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Abstract: Agriculture is the primary source of income in developing countries like India. Agriculture
accounts for 17 percent of India’s total GDP, with almost 60 percent of the people directly or indirectly
employed. While researchers and planters focus on a variety of elements to boost productivity,
crop loss due to disease is one of the most serious issues they confront. Crop growth monitoring
and early detection of pest infestations are still a problem. With the expansion of cultivation to
wider fields, manual intervention to monitor and diagnose insect and pest infestations is becoming
increasingly difficult. Failure to apply on time fertilizers and pesticides results in more crop loss
and so lower output. Farmers are putting in greater effort to conserve crops, but they are failing
most of the time because they are unable to adequately monitor the crops when they are infected
by pests and insects. Pest infestation is also difficult to predict because it is not evenly distributed.
In the recent past, modern equipment, tools, and approaches have been used to replace manual
involvement. Unmanned aerial vehicles serve a critical role in crop disease surveillance and early
detection in this setting. This research attempts to give a review of the most successful techniques to
have precision-based crop monitoring and pest management in agriculture fields utilizing unmanned
aerial vehicles (UAVs) or unmanned aircraft. The researchers’ reports on the various types of UAVs
and their applications to early detection of agricultural diseases are rigorously assessed and compared.
This paper also discusses the deployment of aerial, satellite, and other remote sensing technologies
for disease detection, as well as their Quality of Service (QoS).

Keywords: UAV; crop monitoring; pest management; remote sensing

1. Introduction

Most of the developed countries have adopted the latest technologies such as Pho-
togrammetry and Remote Sensing (RS) [1,2] for precision agriculture [3,4] using Unmanned
Aerial Vehicles (UAV) to make a good agriculture farm with minor infection. It will help
the farmers with more crop productivity, quality, and, most importantly, the farmers’ lesser
workload. Further it can be used for spraying fertilizer and pesticides. Usually, the UAV’s
are developed with an automated drone system with sensors and cameras in order to
monitor the condition and height of the crops. There are various types of UAV models have
been developed. Based on the agriculture farm, select proper and appropriate UAVs should.
The role of UAV in precision management is taken care by the captured spectral images.
The multispectral camera will monitor the condition of the crop by scanning the entire
crop field. The actuated drones mounted with cameras will identify the pest and insect
hot spots. The UAVs and remote-sensing techniques mentioned above help the farmers to
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take appropriate measures at the right time to protect the crops from diseases. The UAV
with low-altitude remote sensing has more advantages like good mobility, easy construc-
tion, and high resolution for obtaining the images [5]. The quality of the crop and yield
benefits depends on biotic and abiotic factors. In the past, the farmers rely based on their
experiences for the production of the crops. Different types of farmers are moving towards
remote sensing platforms like UAV-based technology, which helps them protect the crops.
In the future, precision agriculture will rely on Sensors, Robotics, the Internet of Things,
Machine Learning, and Decision-based support systems. In [6], IoT-based technology has
also been adapted to agricultural systems, incorporating cloud computing, big data storage,
security issues, and analytics. In [7], they implemented an energy harvesting mechanism
using solar energy and a wind turbine by integrating a long-range (LoRa) communication
modem in agricultural field.

This review contributes the best solutions for protecting the crop and pest management
to solve the farmer’s problem and their day-to-day challenges in the agriculture field. We
provide a brief overview to the necessity for UAVs. The goal of precision farming using
remote sensing technologies is explained to reduce the potential risks and improve the
agricultural yield. We focus on UAVs and their types with clear explanations with a
comparison between the different types of UAVs including their technical specifications.
The role of UAV in precision pest management is discussed. We provide the conclusion
with a challenges and future scope in precision agriculture.

The rest of the paper is organized as follows. Section 2 gives a brief overview about
the precision agriculture. Section 3 describes different types of UAVs. Section 4 juxtaposed
the qualitative parameters of various types of UAVs and their applications in precision
agriculture. Section 5 investigates the role of UAVs in precision pest management. In the
last section we have drawn our conclusions.

