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Abstract: A model reference adaptive control and fuzzy neural network (FNN) synchronous motion
compensator for a gantry robot is presented in this paper. This paper proposes the development and
application of gantry robots with MRAC and FNN online compensators. First, we propose a model
reference adaptive controller (MRAC) under the cascade control method to make the reference model
close to the real model and reduce tracking errors for the single axis. Then, a fuzzy neural network
compensator for the gantry robot is proposed to compensate for the synchronous errors between
the dual servo motors to improve precise movement. In addition, an online parameter training
method is proposed to adjust the parameters of the FNN. Finally, the experimental results show that
the proposed method improves the synchronous errors of the gantry robot and demonstrates the
methodology in this paper. This study also successfully integrates the hardware and successfully
verifies the proposed methods.

Keywords: fuzzy neural network; gantry robot; model reference adaptive controller; online parameter

1. Introduction

Gantry robots have been widely used in manufacturing industries such as high-
precision motion control, precision manufacturing, circuit assembly, microelectronics, and
inspection [1–3]. The gantry robot is composed of a manipulator on an overhead system,
and two motors are installed on two parallel linear guides to drive the moving platform.
However, due to various factors, such as unbalanced forces on both sides, various dis-
turbances in the driving process will cause synchronous errors between the two motors.
The consequence of these synchronous errors will not only cause system jitter and affect
the quality of the workpiece but also cause the work process to stop due to overcurrent
protection. These undesirable effects are very much in need of control and improvement
for high-speed and high-precision manufacturing. Therefore, how to effectively control the
synchronous errors of a gantry position platform has become a key issue.

Typical methods (see Figure 1) to synchronize the motion in gantry robot control
systems include (1) the cascade control method, and (2) the parallel control method [4,5].
Both methods use two control loops to control the motors separately. The first control
method divides the two control loops into a master loop and a slave loop, and the reference
command is only provided to the master loop. The master loop has a master motor, and
the slave loop has a slave motor. If the master loop encounters a disturbance, the slave loop
also reflects the disturbance. The second control method has the two control loops follow
the same reference position command. Since the inevitable differences between the two
subsystems (including motors, motor drives, etc.) are not taken into account, this method
usually exhibits poor performance.
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Figure 1. Typical methods to synchronize the motion in gantry robots: (a) cascade control method; 
(b) parallel control method. 

Recently, compensators [6–9] and cross-coupling technology have often been used in 
machine tools and multiaxis motion applications [10,11] to solve synchronization control 
problems and improve control performance [12–15]. In cross-coupling control, each loop 
also considers the position and speed errors of another motor to evaluate its own control 
performance. However, these methods cannot provide sufficient robustness because the 
control parameters are selected through trial and error. 

Fuzzy neural networks (FNNs) [16–26] is an intelligent technology that combines the 
advantages of fuzzy logic and neural network systems. The FNN system is a straightfor-
ward implementation of a fuzzy inference system with a four-layered network structure. 
Generally, the advantage of FNN systems lies in that: (1) the FNN system can automati-
cally identify fuzzy logic rules, (2) the parameters of the FNN system have clear physical 
meanings, (3) the FNN system can incorporate linguistic information (in the form of fuzzy 
IF-THEN rules), and (4) the desired performance can be obtained under fewer adjustable 
parameters than in neural networks. Generally, FNNs can be divided into the Mamdani 
type and Takagi–Sugeno–Kang (TSK) type. Since the TSK model can incorporate mathe-
matical knowledge about the controlled plant and can use control theory to analyse its 
behaviour, the TSK model is the most commonly used FNN method. 

