to all modules. Thus, it is possible to
synchronize the response time of the arithmetic operations of each computation through a
delay, which is defined to ensure that all values were finalized at the moment the longest
operation is processed. Therefore, when using the 125 MHz clock with the dynamic system
with about 45 operations per cycle for this model, the time wasted to process one time-step
calculation was approximately 360 ns.

Two test cases were performed to analyze the simulator’s performance: 1. a DC
motor startup dragging a mechanical load followed by the load withdrawal; 2. Failure
in the converter switching during the DC motor speed control operation. The DC motor
nominal parameters are: wr = 125 rad/s, Va = 240 V, Ia = 10 A, Tm = 19 Nm. The controller
parameters are presented in Table 3.

Table 3. PID Controller Parameters.

Symbol Parameter Value

Kp Proportional Gain −0.2339
Ki Integral Gain 47.6164
Kd Derivative Gain 0.0012

5.1. DC Motor Startup with Mechanical Load Followed by Load Withdrawal

The vertical graphics of the left column of Figure 11 describe, from the top to the
bottom, the PID control signal, converter and filter output voltages, armature current
and angular speed. It is noticeable that the reference voltage imposed by the controller
is modified from a logic signal through converter switching into a physical signal that
is filtered by the low-pass filter. In this case, the motor starts up moving the nominal
mechanical load connected to its shaft and, at 2.3 s, the load withdrawal occurs. It notes
angular speed, armature voltage and current starting up at their nominal conditions since
the motor is dragging its nominal load. After a transient time interval due to the load
withdrawal, the angular speed goes to 126 rad/s and the reference voltage imposed by PID
slightly decreases, since the motor changes to the empty operation.

During the transient a PID output voltage peak occurs, raising it to approximately
260 V. This variation, in turn, directly impacts the switching dynamics of the converter,
thus a slight increase occurs in the output voltage of the low-pass filter. The armature
current decreases to almost 0 A, since the motor torque must be enough to overcome the
friction force between the rotor and the airgap. Finally, the speed graphic pictures out
the speed boost during the instance of removed load, but the control system stabilized it,

Energies 2021, 14, 8404 12 of 16

imposing a voltage to establish wr to track wr*. The following aspects corresponding to the
angular speed transitory behavior were obtained for this scenario:

• Settling time: 0.15 s;
• Overshoot: 3.1%.

Energies 2021, 14, x FOR PEER REVIEW 13 of 16

Figure 11. Test cases performed in an RT simulator.

5.2. Failure in the Converter Switching
This scenario consists of a switching failure on the switch pair S2 and S3 of the con-

verter, Figure 3. During the interval from 2.2 to 2.5 s, the switches show a failure, remain-
ing at a constant high logic level. Due to this failure, only switches S1 and S4 are switched
during this time interval, while S2 and S3 are kept closed. For this case, the right column
of Figure 11 describes PID control signal, converter and filter output voltages, armature

Figure 11. Test cases performed in an RT simulator.

Energies 2021, 14, 8404 13 of 16

5.2. Failure in the Converter Switching

This scenario consists of a switching failure on the switch pair S2 and S3 of the
converter, Figure 3. During the interval from 2.2 to 2.5 s, the switches show a failure,
remaining at a constant high logic level. Due to this failure, only switches S1 and S4 are
switched during this time interval, while S2 and S3 are kept closed. For this case, the right
column of Figure 11 describes PID control signal, converter and filter output voltages,
armature current and angular speed, from the top to the bottom. During the failure
occurrence, there is a high increase in the reference voltage from the PID since the control
system does not obtain the angular speed error decreasing and, hence, increases the control
signal to force this error to decrease. This voltage increase leads to the overmodulation
of the converter, decreasing the filter output voltage and the armature current amplitude.
Thus, the angular speed follows the behavior of the armature current, going through a
drop during the fault, and a soft peak when the fault is removed and, finally, the operation
is normalized.

5.3. Real-Time Simulation Performance

The algorithms embedded in the FPGA to simulate the DC motor model required
less than 1% of the logic cells, 2.8% of the slice registers, and 4.3% of the DSPs. These
low-level cells are due to the use of IPs instances for floating-point operations, which had
been implemented with pipeline synthesis in specific blocks.

