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Abstract: A convolutional neural network (CNN) autoencoder model has been developed to generate
3D realizations of time-averaged velocity in the wake of the wind turbines at the Sandia National
Laboratories Scaled Wind Farm Technology (SWiFT) facility. Large-eddy simulations (LES) of the
SWiFT site are conducted using an actuator surface model to simulate the turbine structures to
produce training and validation datasets of the CNN. The simulations are validated using the
SpinnerLidar measurements of turbine wakes at the SWiFT site and the instantaneous and time-
averaged velocity fields from the training LES are used to train the CNN. The trained CNN is then
applied to predict 3D realizations of time-averaged velocity in the wake of the SWiFT turbines under
flow conditions different than those for which the CNN was trained. LES results for the validation
cases are used to evaluate the performance of the CNN predictions. Comparing the validation LES
results and CNN predictions, we show that the developed CNN autoencoder model holds great
potential for predicting time-averaged flow fields and the power production of wind turbines while
being several orders of magnitude computationally more efficient than LES.

Keywords: convolutional neural network; wind turbine; wake flow predictions; large-eddy simulation

1. Introduction

In a wind farm, turbine wake interactions cause power losses and may increase fatigue
loads on downwind wind turbines [1,2]. Therefore, the accurate prediction of turbine wakes
is an important consideration in wind farm layout optimization, which can improve the
efficiency of power production and reduce the overall levelized cost of energy. As a result,
extensive efforts have been made on analytical and numerical models for the estimation of
turbines wake [3–6].

Due to the simplicity and low computational cost, engineering models are widely
used to predict wake flows and optimize wind farm power production, especially in
industrial applications. The very first and extensively studied model was proposed by
Jensen [7]. This model was derived from mass conservation, assuming a top-hat shape
distribution of velocity deficit in the wake. However, the top-hat wake shape assumption is
an oversimplification of the actual wake flow, which can be represented more accurately by
a Gaussian distribution [8–10]. Furthermore, more complex real-life characteristics of wake
flows have also been considered to improve the accuracy and flexibility of the Gaussian
models, including the double-Gaussian type velocity profile of the near wake [11,12], three-
dimensional effects [13,14], more accurate models for turbulence intensities [15], wind
turbine yaw offset [16], atmospheric stability, and Coriolis force [17]. Although these
models are efficient, the accuracy varies significantly from case to case [18,19], especially
in the near wake region [12,20]. In addition, wake overlapping effects are not accurately
described, as shown by Archer et al. [21].
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Compared to engineering models, computational fluid dynamic (CFD) models can
provide a better physics-based description of the dynamics of the turbine wakes, such as
wake meandering [22–24] and the effects of atmospheric stability [25]. Moreover, some
CFD models can even take into account the effect of complex terrain topology [26–28] in
addition to the turbine tower and the nacelle [29,30]. The prediction of the velocity deficit
and turbulent kinetic energy using the CFD methods is more accurate than engineering
models [31]. However, the CFD methods employing LES are computationally expensive,
and their use in wind farm optimization is becoming prohibitively expensive.

The development of machine learning and artificial intelligence has encouraged re-
searchers to explore data-driven models to predict the wake and power production of
turbines in a wind farm. For example, Japar et al. [32] used five different machine-learning
methods, i.e., linear regression, linear regression with feature engineering, nonlinear re-
gression, artificial neural network (ANN), and support vector regression (SVR), to estimate
wind turbine power production based on free stream wind speed, wind direction and the
turbine position in the wind farm. Although the more elaborate models, i.e., ANN and
SVR, have higher accuracy, they slightly deviate from the measured power production in
the high wind speed case. Sun [33] developed an ANN to predict power production of
wind farms that considers wake effects for varying wind direction, wind speed, and yaw
angle. The trained model successfully predicted the power production and was used to
optimize the yaw angle of each wind turbine. However, these power production models
need a large amount of input parameter combinations for the training and may only be
applied to a particular wind farm. When considering the effects of more parameters, for
example, turbulence kinetic energy, the whole neural network has to be retrained.