Recent research on gantry robots, such as literature [27], discusses the synchronous 
control based on fuzzy single neuron PID cross-coupling controller, literature [28] dis-
cusses the suppression of the rotational motion of cross-coupled gantry stage and litera-
ture [29] proposes a new algorithm to identify the parameters of the synchronous dual-
drive ball screw gantry system. This paper proposes the development and application of 
gantry robots with MRAC and FNN online compensators. For the controller design, a cas-
cade control method with an MRAC controller is proposed to ensure the tracking require-
ments of single axis control. Then, the purpose of the FNN compensator is to eliminate 
the synchronous errors between the dual servo motors. To improve the learning ability of 
FNN, an online parameter training method is proposed to adjust the parameters of the 
FNN. This paper has developed and successfully completed the theoretical and technical 
feasibility of the proposed method through various experimental comparisons. 

The rest of the paper is organized as follows. The gantry robot servo system descrip-
tion is given in Section 2. Section 3 presents the proposed synchronous control methods 
of gantry robots. The FNN online compensator with two inputs and one output is devel-
oped to compensate for the synchronous errors. The experimental results are illustrated 
in Section 4 to demonstrate the methodology proposed in this paper. 

2. The Structure and Mathematical Model of the Gantry Robot System 
Figure 2 shows the gantry robot system used in this paper. It consists of two rotating 

servo motors, guideways, and ball screws. 

Figure 1. Typical methods to synchronize the motion in gantry robots: (a) cascade control method;
(b) parallel control method.

Recently, compensators [6–9] and cross-coupling technology have often been used in
machine tools and multiaxis motion applications [10,11] to solve synchronization control
problems and improve control performance [12–15]. In cross-coupling control, each loop
also considers the position and speed errors of another motor to evaluate its own control
performance. However, these methods cannot provide sufficient robustness because the
control parameters are selected through trial and error.

Fuzzy neural networks (FNNs) [16–26] is an intelligent technology that combines the
advantages of fuzzy logic and neural network systems. The FNN system is a straightfor-
ward implementation of a fuzzy inference system with a four-layered network structure.
Generally, the advantage of FNN systems lies in that: (1) the FNN system can automati-
cally identify fuzzy logic rules, (2) the parameters of the FNN system have clear physical
meanings, (3) the FNN system can incorporate linguistic information (in the form of fuzzy
IF-THEN rules), and (4) the desired performance can be obtained under fewer adjustable
parameters than in neural networks. Generally, FNNs can be divided into the Mamdani
type and Takagi–Sugeno–Kang (TSK) type. Since the TSK model can incorporate math-
ematical knowledge about the controlled plant and can use control theory to analyse its
behaviour, the TSK model is the most commonly used FNN method.

Recent research on gantry robots, such as literature [27], discusses the synchronous
control based on fuzzy single neuron PID cross-coupling controller, literature [28] discusses
the suppression of the rotational motion of cross-coupled gantry stage and literature [29]
proposes a new algorithm to identify the parameters of the synchronous dual-drive ball
screw gantry system. This paper proposes the development and application of gantry
robots with MRAC and FNN online compensators. For the controller design, a cascade
control method with an MRAC controller is proposed to ensure the tracking requirements
of single axis control. Then, the purpose of the FNN compensator is to eliminate the
synchronous errors between the dual servo motors. To improve the learning ability of
FNN, an online parameter training method is proposed to adjust the parameters of the
FNN. This paper has developed and successfully completed the theoretical and technical
feasibility of the proposed method through various experimental comparisons.

The rest of the paper is organized as follows. The gantry robot servo system description
is given in Section 2. Section 3 presents the proposed synchronous control methods of
gantry robots. The FNN online compensator with two inputs and one output is developed
to compensate for the synchronous errors. The experimental results are illustrated in
Section 4 to demonstrate the methodology proposed in this paper.

2. The Structure and Mathematical Model of the Gantry Robot System

Figure 2 shows the gantry robot system used in this paper. It consists of two rotating
servo motors, guideways, and ball screws.
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Figure 2. The hardware structure of the gantry robot. 