2. Precision Agriculture

Precision agriculture (PA) helps farmers make crucial decisions at the right time by
analyzing a vast amount of data regarding the environment and crop details. Thus, PA helps
the farmers marching towards more production with quality to meet the required demand.
Remote Sensing (RS) plays a vital role in crop evaluation and soil health conditions. It
indicates the problems at the right time and helps to resolve the problem wisely. Figure 1
describes various remote sensing platforms used for precision agriculture.
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UAV is flexible for most applications and addresses the solutions for the problems
faced by other RS platforms [8].

It can be easily accessible and provides accurate data. Further, it is cost-effective and
easy to deploy anywhere and can operate real-time spatial images compared with other
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traditional RS Platforms. Table 1 presented a detailed comparison of the quality of services
provided by the various types of RS Platforms in Precision Agriculture.

Table 1. QOS comparison of RS platforms used in precision agriculture.

Quality of Services
Types of RS Platforms

UAV Satellite Manned Aircraft Ground Based

Flexibility high low low low

Adaptability high low low low

Cost low high high low

Time Consumption low low low high

Risk low average high low

Accuracy high low high moderate

Deployment easy difficult complex moderate

Feasibility yes no no yes

Availability yes no yes no

Operability easy complex complex easy

3. Types of Unmanned Aerial Vehicle (UAV)

UAVs describe vehicles with weights around or lower to 25 kg which do not need a
human to fly them as they can be managed remotely. A quick survey can be easily achieved
over a wide range of area through unmanned aerial vehicles [9]. UAVs can be applied for
analyzing images, ground monitoring, and in-depth situation analysis of a crop [8]. We
can categorize UAVs into various types based on the number of rotors, speed, application,
mechanism, etc. UAVs with weights greater than or equal to 25 kg have specific rules and
laws to fly. As a result, weight can be a significant factor for distinguishing between the
UAVs while the vehicle takes off. Firstly, we can see very heavy UAVs which weigh around
2 tons or more. They will be able to carry enough fuel and are mainly used for military
purposes. Secondly, some UAVs weigh 200–2000 kgs and 50–200 kgs. These are used for
various applications extensively and can hold enough fuel to travel for longer. Finally, we
have lightweight UAVs weighing around 5 to 50 kgs that finds uses in agriculture purposes.

Further, we have micro-UAVs which weigh less than 5 kgs. UAVs that are lighter
than 5 kg are easy for take-off and less expensive than heavier vehicles. It can be fixed-
wing, Single Rotor, Multi Rotor Landing (VTOL) UAVs, and Hybrid Vertical Take-off.
There is a vast difference in the structure of fixed-wing and multi-rotor. Their time of
flying, endurance, and type of energy differ entirely from each other. A single motor is
slightly different from multi-rotors. The single rotor contains two rotors in which one more
oversized rotor is on the top, and the other is small and fixed on the tail. Multi-rotor can
be Tricopter, Quadcopter, Hexacopter, and Octocopter based on the number of rotors and
applications [10]. We discuss the various types of UAVs depicts in Figure 2 and Table 2.
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Table 2. Comparison of Types of UAV.

Parameters
Types of UAV

Fixed Wing Single Rotor Multi-Rotor Hybrid VTOL

No. of Rotors 1

1(1 Big Sized and
Small Sized on
the tail of the

drone)

Tricopter-3
Quadcopter-4
Hexacopter-6
Octocopter-8

1

Manufacture and
Maintenance Simple Complex Complex Complex

Cost High High Low High

Average Flying
Time

2 h
(Battery)

16 h
(Powered by Gas Engine)

Higher (Powered
by Gas Engine) Limited (20–30 min) Ability to cover longer

distances

Endurance More More
(with Gas Power) Limited More

Energy
Battery—They never utilize
energy to stay afloat on air,

Gas Engine
Gas Power Battery—They utilize

energy to stay afloat on air Battery

Speed Fast Flying Speed Limited Limited Fast Flying Speed

Applications Long-Distance Aerial
Mapping and Surveillance Aerial Scanning

Aerial Photography, Short
Distance Aerial Mapping

and Surveillance

Mapping and Land
Surveying, Mining,

Surveillance and Security

Drawbacks

Aerial photography is not
applicable because it needs
to be motionless in the air

for a period.