Considering the development methodology and techniques used to model this sim-
ulator, the time-step for simulation of other systems can be estimated, such as with that
described in [31]. This system is composed of a wind turbine based on a Permanent
Magnet Synchronous Generator (PMSG), whose control system imposes a power income
maximization algorithm to a wind turbine. The results obtained would be approximately
81 operations in parallel, which would result in a 648 ns time-step for a physical clock of
125 MHz. It is important to emphasize that this is a time step shorter than that commonly
propitiated by commercial RT simulators.

Lastly, Table 4 presents a comparison of the performance of FPGAs. Four FPGAs
of different brands and prices were selected; their identifiers consist of the FPGA ID,
in which ID 1 refers to [32], ID 2 [33], ID3 [34] and ID 4 [35], in which each device’s clock
and the number of operations required for the DC motor simulation were considered.
Thus, an approximation of the time-step was performed. Among the models analyzed,
some FPGAs used in HYPERSIM were selected. It is noteworthy that, among the models
presented, the one with the best cost–benefit and processing capacity for larger systems is
the FPGA that has ID 1, that is the board used in this work.

Table 4. FPGAs comparative performance.

FPGA ID Logic Cells DSP
Slices I/O Memory Clock Price Time-

Step

1 220 K 192 284 11 Kb 125 MHz US$ 1200 360 ns
2 330 K 384 1 960 16 Kb 500 MHz US$ 9761 90 ps
3 326 K 84 500 16 Kb 200 MHz US$ 1917 225 ns
4 33 K 90 250 4 Kb 450 MHz US$ 189 1 ns

1 Each DSP48E slice contains a 25 × 18 multiplier, an adder, and an accumulator.

6. Conclusions

This work proposes a methodology to develop of an electrical system real-time simu-
lator using hardware description language and embedding in a field-programmable gate
array. Step by step instructions to embed and simulate a system model in real-time are
provided. It introduces the IEEE 754 floating-point standard to realize arithmetic operations
and it also addresses the internal structure of field-programmable gate array architecture
and its fundamental design flow, in detail. An application example is tested through DC
motor speed control simulation and analysis. For the simulated cases, results are com-

Energies 2021, 14, 8404 14 of 16

patible with the expected results, according to the theory of electric machines and power
electronics. Furthermore, the results have shown the performance of the proposed method-
ology, compatible with the real-time simulation requirements. Estimating the proposed
methodology’s performance for simulation of a more complex system, a permanent magnet
synchronous generator-based wind turbine, corroborates this conclusion. Finally, this work
concludes that the proposed methodology propitiates low-cost due to the liberty in the
architecture choice and no dependency on commercial ready-made hardware–software
packages.

Author Contributions: The authors have made equivalent contributions. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001, and by the National Council for Scientific and
Technological (CNPq).

Acknowledgments: For the opportunity to carry out this work, the authors are grateful to the
Electrical and Computer Engineering Graduate Program of the Federal University of Rio Grande do
Norte (PPgEEC/UFRN) and to the Digital Systems Laboratory of Informatics Center of the Federal
University of Paraíba (LASID/CI/UFPB). This work was supported by the National Council for
Scientific and Techonological (CNPq) and by the Coordenação de Aperfeiçoa-mento de Pessoal de
Nível Superior—Brasil (CAPES).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CLB Configurable logic block
DC Direct Current
DSP Digital Signal Processing
FPGA Field-Programmable Gate Array
HDL Hardware Description Language
HIL Hardware-in-the-loop
IP Intellectual Property
PMSG Permanent Magnetic Synchronous Generator
PID Proportional–Integrative–Derivative
PWM Pulse-width Modulation
RT Real-time
RTDS Real-Time Digital Simulation
TB Testbench

References
1. Hsiung, P.-A.; Santambrogio, M.D.; Huang, C.-H. Introduction to Reconfigurable Computing. In Reconfigurable System Design and

Verification, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009; Chapter 1, Section 1.7.4; p. 26.
2. Faruke, M.O.; Strasser, T.; Lauss, G.; Jalili-Marandi, V.; Forsyth, P.; Dufour, C.; Paolone, M. Real-Time Simulation Technologies for

Power Systems Design, Testing, and Analysis. IEEE Power Energy Technol. Syst. J. 2015, 2, 63–73.
3. Guillaud, X.; Faruque, M.O.; Teninge, A.; Hariri, A.H.; Vanfretti, L.; Paolone, M.; Davoudi, A. Applications of Real-Time

Simulation Technologies in Power and Energy Systems. IEEE Power Energy Technol. Syst. J. 2015, 2, 103–115. [CrossRef]
4. Iracheta-Cortez, R.; Flores-Guzman, N. Developing automated Hardware-In-the-Loop tests with RTDS for verifying the protective

relay performance. In Proceedings of the 2016 IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI),
San José, Costa Rica, 9–11 November 2016.