In traditional cascade control, the inner current control loop usually has a high gain 
to minimize the current error over the system operating range. The bandwidth of the cur-
rent loop is usually well over 2 kHz, and the effect of back EMF is eliminated. The elec-
tronic dynamics are so fast that the transfer function of the AC servo drive can be treated 
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robot can be shown as 
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Then, the input command, shown in Figure 4a, is simultaneously fed into each axis 
as vcmd1 and vcmd2, and the responses of Axes 1 and 2 are shown in Figure 4b. The data of 
Figure 4a,b are utilized to identify the parameters in Equation (3); then, the identified re-
sults of each axis are indicated in Table 1. 
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Figure 2. The hardware structure of the gantry robot.

In traditional cascade control, the inner current control loop usually has a high gain to
minimize the current error over the system operating range. The bandwidth of the current
loop is usually well over 2 kHz, and the effect of back EMF is eliminated. The electronic
dynamics are so fast that the transfer function of the AC servo drive can be treated as a
constant current gain. For simplicity, the system equations of each axis of the gantry robot
can be shown as

Mi
.
vi + Divi + FLi = Ktiui (1)

where Mi is the equivalent mass of the mechanism; Di is the equivalent viscous friction; Kti
is the torque constant; FLi is the external disturbance term; and ui is the control effort. Then,
the undermined plant is

Gi(s) =
vi

Ktiui − FLi
=

1
Mis + Di

(2)

The velocity PI controller (shown in Figure 3) is used to eliminate external disturbances.
Then, the identified plant from the control effort to the velocity response can be simplified to

vi
ui

= KtiGi(s) =
Kti

Mis + Di
=

Ki
τis + 1

(3)
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Then, the input command, shown in Figure 4a, is simultaneously fed into each axis
as vcmd1 and vcmd2, and the responses of Axes 1 and 2 are shown in Figure 4b. The data
of Figure 4a,b are utilized to identify the parameters in Equation (3); then, the identified
results of each axis are indicated in Table 1.
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Table 1. Identified parameters of gantry stage.

Gain Value Time Constant Value

K1(
mm

s·volt ) 393.79 τ1(s) 0.06

K2(
mm

s·volt ) 384.49 τ2(s) 0.06

3. Proposed Control System
3.1. Controller Design for The Single Sxis

To reduce the tracking error of the single axis position, we adopt the cascade control
method to design the single axis control, as shown in Figure 5. In this method, Gpi

(
z−1) is

the discrete model of a single axis plant, which can be represented as

Gp

(
z−1
)
= Z

[
1− e−Ts

s
· Ki

τis + 1

]
=

bz−1

1 + az−1 (4)

where
a = −e−

B·Ts
J

b = (Kt/B)
(

1− e−
B·Ts

J
) (5)

and Ts is the sampling time.
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The inner velocity loop and outer position loop use the integral Kvii, proportional
Kvpi, and proportional Kppi controllers. To make the reference model close to the real
model, we adopted the adaptive control to let the reference model approach to real model.
At present, there are two main design architectures in the adaptive control. One is the self-
tuning controller (STC), and the other is the model reference adaptive controller (MRAC).
Here, we adopted the MRAC [30], as shown in Figure 6. The basic concept of MRAC is
to plan the performance of the control system in a reference model, and the design of the
entire feedback control system is to match the planned reference model to achieve the
expected system response.
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From Figure 6, the adaptive force ucomp can be obtained by the error Verr, and the
reference output Vm is composed of the nominal parameters an and bn. The adaptive
parameters K1, K2, and K3 are derived from the Lyapunov stability criterion. The detailed
derivation process, please see Appendix A.

K1(N) = B1
N
∑

i=0
Verr(i) ·V(i) + C1 ·Verr(N) ·V(N)

K2(N) = B2
N
∑

i=0
Verr(i)× u(i) + C2 ×Verr(N)× u(N)

K3(N) = B3
N
∑

i=0
Verr(i)× sgn(V(i)) + C3 ×Verr(N)× sgn(V(i))

(6)

where the positive constants are Bj and Cj, and j = 1, 2, 3, could be well tuned under the
model reference adaptive control method. Therefore, the transfer function of the velocity
inner loop can be represented as