Other data-driven machine learning models have focused on the prediction of the
velocity deficit of the wake. Wilson et al. [34] used Random Forest and Multilayer Per-
ceptron (MLP) models to interpolate and predict wind velocity in the turbine wake, but it
cannot be applied in different wind fields. Ti et al. [35,36] developed an ANN to predict the
velocity deficit and turbulent kinetic energy field in the turbine wake from the incoming
wind velocity and turbulence intensity. However, the method requires a large amount of
CFD simulation results for training. Yang [37] developed a neural network model to predict
the instantaneous position of the meandering turbine wake, using the upwind velocity,
turbine torque, and turbine thrust as input features. Zhang and Zhao [38] proposed a neural
network combining different dimensionality reduction techniques to predict the velocity
field of distributed fluid systems and applied it successfully to predict the flow field of both
a single turbine and turbine arrays. King et al. [39] proposed a Gaussian Process (GP) model
to correct wind turbine flow field predictions from low-fidelity models, e.g., RANS model,
to high-fidelity models, e.g., LES model. Ali et al. [40] used a Long-Short Term Memory
(LSTM) model to successfully predict wind velocity fluctuation at specific locations in the
turbine wake for a long time period. Renganathan et al. [41] combined an MLP and GP
with a Convolutional Neural Network (CNN) decoder to map the wind turbine operation
parameters, such as inflow wind speed, turbulent intensity, turbine power generation,
atmospheric-boundary layer (ABL) Richardson number, rotor angular speed, and pitch
angle, to the wake flow field. In addition to wake reconstruction, data-driven methods
have also been used to identify and characterize turbine wakes. Aird et al. [42] developed a
mask Region based Convolutional Neural Network (R-CNN) model that identifies turbine
wakes in Lidar scan images with high accuracy, even with some missing data points, and is
also able to character wake shapes in its forming and dissipating.

Despite these contributions, the accuracy of the existing algorithms for velocity field
predictions varies with flow conditions and wind farm layouts, limiting their application
for wind farm optimization. In this study, we develop a CNN autoencoder model for
generating 3D realizations of time-averaged turbulent wake flow of wind turbines at the
Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) site in Lubbock, Texas.
The site includes three Vestas V27 wind turbines to investigate the performance of the
downwind turbine versus the upwind turbine wake. SpinnerLidar measurements of the
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upwind turbine wake at the SWiFT facility have been used to validate the LES results of
our in-house virtual flow simulator code, Virtual Flow Simulator (VFS-Wind model). After
these validation comparisons, a series of LESs of the SWiFT site were conducted to produce
instantaneous and time-averaged flow field results to train and test the CNN. Subsequently,
the so-trained CNN was employed to predict the time-averaged flow field of new wind
conditions. A data augmentation technique is employed to handle the location sensitivity
problems of the CNN. The CNN predictions for the validation test cases were compared
against the simulation results of the separately done LES validation case not used in the
CNN training. In addition, the predicted time-averaged flow field of wind turbines was
used to predict the time-averaged power production of the wind turbines.

This paper is organized as follows. In Section 2, the governing equations of the
numerical model and the computational details of the LES of the SWiFT site are presented.
In Section 3, the CNN autoencoder algorithm is described, followed by the results and
discussion in Section 4. Final remarks can be found in Section 5.

2. Numerical Methods
2.1. Governing Equations

Simulations of the SWiFT site are performed by the LES module of the in-house
incompressible Navier-Stokes solver code–VFS-Wind model. In the VFS-Wind code, the
incompressible turbulent flow is described by the filtered Navier-Stokes and continuity
equation written in curvilinear coordinates given as [43]:
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is the contravariant volume flux, p is the pressure, ρ is the fluid density, µ is the dynamic
viscosity of the fluid, τij is the sub-grid stress tensor for LES, which is modeled using the
dynamic Smagorinsky sub-grid scale (SGS) model [44], and fl is the body force.

2.2. Numerics

In the VFS-wind code, the governing equations are discretized on a hybrid staggered/non-
staggered grid in space. The convective terms are discretized using second-order accurate
central differencing. For the divergence, pressure gradient, and viscous-like terms, the dis-
cretization used is the second-order accurate, three-point central differencing method [45].
The time derivatives are discretized using a second-order backward differencing scheme [46].
The discrete flow equations are time-integrated using an efficient, second-order accurate
fractional step methodology in conjunction with a Jacobian-free, Newton-Krylov solver for
the momentum equations and a GMRES solver enhanced with the multigrid method as a
preconditioner for the Poisson equation.

2.3. Actuator Surface Model

The wind turbine blades and nacelle are modeled using the actuator surface method
developed by Yang and Sotiropoulos [47]. This method describes the flow field on the
background Cartesian mesh and the wind turbine on the Lagrangian mesh following the
actuator surfaces. Velocities on the actuator surfaces are interpolated from the background
mesh using the smoothed discrete delta function proposed by Yang et al. [48]. Actuator
surfaces of wind turbine blades are represented by chord lines along the radial direction.
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Lift and drag forces on blades are calculated similarly to the actuator line model, using the
blade element momentum theory. For the nacelle actuator surfaces, the normal component
of force is calculated by reconstructing the wall-normal velocity near the actuator surface to
satisfy the non-penetration constraint, and the tangential forces are computed as a function
of the local incoming velocity and a friction coefficient that parameterizes the effects of
near-wall turbulence and the effects of surface geometry. Then the counterforces to the
flow field ( fl in Equation (2)) are calculated by distributing the forces on the blades to the
background mesh using the above-mentioned interpolation method. Details of the actuator
surface method can be found in Yang and Sotiropoulos [47].