Harder to fly,
Dangerous to

handle
Limited Payload Imperfect in hovering

Limited Payload

Training Required
in Flying

Required (runway or a
Catapult Launcher- to set a
fixed-wing in air, Parachute

or a Net- Landing)

Not Required Not Required Not Required

3.1. Fixed Winged

As can be seen in Figure 3, A fixed-winged UAV does data collection through remote
operation mode. Fabrication of a simple fixed-wing UAV is by a wingspan of 195 cm
and a carbon-fiber body with one propeller engine. As a result, excellent aerodynamics
can be provided with the added benefit of more flight time when speed increases in the
places surveyed. Usually, such UAVs are equipped with high-resolution cameras for better
mapping and surveillance from height. In addition, it has a straightforward flight system.
Moreover, the architecture and maintenance of such UAVs are also relatively easy [11].
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3.2. Single Rotor

A single-rotor system consists of two different components: As can be seen in Figure 4,
the helicopter and another system that controls the helicopter from ground level. The
helicopter contains various parts connected to it, namely a flight controller, gyroscope,
GPS receiver, transmitter for image and telemetry, the sensor for heading and spraying
components. Similarly, the ground-level controlling system contains a telemetry receiver
and a transmitter in a remote control. Moreover, in specific systems, forced-air engine
cooling is installed to cool the engine when it reaches high altitude and when the flight
speed is low. In order to sense the heeling and pitch angle of the aircraft and detect 3D
positional velocity, vertical gyroscopes which have high precision are used. Another sensor
using magnetic heading is used to make minor corrections of mistakes due to the changing
fight directions. The elevation and location of the UAV can be detected using a pressure
altimeter connected to it. Various control variables can be computed using Kalman filter
and Proportional Integral Derivative (PID) algorithms [12].
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3.3. Hybrid Vertical Take-Off and Landing (VTOL)

Hybrid VTOL UAVs are Vehicles that have the benefit of both fixed-winged systems
and multi-rotor systems. As shown in Figure 5, They are very efficient in take-off, which is
similar to multi-rotor systems. At the same time, they fly with an efficiency of a fixed-wing
system. Due to its combined features, the development and maintenance of hybrid systems
are complex, as are their control systems. In this case, three controllers, namely horizontal,
vertical, and transition, are used [8].
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3.4. Multi Rotor

Based on the number of rotors and their configuration, multi-Rotor can be classified.
Some of the most frequently used multi-copters are tricopter, quadcopter, hexocopter,
and octocopter.

3.4.1. Tri Copter

As can be seen in Figure 6, The general structure of tricopter has three rotors which will
help balance the weight of the tricopter when it is flying. The movement of the rotors is in
such a way that the right rotor will be in the clockwise direction. The other two rotors will
move in the opposite direction. A servo method is used to negate the unbalanced clockwise
torque, which is done by tilting the rotor present in the tail. As a result, a productive pitch
has been developed using the three rotors in various directions to move forward. Thus,
differentiating the left and right rotor thrust, rolling can be achieved. Similarly, the vehicles
can be moved sideways also [13].
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3.4.2. Quad Copter

Quadcopter has a superior design of UAVs, and they have four rotors. These rotors
generate the lift of this model. As shown in Figure 7, Out of these four rotors, two oppositely
placed rotors rotate in a clockwise direction (CW), and the remaining two rotors rotate in a
counter-lockwise direction (CCW). The movement of this model around the axis includes
forward/backward movements called ‘pitch,’ moving laterally in left or right directions
called ‘roll’ and clockwise and counterclockwise movements called ‘yaw.’ The Plus and
cross configuration models (based on their shapes) of Quadcopter are. The cross model
is more popular than the conventional one because of its increased stability over the plus
model [14].