TFv(z) =
KvpibTsz

z2 + (a− 1 + KvpibTS + KviibTs)z + (−a− KviibTs)
(7)

We can use the pole-placement method to design the controller for this second-order
system. Let the two parameters ξ and ωn be similar to the damping ratio and natu-
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ral frequency of the standard second-order system; then, the parameters of the velocity
controller are

Kp = 1+e−2ξωnTs−2e−ξωnTS cos(ωdTs)
bTs

Kd = (e−2ξωnTs+a)
−b

(8)

The transfer function of the outer position loop can be simplified as

Pai
Pdi

=
KppiTs

z +
(
KppiTs − 1

) (9)

Here, the bandwidth of the position loop can be well designed according to the rule
of cascade control, and then the parameter Kppi can be easily obtained. For more details,
please refer to [30]. Here, we adopt the important design results of [30].

3.2. FNN Synchronous Motion Compensator

Although the abovementioned single axis controller can reduce the single axis position
tracking error, the synchronous error between the dual motors is caused by various factors,
such as unbalanced forces on both sides, various disturbances in the driving process and
environmental uncertainty. This is an unavoidable situation. Therefore, we developed an
FNN online compensator combined with MRAC, as shown in Figure 7. This FNN online
compensator can compensate for the synchronous error online. Here, two methods are
proposed: (1) parallel control and (2) parallel master–slave control. When the linear guides
are not parallel with respect to each other axis in installation, the second method will be
applied to avoid the mechanical coupling force being yielded by achieving the synchronous
motion in position.
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Adopting the concept of fuzzy neural network technology, the proposed FNN com-
pensator for MRAC can be constructed, as shown in Figure 8.
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Next, we introduce the important concepts of an FNN. An FNN is a network with
fuzzy inference characteristics implemented by a four-layer neural network. The following
will describe the structure, corresponding operation and learning process of an FNN.

Layer 1: Input layer

Each node in this layer represents the input node of each input linguistic variable
and corresponds to an input variable. This means that the nodes in this layer are only
responsible for passing the input signal to the next linguistic layer. There are two input
variables of the FNN compensator in our proposed synchronous control method. One is
the position synchronous error x1

1 = es = P1− P2, and the other is the velocity synchronous
error x1

2 =
.
es = V1 −V2. P1, P2 are the position responses, and V1 and V2 are the velocity

responses corresponding to Axes 1 and 2, respectively. Therefore, the node output of this
layer is as follows:

y1
i (N) = Ti · x1

i (N), i = 1, 2 (10)

Layer 2: Linguistic layer (Membership layer)

The nodes in layer 2 are called membership nodes, and the role of this layer is to
perform the membership function of each node. The Gaussian function is used here as a
membership function. Then,

y2
ij(N) = exp

[
−
(x2

i −mij)
2

(σij)
2

]
, i = 1, 2 ; j = 1, 2, . . . , M (11)

where mij and σij denote the mean and the standard deviation, respectively, of the Gaussian
functions of the jth term of the ith input linguistic variable; M is the number of rules.

Layer 3: Rule layer

The rule nodes are located in layer 3, which includes the rule layer and fuzzy inference
mechanism. For each layer 3 node, there is at most one previous link from the layer 2 node
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of the language variable. The nodes in this layer are denoted by ∏, which are multiplied
by the input signal from layer 2. Then, for the jth rule node,

y3
k(N) =

2

∏
i=1

w3
k · y

2
ij(N) i = 1, 2 j = 1, 2, . . . , M (12)

where y3
k and w3

k represent the output and weight of the rule layer, respectively. Here, w3
k is

designed to be 1.

Layer 4: Output layer

The layer 4 contains output variable nodes. This layer performs defuzzification to
obtain the numerical output y4

o . The operation of layer 4 is

y4
o(N) = ∑

k
w4

ko · y
3
k (13)

where y4
o(N) is the output of the proposed FNN compensator for MRAC and the link weight

w4
ko is the output strength. In this paper, M is set to 3, which means that the linguistic layer

has 6 nodes, and the rule layer has 9 nodes.