3. Computational Details of SWiFT Site Simulation

The SWiFT facility, located in Lubbock, Texas, is an experimental site supported by the
U.S Department of Energy to investigate turbine wakes and turbine-turbine interactions. It
is comprised of three research-scale wind turbines and two meteorological towers (METs).
The layout of wind turbines is as shown in Figure 1b. The wind turbines, Vestas V27s, have
rotor diameters of D = 27 m and hub heights of 32.1 m. A nacelle mounted Technical
University of Denmark (DTU) SpinnerLidar is installed on turbine T1 to measure the
turbine wake. The two METs are located upwind against the predominant wind direction to
measure the atmospheric inflow. Details of the SWiFT facility can be found in Berg et al. [49].
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Figure 1. (a) is the diagram of the computational domain. (b) is the relative location of three turbines.

A series of LESs were performed to generate 3D flow fields of the SWiFT site for a
variety of inflow conditions, which give rise to different turbine wake interaction config-
urations. The computational domain of the real-scale modeled SWiFT site is shown in
Figure 1a. It has a length of L = 80D, a width of W = 24.9D, and a height of H = 37D.
Free-slip boundary condition is applied to the top and periodic condition along the span-
wise direction. A logarithmic law of wall boundary condition is applied to the ground,
which is given by

u = u∗/κ ln(z/zo), (3)

where u∗ is the friction velocity, κ is the von Karman constant, and zo = 0.0037D is the
surface roughness height. The outlet is given by the Neumann boundary condition, and the
inlet is fed with a fully-developed turbulent flow generated by a precursor simulation as
described below. Three wind turbines are located over 8D downwind from the inlet. Each
turbine has a hub height of h = 1.19D and a rotor diameter of D = 27 m. Turbine 2 is 2.99D
west and 0.2D south from turbine 1. Turbine 3 is 5D north from turbine 1. The arrangement
of the turbines is shown in Figure 1b. To generate different wake conditions, we conducted
simulations for four wind directions (150◦, 0◦, 330◦, and 274◦, taking south as 0◦) as shown
in Figure 2. Although the wind directions do not perfectly align with the cardinal directions,
for the sake of brevity, they would be referred to as North-East, South, South-West, and
West, respectively, through the rest of the paper. The flow domain is rotated in different
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wind directions to ensure the x-axis is always along the wind directions. In addition, five
wind velocities are considered for each direction (U∞ = 7, 9, 11, 13, 15 m/s).
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Figure 2. Diagram of wind turbine configurations in different wind directions; (a) north-east (150◦),
(b) south (0◦), (c) south-west (330◦), and (d) west (274◦). Solid lines marked using T1, T2 and T3
represent the location of three turbines. Dashed lines represent the wake of each turbine.

The computational domain is discretized with a grid resolution of ∆x = 0.177D
and ∆y = 0.089D, along the windwise and spanwise directions, respectively. A constant
resolution of ∆z = 0.089D was given along the wall-normal direction up to a height of
7.46D and a grid stretching up to the top of the domain with a final resolution of ∆z = 1.48D.
Therefore, a uniform grid is obtained in the bottom area that the turbines are located. The
details of the computational domain are shown in Table 1.

Table 1. Geometrical and wind characteristics of the SWiFT site model simulations used for the
training and validation of the CNN. U∞ is the free-flow velocity. Re is Reynolds number. D is the
diameter of the turbine rotor (=27 m). Nx, Ny, and Nz are the number of computational grid nodes in
windwise, spanwise, and vertical directions, respectively. ∆x, ∆y, and ∆z are the special resolution in
windwise, spanwise, and vertical directions, respectively.

H 37D Nx × Ny × Nz 451× 143× 281
W 24.9D ∆x 0.177D
L 80D ∆y 0.089D

U∞ (m s−1) 7, 9, 11, 13, 15 ∆z 0.089–1.481D
Re 5.7× 108 ∆t (s) 2× 10−4 H/U∞

D (m) 27

Precursor simulation of a neutral atmospheric boundary layer has been performed to
prescribe the velocity at the inlet of the SWiFT site simulations. The precursor simulation
has the same grid size and boundary conditions as the SWiFT site numerical domain. The
initial transient of the simulation was discarded. After the mean kinetic energy of the
computational domain reached steady state, velocities at a plane located in the center of
the channel were saved at a ∆t = 2.0× 10−4H/U. The time-averaged velocity profile and
turbulent intensity of the precursor simulation are shown in Figure 3.
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4. Validation of the Computational Model

A numerical simulation of a single wind turbine has been performed to validate the
actuator surface model of the SWiFT wind turbine (Vestas V27) [50]. Numerical results
are compared against MET data, the turbine supervisory control and acquisition system
(SCADA), and SpinnerLidar measurements performed at the SWiFT facility by Sandia
National Laboratories and the National Renewable Energy Laboratory [51]. Details of the
field experiment and data acquisition can be found in Herges et al. [51].