5. RTDS Technologies—Simulation Hardware: Scalability and Flexibility without Performance Loss. Available online: https:
//www.rtds.com/technology/simulation-hardware/ (accessed on 8 October 2021).

6. OPAL-RT Technologies: Simulator Op5707XG. Available online: https://www.rtds.com/technology/simulation-hardware/
(accessed on 8 October 2021).

7. OPAL-RT Technologies: System eMEGASIM. Available online: https://www.opal-rt.com/system-emegasim/ (accessed on 8
October 2021).

8. OPAL-RT Technologies: System Hypersim. Available online: https://www.opal-rt.com/system-hypersim/ (accessed on 8
October 2021).

http://doi.org/10.1109/JPETS.2015.2445296
https://www.rtds.com/technology/simulation-hardware/
https://www.rtds.com/technology/simulation-hardware/
https://www.rtds.com/technology/simulation-hardware/
https://www.opal-rt.com/system-emegasim/
https://www.opal-rt.com/system-hypersim/

Energies 2021, 14, 8404 15 of 16

9. Amin, M.; Rehmani, M.H. Operation, Construction, and Functionality of Direct Current Machines; IGI Global: Hershey, PI, USA, 2015;
pp. 1–56.

10. Grégoire, L.-A.; Vian, J.; Cense, S.; Belanger, J. Real-time simulation of an asymmetrical phase domain synchronous machine on
FPGA. In Proceedings of the IEEE 12th International Conference on Power Electronics and Drive Systems, Honolulu, HI, USA,
12–15 December 2017; pp. 659–664.

11. Rama, D.; Ananthan, T. FPGA Based Emulator Design of a DC Motor. In Proceedings of the International Conference on
Communication and Electronics Systems, Coimbatore, India, 17–19 July 2019.

12. Liu, Q.; Gao, M.; Zhang, Q. Knowledge-Based Neural Network Model for FPGA Logical Architecture Development. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2015, 24, 1. [CrossRef]

13. Farooq, U.; Baig, I.; Alzahrani, B.A. An Efficient Inter-FPGA Routing Exploration Environment for Multi-FPGA Systems. IEEE
Access 2018, 6, 56301–56310. [CrossRef]

14. Inacio, C.; Ombres, D. The DSP decision: Fixed point or floating? IEEE Spectr. 1996, 33, 72–74. [CrossRef]
15. Intel® Cyclone® 10 GX FPGA Features. Intel® Cyclone®. Available online: https://www.intel.com/content/www/us/en/

products/details/fpga/cyclone/10/gx/article.html (accessed on 10 October 2021).
16. Intel®. (2018, August). Intel® Cyclone® 10 GX FPGA Development Kit User Guide. Intel® Cyclone®, User Guide. Available online:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-c10-gx-fpga-devl-kit.pdf (accessed
on 8 October 2021).

17. IEEE Computer Society. IEEE Standard for Binary Floating Point Arithmetic; IEEE Computer Society: Washington, DC, USA, 1985;
IEEE Std 754-1985.

18. Kahan, W. IEEE Standard 754 for Binary Floating-Point Arithmetic. Lect. Notes Status IEEE 1996, 754, 11.
19. Cherian, R.; Thomas, N.; Shyju, Y. Implementation of binary to floating point converter using HDL. In Proceedings of the 2013

International Mut-liConference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), Kerala,
India, 22–23 March 2013.

20. Cohen, N.; Weiss, S. Complex Floating Point—A Novel Data Word Representation for DSP Processors. IEEE Trans. Circuits Syst. I:
Regul. Pap. 2012, 59, 2252–2262. [CrossRef]

21. IEEE Standard for Floating-Point Arithmetic. In IEEE Std 754-2019 (Revision of IEEE 754-2008). pp. 1–84, 22 July 2019.
Intel ®. (2020, April). Nios Custom Instruction User Guide. Nios II Floating Point Hardware 2 Component. Available
online: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ugnios2custominstruction.pdf
(accessed on 8 October 2021).

22. Ben Atitallah, R.; Viswanathan, V.; Belanger, N.; DeKeyser, J.-L. FPGA-Centric Design Process for Avionic Simulation and Test.
IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 1047–1065. [CrossRef]

23. Leal, M.S.R. Master’s Thesis, Federal University of Rio Grande do Norte, Natal, Brazil. 2019. Available online: https://repositorio.
ufrn.br/jspui/bitstream/123456789/27982/1/DevelopmentofanFPGA-basedLeal2019.pdf (accessed on 8 October 2020).