3.4.3. Hex Copter

The Greek word Hexa means six. Hexacopter is a drone that has six arms, and each
of them is attached to a single high-speed BLDC motor. As can be seen in Figure 8, The
airframe is made of glass fiber. Aluminum tubes (500 × 25 mm) are fixed to an arm mount
in the outer edge of the airframe. The six motors are mounted at the far end of these tubes
(see Plate 1). The airframe plate is the support structure over which the other parts of
the drone, such as batteries, motor, support a flight-controlled GPS antenna and tube of
high-speed capacity. It also hasFPV cameras, ESC, circuit boards, and sensors. This model is
used to spray pesticides for various agricultural purposes with a maximum of 5-L capacity
fluid tank attached to the bottom of the airframe, where the outlet of this tank is attached
to the inlet of the spray motor. The outlet of the spray motor is connected to spray nozzles.
A U-shaped bent aluminum pipe of 14 × 1.5 mm proportion is used to mount the parts like
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a fluid tank, spray motor, and spray lance. The spray lance has four nozzles spaced in a
gap of 45 cm, each spanning 1.3 m. The bottom area of the drone has landing gears below
the spray unit so that take-off and landing of the model would be safe during and after the
spray [15].

Energies 2022, 15, x FOR PEER REVIEW 7 of 19 
 

 

rotate in a counter-lockwise direction (CCW). The movement of this model around the 
axis includes forward/backward movements called ‘pitch,’ moving laterally in left or 
right directions called ‘roll’ and clockwise and counterclockwise movements called 
‘yaw.’ The Plus and cross configuration models (based on their shapes) of Quadcopter 
are. The cross model is more popular than the conventional one because of its increased 
stability over the plus model [14]. 

 
Figure 7. Quad copter. 

3.4.3. Hexacopter 
The Greek word Hexa means six. Hexacopter is a drone that has six arms, and each 

of them is attached to a single high-speed BLDC motor. As can be seen in Figure 8,  The 
airframe is made of glass fiber. Aluminum tubes (500 × 25 mm) are fixed to an arm mount 
in the outer edge of the airframe. The six motors are mounted at the far end of these tubes 
(see Plate 1). The airframe plate is the support structure over which the other parts of the 
drone, such as batteries, motor, support a flight-controlled GPS antenna and tube of 
high-speed capacity. It also hasFPV cameras, ESC, circuit boards, and sensors. This 
model is used to spray pesticides for various agricultural purposes with a maximum of 
5-liter capacity fluid tank attached to the bottom of the airframe, where the outlet of this 
tank is attached to the inlet of the spray motor. The outlet of the spray motor is connected 
to spray nozzles. A U-shaped bent aluminum pipe of 14 × 1.5 mm proportion is used to 
mount the parts like a fluid tank, spray motor, and spray lance. The spray lance has four 
nozzles spaced in a gap of 45 cm, each spanning 1.3 m. The bottom area of the drone has 
landing gears below the spray unit so that take-off and landing of the model would be 
safe during and after the spray [15]. 

Figure 7. Quad copter.

Energies 2022, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 8. Hexacopter. 

3.4.4. Octocopter 
Octocopter has eight rotors and is used as similar to Hexa UAV for agricultural 

spraying purposes. As can be seen in Figure 9, This has a diagonal wheelbase of 1630 mm 
diameter and can fly for 15 min with a 10 kg payload. It has six nozzles with 5–8 m spray 
width. This model was observed using the Time-resolved particle image velocimetry 
(TR-PIV) method to measure the movement of the sprayed droplets and their deposition. 
This observation method showed that two variables, such as rotor speed and position of 
the spray nozzle, influence the movement of deposition of the spray [16]. 

 
Figure 9. Octo copter. 

4. Role of UAV in Precision Pest Management 
Precision pest management can be used for monitoring the crops which identify the 

pest-affected places using remote sensing technologies, and control mechanisms such as 
pesticide spraying will be acted accordingly from prevention of diseases. For achieving 
this, both the technologies should be mounted on the UAV. 