An initial comparison of the inlet velocity profile obtained from the precursor simula-
tion and the measurements was performed. Measurements of the 10-min time-averaged
velocity and turbulence intensity obtained from a MET 2.5D upwind from the wind turbine
are compared against the precursor simulation in Figure 3. Although the velocity profile
shows good agreement, the turbulence intensity of the precursor simulation shows to be
slightly larger than that obtained from the met-tower measurements. Furthermore, the
difference in the turbulence intensity seems to be amplified with height, which suggests
a slight decrease in turbulent kinetic energy due to atmospheric stratification may have
occurred. However, the difference in the turbulence intensity is negligible, around 1% at
hub height and 2.7% at 2.15D.

The yaw misalignment of the wind turbine was recorded with the SCADA system.
Due to the constantly changing wind direction and the turbine yaw controller not perfectly
tracking the wind during the measuring campaign, a time-dependent yaw offset is pre-
scribed to the wind turbine in the simulations to match the measured flow misalignment,
shown in Figure 4. In addition, the high-frequency fluctuations of the measured yaw
offset, due to the small-scale turbulent coherent structures, are filtered by applying a locally
weighted scatterplot smoothing with a window size of 100s to the offset signal. Therefore,
a smoother yawing is prescribed to the turbine in the numerical simulation.
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Figure 4. Yaw offset in time between the wind and the turbine; (–) SCADA measurement and (–)
prescribed to the turbine on the numerical simulation.

The numerical results are compared against the 10-min line-of-sight velocity mea-
surements in the wake of the T1 wind turbine obtained from the nacelle-mounted DTU
SpinnerLidar device [51]. The SpinnerLidar performed 984 scans at a constant focus dis-
tance from the device every two seconds. In addition, measurements were performed at
1D to 5D behind the wind turbine by varying the focus distance. The SpinnerLidar cycled
the focus distance from 1D to 5D every 30 s.

To mimic the SpinnerLidar measurements, the velocity field of the numerical results
are decomposed into a line-of-sight velocity (VLOS) with vertex, or origin, at the location
of the nacelle. For higher fidelity in the comparison to the measurements, the simulated
VLOS field is sampled at the approximate spatial coordinates and time as the SpinnerLidar
measurements. The scattered data from the numerical simulation and the SpinnerLidar
are interpolated into a spherical surface mesh to compute the 10-min time-averaged VLOS.
A comparison of the horizontal line-of-sight velocity profiles at hub height is shown
in Figure 5. Computed velocities in the wake of the turbine are slightly overestimated
compared to the SpinnerLidar measurements, specifically close to the center of the rotor.
Although the nacelle is modeled and avoids the formation of an unphysical jet in the center
of the rotor (commonly observed in standard actuator line models), the momentum deficit
seems slightly under-estimated. However, the numerical results from VFS-Wind show
good agreement with the SpinnerLidar measurements.
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5. CNN Autoencoder Model

We employed a CNN autoencoder model to predict the time-averaged flow field by
extracting the key flow field features from instantaneous LES results. The CNN algorithm
was originally developed to handle image recognition and image classification tasks [52,53].
Therefore, the CNN has some inherent advantages in handling high-dimensional data:
it generally consists of convolutional layers and down-sampling layers that can reduce
dimensions of the input image and extract abstract features of the image; the weight
sharing concept (it will be explained in the next paragraph) used in CNN allows it to
handle high-dimensional data using less learnable parameters and avoid location sensitivity
problem [52]. As a variant architecture, the CNN autoencoder (Figure 6) consists of an
encoder, which extracts features from input data, and a decoder, which is an inverse of the
encoder. As a result, such CNN would enable the image reconstruction from the extracted
features. Because of its ability to reconstruct field data, the CNN autoencoder has become a
popular tool in the field of fluid dynamics, as well [54–57]. For these reasons, we employed
the CNN autoencoder model in this study.
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Figure 6. Schematic of the encoder-decoder CNN. Feature maps are depicted as solid boxes. Convo-
lutional layers are depicted as gray dash lines. L×W × H × channels represents the dimensions of
each feature map. L, W, and H represent the resolution of the input image in windwise, spanwise
and vertical directions, respectively. The layer type, filter size, and stride size of each layer are shown
below it. Strides represent the movement step-size of the convolutional filter.