3.3. On-Line Learning Algorithm

The parameter learning algorithm is based on a supervised learning law to train the
system. This method is the same as the derivation of the back propagation algorithm,
adjusting the link weight in the output layer to minimize the given energy function.

E =
1
2

es
2 +

1
2

.
es

2 (14)

Next, we describe the update laws of the parameters in the FNN. First, the error term
to be propagated is given by

δ4
o = − ∂E

∂y4
o
= −1

2
∂E
∂es

∂es

∂y4
o
− 1

2
∂E
∂

.
es

∂
.
es

∂y4
o
= −1

2
es

∂es

∂y4
o
− 1

2
.
es

∂
.
es

∂y4
o

(15)

The exact calculation of the Jacobian of systems ∂es/∂y4
o and ∂

.
es/∂y4

o , which are
contained in ∂E/∂y4

o , cannot be determined due to the uncertainties of the plant dynamics,
such as parameter variations and external disturbances. To overcome this problem and to
increase the online learning rate of the network parameters, the derivatives ∂es/∂y4

o and
∂

.
es/∂y4

o are approximated by the ratio of the signs of the changes in es and
.
es with respect to

y4
o , respectively. In this study, the compensated force y4

o is used to reduce the synchronous
errors of position es and velocity

.
es. Therefore,

∂es
∂y4

o
= sgn

(
∂es
∂y4

o

)
= −1

∂
.
es

∂y4
o
= sgn

(
∂

.
es

∂y4
o

)
= −1

(16)

then, Equation (15) can be rewritten as

δ4
o = −1

2
es

∂es

∂y4
o
− 1

2
.
es

∂
.
es

∂y4
o
=

1
2
(
es +

.
es
)

(17)

and the update of w4
ko is

∆w4
ko = −ηw

∂E
∂w4

ko
=

[
−ηw

∂E
∂y4

o

][
∂y4

o

∂w4
ko

]
= ηwδ4

o y3
k (18)
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where ηw is the learning rate parameter of the link weights. Then, the weights are
updated as

w4
ko(N + 1) = w4

ko(N) + ∆w4
ko (19)

3.4. Stability Analysis

Refer to [31–33], based on the discrete Lyapunov function analysis, we consider the
energy function (14) as the discrete Lyapunov function. The change in the Lyapunov
function can be written as

∆V(N) = V(N + 1)−V(N) (20)

then, according to [31–33], Equation (20) will be derived as follows.

V(N + 1) = V(N) + ∆V(N)

≈ V(N) +
M

∑
j=1

[
∂V(N)

∂w4
ko

∆w4
ko

]
+

M

∑
j=1

[
∂V(N)

∂w3
k

∆w3
k

]
+

M

∑
j=1

2

∑
i=1

[
∂V(N)

∂mij
∆mij +

∂V(N)

∂σij
∆σij

]
(21)

By the design of the learning rate parameters [31], the convergence of Equation (21)
can be guaranteed. Here, we have omitted some mathematical processes, and listed the
important result as follows:

V(N + 1) ≈ ε(ηw + ηθ + ηm + ησ) =
V(N)ε

4

[
M
∑

j=1
((∂V(N)/∂y4

o)(∂y4
o /∂w4

ko))
2
+ε

] + V(N)ε

4

[
M
∑

j=1

2
∑

i=1
((∂V(N)/∂y4

o)(∂y4
o /∂w3

k y3
k)(∂w3

k y3
k /∂w3

k))
2
+ε

]+
V(N)ε

4

[
M
∑

j=1

2
∑

i=1
((∂V(N)/∂y4

o)(∂y4
o /∂y2

ij)(∂y2
ij/∂mij))

2
+ε

] + V(N)ε

4

[
M
∑

j=1

2
∑

i=1
((∂V(N)/∂y4

o)(∂y4
o /∂y2

ij)(∂y2
ij/∂σij))

2
+ε

]
< V(N)

4 + V(N)
4 + V(N)

4 + V(N)
4 = V(N)

(22)

From Equation (22), it means that the synchronous error of the gantry robot will
gradually converge to zero.