24. Betz, V.; Rose, J.; Marquardt, A. Architecture and CAD for Deep-Submicron FPGAS; Kluwer: Norwell, MA, USA, 1999. [CrossRef]
25. Intel®. (2012, June). Timing Analysis Overview, Quartus II Handbook. Volume 3: Verification. Available online: https:

//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/qtsqii53030.pdf (accessed on 25 October
2021).

26. Intel®. (2019, August). An 847: Signal Tap Tutorial with Design Block Reuse, for Intel® Arria® 10 FPGA Development Board.
Available online: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/archives/an847-1
9-1.pdf (accessed on 25 October 2021).

27. Intel®. (2020, March). Intel® Quartus® Prime Pro Edition User Guide, Debug Tools. Available online: https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf (accessed on 25 October 2021).

28. IEEE-754 Floating Point Converter. Available online: https://www.hschmidt.net/FloatConverter/IEEE754.html (accessed on 25
October 2021).

29. Lucca, A.V.; Sborz, G.M.; Leithardt, V.; Beko, M.; Zeferino, C.A.; Parreira, W. A Review of Techniques for Implementing Elliptic
Curve Point Multiplication on Hardware. J. Sens. Actuator Networks 2020, 10, 3. [CrossRef]

30. Stefenon, S.F.; Seman, L.O.; Neto, C.S.F.; Nied, A.; Seganfredo, D.M.; Da Luz, F.G.; Sabino, P.H.; González, J.T.; Leithardt, V.R.Q.
Electric Field Evaluation Using the Finite Element Method and Proxy Models for the Design of Stator Slots in a Permanent
Magnet Synchronous Motor. Electronics 2020, 9, 1975. [CrossRef]

31. Barros, C.M.V. Control Strategy to Improve Dynamic Behavior of PMSG-based Wind Turbines connected to the Electric Grid. Ph.D.
Thesis, EED, Campina Grande, Brazil, 2015. Available online: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/9508
(accessed on 25 October 2021).

32. Cyclone 10 GX Device Datasheet. Available online: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/cyclone-10/c10gx-51002.pdf (accessed on 12 September 2021).

33. Virtex 5 XC5VFX200T. Available online: https://www.xilinx.com/support/documentation/data_sheets/ds100.pdf (accessed on
12 September 2021).

34. Kintex-7 KC705. Available online: https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html (accessed on 12
September 2021).

http://doi.org/10.1109/TVLSI.2015.2497147
http://doi.org/10.1109/ACCESS.2018.2873041
http://doi.org/10.1109/6.535397
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/10/gx/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/cyclone/10/gx/article.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-c10-gx-fpga-devl-kit.pdf
http://doi.org/10.1109/TCSI.2012.2185329
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ugnios2custominstruction.pdf
http://doi.org/10.1109/TAES.2017.2733858
https://repositorio.ufrn.br/jspui/bitstream/123456789/27982/1/DevelopmentofanFPGA-basedLeal2019.pdf
https://repositorio.ufrn.br/jspui/bitstream/123456789/27982/1/DevelopmentofanFPGA-basedLeal2019.pdf
http://doi.org/10.1007/978-1-4615-5145-4
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/qtsqii53030.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/qtsqii53030.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/archives/an847-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/archives/an847-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-debug.pdf
https://www.hschmidt.net/FloatConverter/IEEE754.html
http://doi.org/10.3390/jsan10010003
http://doi.org/10.3390/electronics9111975
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/9508
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10gx-51002.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10gx-51002.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html

Energies 2021, 14, 8404 16 of 16

35. Arty A7 35T: Artix-7 FPGA. Available online: https://digilent.com/shop/arty-a7-artix-7-fpga-development-board/ (accessed
on 12 September 2021).

https://digilent.com/shop/arty-a7-artix-7-fpga-development-board/

	Introduction
	DC Motor Drive System Modelling
	Model Description and Discretization
	DC Motor
	PID Controller
	Power Converter
	Filter

	FPGA Features
	FPGA Architecture
	DPS—Floating-Point Precision

	Hardware Development
	Results and Discussion
	DC Motor Startup with Mechanical Load Followed by Load Withdrawal
	Failure in the Converter Switching
	Real-Time Simulation Performance

	Conclusions
	References