The Unmanned aerial vehicle can also be used for spraying fertilizer and pesticides 
on agricultural fields [9]. The UAV has a significant feature with good speed and accu-
racy in spraying system of the fertilizer and pesticides. The main parts of UAV used for 
spraying are: 
• Pressure nozzle; 
• Spraying controller; 

Figure 8. Hexacopter.

3.4.4. Octocopter

Octocopter has eight rotors and is used as similar to Hexa UAV for agricultural
spraying purposes. As can be seen in Figure 9, This has a diagonal wheelbase of 1630 mm
diameter and can fly for 15 min with a 10 kg payload. It has six nozzles with 5–8 m
spray width. This model was observed using the Time-resolved particle image velocimetry
(TR-PIV) method to measure the movement of the sprayed droplets and their deposition.
This observation method showed that two variables, such as rotor speed and position of
the spray nozzle, influence the movement of deposition of the spray [16].
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4. Role of UAV in Precision Pest Management

Precision pest management can be used for monitoring the crops which identify the
pest-affected places using remote sensing technologies, and control mechanisms such as
pesticide spraying will be acted accordingly from prevention of diseases. For achieving
this, both the technologies should be mounted on the UAV.

The Unmanned aerial vehicle can also be used for spraying fertilizer and pesticides
on agricultural fields [9]. The UAV has a significant feature with good speed and accuracy
in spraying system of the fertilizer and pesticides. The main parts of UAV used for
spraying are:

• Pressure nozzle;
• Spraying controller;
• Pesticide box;
• Hall-flow sensor;
• Small diaphragm pump;
• Field-map interpretation system.

A sprayer is connected with UAV for spraying pesticides or fertilizers. It can be
sprayed through the nozzle into droplets under pressure. The suitable pressure is produced
to spray the fluid with the help of the spray motor. The spraying controller uses the
Hall-flow sensor for estimating the fluid flow inside the system and initiates the nozzle
of the sprayer. UAVs used for spraying purpose can be varied with their Speed, Payload,
and number of nozzles used for spraying. UAV-based fertilizer and pesticide spraying
methodology has more efficiency than the traditional systems. It reduces the human contact
with hazardous gases. A limited amount of human power is required. The UAV reduces
the time and expenses.

A detailed study is made on pest detection using Remote Sensing technology. Tables 3–6
show the pest detection in various types of crops, and the observations are analyzed
through the captured spectral images by the UAV, Manned Aircraft, Satellite, and ground-
based technology. Further in the Table 3, technical specification of the UAV is mentioned
while capturing the images of the crops in different agricultural fields and locations.



Energies 2022, 15, 217 9 of 19

Table 3. UAV based remote sensing.

References Crop Name
Parameters

Type of UAV Camera No. of
Rotors Pest Name Observations

Sourav Kumar
Bhoia et al., 2021

[17]
Rice Multi-Rotor RGB,

Multispectral 4 Leaf hopper Visual inspection of
images

Wu, Bizhi et al.,
2021 [18] Pine Multi-Rotor Multispectral 6 Bursaphelenchus

xylophilus Visual Images

Ishengoma, Farian
Severine et al., 2021

[19]
Maize Multi-Rotor Multispectral 6 Lepidoptera Visual Images

Érika Akemi Saito
Moriya et al., 2021

[20]
Lemon Multi-Rotor Hyperspectral 4 Phytophthora Gummosis Visual inspection of

images

An, G et al., 2021
[21] Rice Multi-Rotor Hyperspectral 4 Ustilaginoidea virens Damage assessments

Nguyen, C et al.,
2021 [22] Grapevine Multi-Rotor Hyperspectral 4 Grapevine vein-clearing

virus Visual Images

Ma, H et al., 2021
[23] Wheat Multi-Rotor Hyperspectral 4 Fusarium head blight Visual inspection of

images

Qin, J et al., 2021
[24] Pine Multi-Rotor Multispectral 6 Bursaphelenchusxylophilus Damage assessments

Xiao, Y et al., 2021
[25] Wheat Multi-Rotor Hyperspectral 4

Pathogen Fusarium
graminearum

(Gibberellazeae)
Visual Images

Guo, A et al., 2021
[26] Wheat Multi-Rotor Hyperspectral 4 Puccinia striiformis Disease Monitoring