4. Experimental Results

Figure 9 shows the experimental system of the gantry robot control system in this
study. In the experimental system, the single axis controller and the proposed FNN online
compensator for MRAC are implemented in the PC.
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In this study, a 1 msec sampling rate is adopted for the encoder interface and the
execution of the control algorithm. For comparison, the results of experiments for low-
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frequency (1/5 Hz) and high-frequency (2/3 Hz) sinusoid position commands with the
same strokes (±36.6 mm) are used to verify the synchronous control performance of cascade
synchronous control, parallel synchronous control without a synchronous compensator
and the proposed control methods in Figure 7. Here, we set the parameters of the proposed
FNN compensator as w3

k= 1 and M = 3, which means that the linguistic layer has 6 nodes,
and the rule layer has 9 nodes. Furthermore, the learning rate ηw is designed to 0.001 to
let the convergence of Equation (21) can be guaranteed. To provide an overall evaluation,
two performance indices, the sum of absolute synchronous error and root mean square
synchronous error, are defined as

ESAE = ∑
Ni

|es|

ERMS =
√

1
Ni

∑
Ni

(es)
2 (23)

Figure 10 shows the synchronous error of the cascade synchronous control method,
shown in Figure 1a, by feeding the low-frequency command (1/5 Hz). The maximum
synchronous error is approximately ±0.92 mm even when the federate is low. In this
method, the control efforts, depicted in Figure 11, indicate that they are not consistent
in the phase and magnitude due to the servo lag between the master and slave axes and
that the effect will yield a large synchronous error. Hence, this method is not suitable for
gantry robot synchronous control. In the following discussion, the performance of the two
proposed methods will be compared under different conditions: (1) without compensation;
(2) with FNN compensation; and (3) with FNN and MRAC compensation.

Energies 2022, 15, x FOR PEER REVIEW 11 of 18 
 

 

( )21

i

RMS s
Ni

E e
N

=    

Figure 10 shows the synchronous error of the cascade synchronous control method, 
shown in Figure 1a, by feeding the low-frequency command (1/5 Hz). The maximum syn-
chronous error is approximately ± 0.92 mm even when the federate is low. In this 
method, the control efforts, depicted in Figure 11, indicate that they are not consistent in 
the phase and magnitude due to the servo lag between the master and slave axes and that 
the effect will yield a large synchronous error. Hence, this method is not suitable for gan-
try robot synchronous control. In the following discussion, the performance of the two 
proposed methods will be compared under different conditions: (1) without compensa-
tion; (2) with FNN compensation; and (3) with FNN and MRAC compensation. 

 
Figure 10. The synchronous error of the cascade synchronous control method. 

 
Figure 11. Control efforts of the cascade synchronous control method. 

4.1. Parallel Synchronous Control 
There are two kinds of position commands mentioned above fed to the parallel syn-

chronous control method to test the synchronous performance. For low-frequency com-
mands, the synchronous error and cost function shown in Equation (14) are depicted in 
Figure 12a,b. Figure 13a,b shows the case of a high-frequency command. When a constant 
disturbance 0.02375 N-m is applied to Axis 2 during the period of 2 to 3 s and 1.2 to 1.6 s 

0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(sec)

Sy
nc

hr
on

ou
s 

Er
ro

r(
m

m
)

 

 

Synchronous Error

Figure 10. The synchronous error of the cascade synchronous control method.



Energies 2022, 15, 123 11 of 17

Energies 2022, 15, x FOR PEER REVIEW 11 of 18 
 

 

( )21

i

RMS s
Ni

E e
N

=    

Figure 10 shows the synchronous error of the cascade synchronous control method, 
shown in Figure 1a, by feeding the low-frequency command (1/5 Hz). The maximum syn-
chronous error is approximately ± 0.92 mm even when the federate is low. In this 
method, the control efforts, depicted in Figure 11, indicate that they are not consistent in 
the phase and magnitude due to the servo lag between the master and slave axes and that 
the effect will yield a large synchronous error. Hence, this method is not suitable for gan-
try robot synchronous control. In the following discussion, the performance of the two 
proposed methods will be compared under different conditions: (1) without compensa-
tion; (2) with FNN compensation; and (3) with FNN and MRAC compensation. 