The architecture of the CNN autoencoder used in this work is illustrated in Figure 6.
The encoder part includes three 3-dimensional convolution layers for extracting features
and down-sample the input data. Each convolution layer includes multiple channels
corresponding to different features to be learned. The convolutional layer embedded with
a nonlinear activation function and bias operates as follows [55]:

ql
i = σ

(
kl

i ⊗ ql−1 + bl
i

)
, (4)

where ql
i is the output of ith channel in the lth convolutional layer, σ is the rectified linear

unit (ReLU) nonlinear activation function [58], kl
i is the ith trainable convolutional filter,

⊗ is the convolution operator, ql−1 is the input of the lth convolutional layer and bl
i is the

ith bias.
In Figure 7, we demonstrate the concept of the convolution operation. In this figure, x

is a 4× 4 input image with paddings of zero, k is a 3× 3 convolution kernel (or filter), while
y is the output of the convolution operation. The convolution window is traversed through
the padded input image in both horizontal and vertical directions, where the convolution
operation with the filter is performed. The step size of each move is the stride—i.e., the
step size from red square to orange square. In the convolution operation, the filter can
extract features from the input image, and the learnable weights stay unchanged as the
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convolution window moves. As a result, the weights of the filter are shared through the
whole input image, and because of the weight sharing only one filter with nine weights is
required to extract a feature through the entire padded image—instead of 16 different filters
corresponding to each output element. In this approach, the filter will be independent of its
location leading to fewer learnable weights and thus a more efficient training process. The
convolution operation consists of an inner product between the convolution window (i.e.,
the red dashed box in the input of Figure 7) and the filter to generate the corresponding
output element (e.g., the red dashed box in the output of Figure 7). Since the convolution
operation reduces the image size, paddings of zeros are used to control the output size.
For instance, the output size of the original 4× 4 input image in Figure 7 (solid boxes
in x) is 2× 2 (solid boxes in y). However, with paddings, the output has the same size
as the original input. In practice, the convolution operation can work on both 2- and
3-dimensional inputs.
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Since the convolution operation only involves a linear transformation, an activation
function is needed to provide the nonlinear transformation into the CNN. Compared to the
sigmoid or hyperbolic tangent activation functions, a rectified linear unit (ReLU) in hidden
layers can increase the computational efficiency of the machine learning algorithm [58].
The ReLU function is given by [58]

σ(θ) = max(0, θ), (5)

where θ is the result of convolution operation plus the linear bias.
The decoder contains two transpose convolution layers, which are the inverses of

the convolution layers, and a convolution layer to up-sample the data and construct the
flow field. The discrepancy between output and the target values during the training
iterations is calculated using the mean square error (MSE) loss function. Then, the weights
in convolutional filters and the biases are updated by the backpropagation algorithm to
minimize the loss function [59].

To determine the parameters of the CNN architecture, i.e., the number of layers and
channels, and the kernel and stride sizes, a series of parameter combinations are tested
to ensure the highest accuracy of results and least number of learnable parameters. The
padding sizes are elaborately determined to guarantee the correct output size.

6. Results and Discussion

We carried out LES of the SWiFT site under four different wind directions and five
different wind velocities to train and validate the predictions of the CNN. First, we carried
out the LES for all cases and discarded the initial two flow-through times—i.e., the duration
of time it takes for an air particle to travel through the wind farm. Subsequently, the
numerical simulations were continued until the first and second-order turbulence statistics
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were fully converged. The convergence of the time-averaged flow field is determined using
a time-history-analysis approach reported in Khosronejad et al. [60]. During the training
process, the fully converged instantaneous flow fields were fed into the CNN at the input
layer, while the time-averaged flow field was designated as the target of CNN at the output
layer. We note that the samples used in the training and, consequently, validation processes
are taken from smaller domains around each turbine. These subdomains are 6D long, 3D
wide, and 1D high. The turbine is located 2D downwind from the inlet and centered along
the spanwise direction (Figure 8).
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the plane of the rotor.

A schematic of the training procedure is shown in Figure 9. The input of each sam-
ple is composed of five neighboring snapshots with 1000 time-step intervals to convey
the information of flow field fluctuations—induced by the wake meandering and large
turbulent structures from the incoming flow. To examine the effect of the number of in-
put snapshots on the accuracy of the trained CNN’s predictions (for the time-averaged
results), we conducted a systematic analysis in which we used a different number of input
snapshots and calculated the computational errors. The computational error refers to the
difference between the CNN’s and LES results of the training and validation cases. Our
findings for the relation between the number of input snapshots and the corresponding
computational errors are shown in Figure 10. As seen in this figure, after five snapshots,
the computational errors seem to plateau, suggesting that five snapshots are enough to
reconstruct the time-averaged flow field. The target value of the CNN at the output layer is
a statistically converged time-averaged flow field. Therefore, each training sample consists
of five instantaneous snapshots and the time-averaged flow field.
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The case we considered for the training of the CNN includes the SWiFT site with
the north-east wind direction and wind speed of U∞ = 7 m/s. The learning rate of the
CNN had an initial value of 0.001 with a decay rate of 0.7 in a step size of 500 training
epochs. Overall, 99 samples were used in the training process which took 1500 epochs of
iterations until the loss curve was fully converged. The prediction of the training case is
compared with the LES result in Figure 11. The difference between CNN prediction and
the LES result is presented in Figure 12. Velocity profiles from six spanwise cross-sections
are compared in Figure 13. The high accuracy of the CNN prediction demonstrates that the
CNN is well trained.