 
Figure 10. The synchronous error of the cascade synchronous control method. 

 
Figure 11. Control efforts of the cascade synchronous control method. 

4.1. Parallel Synchronous Control 
There are two kinds of position commands mentioned above fed to the parallel syn-

chronous control method to test the synchronous performance. For low-frequency com-
mands, the synchronous error and cost function shown in Equation (14) are depicted in 
Figure 12a,b. Figure 13a,b shows the case of a high-frequency command. When a constant 
disturbance 0.02375 N-m is applied to Axis 2 during the period of 2 to 3 s and 1.2 to 1.6 s 

0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(sec)

Sy
nc

hr
on

ou
s 

Er
ro

r(
m

m
)

 

 

Synchronous Error

Figure 11. Control efforts of the cascade synchronous control method.

4.1. Parallel Synchronous Control

There are two kinds of position commands mentioned above fed to the parallel
synchronous control method to test the synchronous performance. For low-frequency
commands, the synchronous error and cost function shown in Equation (14) are depicted in
Figure 12a,b. Figure 13a,b shows the case of a high-frequency command. When a constant
disturbance 0.02375 N-m is applied to Axis 2 during the period of 2 to 3 s and 1.2 to 1.6 s
corresponding to low- and high-frequency commands, respectively, and the synchronous
errors will be magnified without a compensator. Figure 14a,b shows the synchronous
errors with respect to low- and high-frequency commands. In contrast, these figures also
show that the synchronous errors will be suppressed to be similar to the condition without
disturbances by synchronous compensators. The detailed results of the two performance
indices in Equation (20) are shown in Tables 2 and 3. The sampling points between the
dotted lines shown in Figure 14a,b, where disturbances are applied, are calculated in the
case of “with disturbances”.
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Figure 12. (a) The synchronous error under low-frequency commands; (b) the cost function under
low-frequency commands.
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Figure 13. (a) The synchronous error under high-frequency commands; (b) the cost function under
high-frequency commands.
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Figure 14. (a) The synchronous error under low-frequency commands with disturbances. (b) the
synchronous error under high-frequency commands with disturbances.

Table 2. Synchronous performance under low-frequency commands.

Performance
Index (mm)

No
Compensation FNN FNN + MRAC

without
disturbances

ESAE 294.204 195.394 157.399
ERMS 0.0359 0.0235 0.0198

with
disturbances

ESAE 30.125 25.126 23.142
ERMS 0.0387 0.0241 0.0204

Table 3. Synchronous performance under low-frequency commands.

Performance
Index (mm)

No
Compensation FNN FNN + MRAC

without
disturbances

ESAE 578.168 357.550 307.116
ERMS 0.0606 0.0383 0.0330

with
disturbances

ESAE 91.225 71.114 63.453
ERMS 0.0918 0.0709 0.0644
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4.2. Parallel Master–Slave Synchronous Control

There are also two kinds of position commands mentioned above fed to the parallel
master–slave synchronous control method to test the synchronous performance. For low-
frequency commands, the synchronous error and cost function shown in Equation (14) are
depicted in Figure 15a,b. Figure 16a,b shows the case of a high-frequency command. When
a constant disturbance 0.02375 N-m is applied to Axis 2 during 2 to 3 s and 1.2 to 1.6 s
corresponding to low- and high-frequency commands, respectively, and the synchronous
errors will be magnified without a compensator. Figure 17a,b shows the synchronous
errors with respect to low- and high-frequency commands. In contrast, these figures also
show that the synchronous errors will be suppressed to be similar to the condition without
disturbances by synchronous compensators. The detailed results of the two performance
indices in Equation (23) are shown in Tables 4 and 5. The sampling points between the
dotted lines shown in Figure 17a,b, where the disturbances are applied, are calculated in
the case of “with disturbances”.
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Figure 15. (a) The synchronous error under low-frequency commands; (b) the cost function under
low-frequency commands.
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Figure 16. (a) The synchronous error under high-frequency commands; (b) the cost function under
high-frequency commands.
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Figure 17. (a) The synchronous error under low-frequency commands with disturbances; (b) the
synchronous error under high-frequency commands with disturbances.