Then the CNN is validated using 19 cases. Similar to the training, five successive
snapshots (i.e., five instantaneous flow field data taken from five successive time steps) are
time-averaged to produce the limited time-averaged flow field and used as the input to the
trained-CNN to generate the reconstructed time-averaged flow field. The CNN-predicted
time-averaged flow fields are then compared against the time-averaged results of separately
conducted LES. For brevity, we only present the comparison of the overlapped turbine
wakes for the four cases, e.g., north-east with U∞ = 15 m/s, south with U∞ = 13 m/s,
south-west with U∞ = 11 m/s and west with U∞ = 9 m/s. In Figure 14, we plot the
windwise velocity contours from top views at the hub level and side views at the hub layer.
In Figure 15, we plot the difference between the CNN predictions and LES results. Addi-
tionally, velocity profiles taken from six spanwise cross-sections are compared in Figure 16.
In the north-east (Figures 14a, 15a and 16a) and south-west (Figures 14c, 15c and 16c) wind
direction cases, the presented turbines are 6D downwind of the other turbines. As seen in
these figures, the trained CNN has been able to accurately resemble the velocity deficit in
both the upwind and downwind wakes. The largest discrepancy is observed for the cases
with the south (Figures 14b, 15b and 16b) and west (Figures 14d, 15d and 16d) wind direc-
tions, with the latter showing the maximum discrepancy. The present turbines are 5D and
3D downwind of the other turbines in the south and west case, respectively. The difference
in the LES versus the CNN computed velocity fields seems to be caused by the proximity
of the wind turbines, i.e., the closer the two turbines, the greater the computational error
of the CNN predictions. We note that the CNN results for the velocity fields upwind of
the turbines (Figure 15b,d, and profiles I, II in Figure 16b,d) in both the south and west
cases seem to be slightly over-estimated. However, the CNN could predict the wake of
the centered turbine with great accuracy, suggesting that the relatively higher discrepancy
upwind of the turbine is due to the location sensitivity of the trained CNN. Theoretically,
because of the “weight sharing” feature of the CNN, a trained CNN should be able to
reconstruct the turbine wake at any location within the domain. However, the turbines
and their wakes have almost the same location in all the training samples and the upwind
wake does not strongly affect the training subdomain. Therefore, the trained CNN deems
sensitive to turbine location.
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Figure 12. Contours of velocity difference between CNN and LES results normalized with the free-
flow velocity for wind turbines in the training case. Top view cross-sections are at hub-height and
side-view cross-sections are at the rotor center.
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Figure 14. Contours of time-averaged velocity normalized with the free-flow velocity for wind
turbines. (a) wind turbine 2 in north-east case; (b) wind turbine 3 in south case; (c) wind turbine 3
in south-west case; (d) wind turbine 1 in west case. Top view cross-sections are at hub-height and
side-view cross-sections are at the rotor center. Contours are from the CNN, the CNN with data
augmentation method (CNNDA), and the LES results.
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Figure 15. Contours of velocity difference between the CNN and LES results normalized with the
free-flow velocity for wind turbines. (a) wind turbine 2 in the north-east case; (b) wind turbine 3 in
the south case; (c) wind turbine 3 in the south-west case; (d) wind turbine 1 in the west case. Top
view cross-sections are at hub-height, and side-view cross-sections are at the rotor center.
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Figure 16. Velocity profiles along the spanwise direction at I, II, III, IV, V, and VI in Figure 14. (a) wind
turbine 2 in the north-east case; (b) wind turbine 3 in the south case; (c) wind turbine 3 in the
south-west case; (d) wind turbine 1 in the west case. (–) LES, (- -) Analytical model, (∆) CNN, and
(◦) CNN with data augmentation.
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To overcome the location sensitivity problem, we used the data augmentation tech-
nique. In this approach, instead of having a fixed location, the subdomains around the
turbines are randomly moved up to 5D upwind. We also increase the size of training sam-
ples by a factor of five. Using this approach, the training samples contain the turbines and
their wakes which are randomly scattered in each subdomain. The training and validation
results of the CNN trained using the data augmentation technique (CNNDA) are depicted
in Figures 11–16. The velocity deficits in the upwind wakes of the south and west cases
are predicted more accurately in comparison to the results without data augmentation
(Figure 15b,d, and I in Figure 16b,d). However, the discrepancies of the velocities around
the turbines are still large in Figure 15b,d, because in these cases, the interaction with
upwind turbine’s wake is stronger than the training case.

The analytical model developed by Bastankhah and Porté-Agel [9] is used to compare
against the CNN model. In this analytical model, the velocity deficit in the wake of a
turbine is described as [19]:

∆u
u0

=

1−
√√√√1− CT

8
(

σyσz
D2

)
 exp

(
−0.5

[(
y
σy

)2
+

(
z
σz

)2
])

, (6)

where the ∆u is the velocity deficit in the wake, u0 is the mean wind velocity perceived by
the wind turbine, CT is thrust coefficient, σy and σz are the wake widths in spanwise and
vertical directions, respectively, which are given by [19]:
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2
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√
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2
√

1− CT
, (8)

where ky and kz are the wake growth rates in spanwise and vertical directions, respectively.
In the training and validation cases, CT = 0.8. The wake growth rates ky = 0.075 and
kz = 0.075 are obtained by fitting the training case. For the turbines in the wake, a wake
superposition model is considered [61]:

u = Uhub −
√

∑n
i ∆u2

i , (9)

where Uhub is the free stream velocity at the hub height, u is the velocity in the wake of
current turbine, ∆ui is the wake velocity deficit of the ith turbine in stand-alone condition,
n is the number of superposition wakes. The velocity profiles of the analytical model
are presented in Figure 16. The analytical model has a good performance in far wakes.
However, the velocity deficits are overpredicted in the near wake areas (III in Figure 16) and
underpredicted in the near upwind areas (II in Figure 16). In comparison, the presented
CNNDA model seems to have a better performance than the analytical model in predicting
the velocity field.

The discrepancy between the CNNDA predictions and the LES time-averaged results
were quantified using the coefficient of determination (R2), mean absolute error (MAE), root
mean square error (RMSE), and the mean absolute relative error (MARE). These statistical
error indices are defined as follows [62]:

R2 = 1−
∑N

i=1

(
ψi(CNN) − ψi(LES)

)2

∑N
i=1

(
ψi(CNN) − ψi(CNN)

)2 , (10)
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MAE =
∑N

i=1

∣∣∣ψi(CNN) − ψi(LES)

∣∣∣
N

, (11)

RMSE =

∑N
i=1

(
ψi(CNN) − ψi(LES)

)2

N


0.5

, (12)

MARE =
1
N ∑N

i=1

∣∣∣ψi(CNN) − ψi(LES)

∣∣∣
ψi(LES)

, (13)

where ψi(CNN) is the predicted value (of time-averaged windwise velocity component)
using the CNNDA, ψi(LES) is the value obtained from the LES model, ψi(CNN) is the mean
predicted value using the CNNDA, and N is the total number of samples, i.e., the total
number of computational nodes in the subdomain surrounding the turbine.

The discrepancies between the CNNDA predictions and the LES time-averaged results
for the four cases are presented in Table 2. The CNNDA predictions maintain high accuracy
for the turbines located in the free flow for all wind conditions (i.e., various magnitudes
and directions). The largest discrepancies are observed for the turbines located in the wake
and, specifically, the west wind direction case, where the distance between the turbines is
the smallest. Nevertheless, the R2 for all cases are over 0.95 and the RMSE less than 3%,
which is quite remarkable.

Table 2. Statistical error indices of the CNNDA relative to the LES results for different wind direc-
tion cases.

Wind Direction Turbine R2 MAE RMSE MARE

NE
T1 0.99 0.0055 0.0097 0.01
T2 0.99 0.0066 0.0111 0.01
T3 0.99 0.0045 0.0080 0.01

S
T1 0.98 0.0083 0.0147 0.02
T2 0.98 0.0080 0.0162 0.01
T3 0.97 0.0106 0.0149 0.02

SW
T1 0.97 0.0102 0.0095 0.02
T2 0.98 0.0074 0.0143 0.01
T3 0.92 0.0166 0.0201 0.03

W
T1 0.95 0.0140 0.0256 0.03
T2 0.95 0.0138 0.0267 0.03
T3 0.96 0.0116 0.0181 0.02

The computational efficiency of the proposed CNN model has a great advantage over
the LES. For each case, the LES required over 8× 104 CPU hours to generate the time-
averaged flow fields. In comparison, although the proposed CNN model requires about
10 CPU hours for training, the well-trained model only requires 50 s to reconstruct the time-
averaged flow field. Considering the LES requires 9.6× 103 to generate the instantaneous
flow fields for inputs, the total cost of the proposed CNN model is still 88% less than
the LES.

Now we turn our attention to the possibility of using the proposed CNN to predict
aerodynamic power production of the individual turbines using the predicted velocity
fields as follows:

Paero =
1
2

ρAu3, (14)

where Paero is the aerodynamic power production, ρ = 1.225 kg m−3 is the air density, A
is the frontal rotor area, and u is the mean time-averaged windwise velocity component
over the rotor area. In Figure 17, we compare the aerodynamic power productions of the
four turbines using the LES results and CNNDA predictions. Wind velocities of the four
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cases range from 7 m/s to 15 m/s. Even though the velocity field discrepancies between
LES and CNNDA are satisfactory, all wind turbines across all wind velocities overestimated
the predicted power productions. As expected, the largest discrepancy is at turbine 1 in the
west wind direction case, where the velocity deficit around the rotor area is underestimated
(for instance, II in Figure 16d).