Table 4. Synchronous performance under high-frequency commands.

Performance
Index (mm)

No
Compensation FNN FNN + MRAC

without
disturbances

ESAE 208.891 124.671 71.494
ERMS 0.0768 0.0461 0.0278

with
disturbances

ESAE 48.253 29.221 15.223
ERMS 0.117 0.0653 0.0341

Table 5. Synchronous performance under high-frequency commands.

Performance
Index (mm)

No
Compensation FNN FNN + MRAC

without
disturbances

ESAE 262.844 189.101 129.021
ERMS 0.0914 0.0667 0.0449

with
disturbances

ESAE 52.573 35.891 26.432
ERMS 0.129 0.0892 0.0654

In addition, we use the parameter settings of [34] to realize the performance of the
PID compensator, as shown in Figure 18. The synchronous errors under different control
schemes are shown in Table 6.
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Table 6. Synchronous performance under different control schemes.

Performance Index (mm) No Compensation FNN FNN + MRAC

ERMS 0.04 0.024 0.02

5. Conclusions

This paper has proposed MRAC controllers and FNN online compensators for a gantry
robot. We successfully completed the theoretical and technical feasibility of the proposed
method through various experimental comparisons. From Tables 2–5, we demonstrate
the advantages of our proposed method (FNN + MRAC) for the synchronous errors and
the design can enhance robustness to uncertainty. In addition, this study also successfully
integrates the hardware and successfully verifies the proposed methods. For the future
research direction, because this paper does not analyze and deal with the influence of
friction, the analysis and compensation of friction will be the future development direction.
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Appendix A

According to the development in [30], the continuous Lyapunov function is selected as

L = e2 +
3

∑
i=1

1
αi
(xi + βiegi)

2 (A1)

where the αi, βi are arbitrary positive constants and
.
e = −(Bn/Jn)e +

3
∑

i=1
xigi. For more

parameter description, please see [35]. Reference [30] has shown that the purpose of the
terms βiegi (i = 1, 2, 3) in Equation (A1) will make the adaptive process converge faster.
Therefore, the time derivative of Equation (A1) can be calculated and finally obtained
as follows

.
L = 2e

.
e + 2

3
∑

i=1

{
1
αi
(xi + βiegi)

[ .
xi + βi

d
dt (egi)

]}
= −2 Bn

Jn
e2 + 2e

3
∑

i=1
xigi+

2
3
∑

i=1

{
1
αi
(xi + βiegi)

[ .
xi + βi

d
dt (egi)

]} (A2)

then,
.
xi is designed as

.
xi = −Kvt

J

.
Ki = −αiegi − βi

d
dt (egi), so that Equation (A2) is negative

definite and the response of the plant is consistent with the reference model. Therefore,
Equation (A3) can be obtained as follows

.
L = −2

Bn

Jn
e2 − 2

3

∑
i=1

βi(egi)
2 (A3)

which is negative definite for all e. We divide both sides of the adaptive law
.
xi by −Kvt

J and
integrate, then the following adaptive laws can be obtained as

K1 = B1

∫ t

0
e ·ωdt + C1eω (A4)

K2 = B2

∫ t

0
e · zdt + C2ez (A5)

K3 = B3

∫ t

0
e · sgn(ω)dt + C3esgn(ω) (A6)

Equations (A4)–(A5) are continuous modes. After converting to discrete modes, Equations (A4)–(A5)
are Equation (6), respectively.
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