Energies 2022, 14, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 17. Power production of turbines located in the wake. 

7. Conclusions 
In this study, we examined the capability of the CNN autoencoder to reconstruct the 

time-averaged flow field around the wind turbines at the SWiFT facility and predict 
turbine power output. LES of the SWiFT facility with four different wind conditions (i.e., 
north-east, south, south-west, and west directions with wind speeds of 7, 9, 11, 13, and 15 
m/s) were performed to generate training and validation data for the CNN. A six-layer 
CNN autoencoder was developed and trained using both instantaneous and time-
averaged LES results around three individual turbines using the north-east wind direction 
case. The input of every sample is constructed using five instantaneous velocity fields to 
reflect the temporal variations of turbulent structures. Subsequently, the trained CNN is 
validated and compared with time-averaged results of the additional large-eddy 
simulations. Based on the findings of this study, the following conclusions can be drawn: 
(1) The trained CNN can successfully predict the time-averaged flow field around 

individual turbines, while the data augmentation technique can effectively address 
the location sensitivity of the trained CNN. The predicted flow field clearly reflects 
the main features of the turbine wakes obtained from LES. The velocity profiles 
drawn from CNN predictions agree well with LES time-averaged results and the 
overall relative errors are no more than 3%. The presented model has a good 
generality in different wind speeds. However, wake overlapping will affect the 
accuracy of the predictions. Different turbine distances lead to different wake-turbine 
interaction effects and, thus, the flow structure near the turbine varies significantly. 
Since the CNN model is only trained using one turbine wake interaction case, the 
generality in different wake interaction cases is approvable. In a future study, we will 
consider more wake overlapping cases in the training dataset to enable better flow 
field predictions. 

(2) The computational cost associated with the LES to generate the time-average flow 
field for each case was over 8 × 10ସ CPU hours, whereas the CNN required nearly 
50 s to reconstruct the same flow field. Considering the training cost of about 10 CPU 
hours and the cost of LES to produce instantaneous flow field (i.e., 9.6 × 10ଷ CPU 
hours) for the inputs of the CNN, the total cost of the proposed CNN is 88% less than 
that of the LES. Therefore, the proposed CNN algorithms could enable reliable 
predictions of the wake flow field at a fraction of the cost required by the LES. 

Figure 17. Power production of turbines located in the wake.

7. Conclusions

In this study, we examined the capability of the CNN autoencoder to reconstruct
the time-averaged flow field around the wind turbines at the SWiFT facility and predict
turbine power output. LES of the SWiFT facility with four different wind conditions (i.e.,
north-east, south, south-west, and west directions with wind speeds of 7, 9, 11, 13, and
15 m/s) were performed to generate training and validation data for the CNN. A six-layer
CNN autoencoder was developed and trained using both instantaneous and time-averaged
LES results around three individual turbines using the north-east wind direction case. The
input of every sample is constructed using five instantaneous velocity fields to reflect the
temporal variations of turbulent structures. Subsequently, the trained CNN is validated
and compared with time-averaged results of the additional large-eddy simulations. Based
on the findings of this study, the following conclusions can be drawn:

(1) The trained CNN can successfully predict the time-averaged flow field around indi-
vidual turbines, while the data augmentation technique can effectively address the
location sensitivity of the trained CNN. The predicted flow field clearly reflects the
main features of the turbine wakes obtained from LES. The velocity profiles drawn
from CNN predictions agree well with LES time-averaged results and the overall
relative errors are no more than 3%. The presented model has a good generality in
different wind speeds. However, wake overlapping will affect the accuracy of the
predictions. Different turbine distances lead to different wake-turbine interaction
effects and, thus, the flow structure near the turbine varies significantly. Since the
CNN model is only trained using one turbine wake interaction case, the generality in
different wake interaction cases is approvable. In a future study, we will consider more
wake overlapping cases in the training dataset to enable better flow field predictions.

(2) The computational cost associated with the LES to generate the time-average flow field
for each case was over 8× 104 CPU hours, whereas the CNN required nearly 50 s to
reconstruct the same flow field. Considering the training cost of about 10 CPU hours
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and the cost of LES to produce instantaneous flow field (i.e., 9.6 × 103 CPU hours)
for the inputs of the CNN, the total cost of the proposed CNN is 88% less than that of
the LES. Therefore, the proposed CNN algorithms could enable reliable predictions of
the wake flow field at a fraction of the cost required by the LES.

(3) The CNN predictions for the aerodynamic power productions were in good agree-
ment with the LES results, except for the turbine located in the near wake of the
upwind turbine owing to an underestimation of the velocity deficit within the wake.
Overall, the comparisons between the LES results and CNN predictions of the SWiFT
wind turbines demonstrate the potential of the developed CNN autoencoder for pre-
dicting time-averaged flow fields and the power production of wind turbines while
being several orders of magnitude less computationally expensive than high-fidelity
numerical simulations.
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