Castrignanò, A
et al., 2020 [27] Olive Multi-Rotor Multispectral 6 Xylella fastidiosa Visual Images

Francesconi S et al.,
2021 [28] Wheat Multi-Rotor Hyperspectral 4

Pathogen Fusarium
graminearum

(Gibberellazeae)
Visual Images

SaumyaYadav et al.,
2021 [29] Peach Multi-Rotor RGB,

Multispectral 4 Xanthomonas campestris
pv.pruni Visual Images

Görlich, F et al.,
2021 [30] Sugar beet Multi-Rotor Hyperspectral 4 Cercosporabeticola Damage assessments

Yu, Run et al., 2021
[31] Pine Multi-Rotor Hyperspectral 4 Bursaphelenchusxylophilus Visual Images

Yue Shi et al., 2021
[32] Potato Multi-Rotor Hyperspectral 4 Phytophthora infestans Visual Images

Walter Chivasa,
et al., 2021 [33] Maize Multi-Rotor Multispectral 6 Gemini virus Visual Images

Anton Louise P. de
Ocampo and Elmer
P. Dadios 2021 [34]

Solanummelongena Multi-Rotor-
Quad copter RGB 4 Aphis gossypii Vision-based

Monitoring

Gao, Junfeng et al.,
2020 [35] Potato Multi-Rotor Multispectral 6 Phytophthora infestans Visual Images, Degree

of Severity

Deng, Xiaoling
et al., 2020 [36] Lemon Multi-Rotor Hyperspectral 4 CandidatusLiberibacter

asiaticus
Visual inspection of

images

Everton
Castel∼aoTetila
et al., 2020 [37]

Soya Multi-Rotor-
Quad copter RGB 4 Defoliant pests such as

insects and mollusks
Pest Segmentation
and Classification

Vinı’cius Bitencourt
Campos Calou
et al., 2020 [38]

Banana Multi-Rotor-
Quad copter RGB 4 Yellow sigatoka Visual Images, Degree

of Severity

Del Campo-Sanchez
et al., 2019. [39] Grape Multi-Rotor RGB 4 Cotton assid Visual inspection of

images

Abdulridha, Jaafar
et al., 2019. [40] Lemon Multi-Rotor Hyperspectral 4 Xanthomonas citri Visual inspection of

images

Vanegas et al., 2018
[41] Grape Multi-Rotor

RGB,
Multispectral,
Hyperspectral

4 Grapephylloxera
Ground trapsand root
digging, visual vigour

assessments
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Table 3. Cont.

References Crop Name
Parameters

Type of UAV Camera No. of
Rotors Pest Name Observations

Huang et al., 2018
[42] Cotton Multi-Rotor Multispectral 4 Two-spotted spidermite Damage assessments

Samuel Joalland
et al., 2018 [43] Sugar Beet Multi-Rotor Hyperspectral 4 Beet

Cyst Nematode Visual Images

Hunt et al., 2017.
[44] Potato Multi-Rotor Multispectral 6 Colorado potato beetle Damage assessments

Stanton et al., 2017
[45] Sorghum Fixed Wing Multispectral 1 Sugarcane aphid Arthropod counts

Severtson et al.,
2016a. [46] Canola Multi-Rotor Multispectral 8 Green peachaphid

Arthropod counts,
soil and plant tissue

nutrient analyses

Nebiker et al., 2016
[47] Onion Fixed Wing Multispectral 1 Thrips NA

Ishengoma et al.,
2021 [19] Wheat Multi-Rotor RGB,

Multispectral 4 Fall armyworm Outbreak reported by
grower

A large volume of spatial images with high resolution was acquired with the UAV,
which helps increase the accuracy level of the algorithm for classification and identification
of the leaf spot in the banana. Quantification, prediction, identification, and classification
are made to observe pests and insects in agricultural crops. The aerial images of the UAV
and digital image processing (DIP), it calculates the severity of the attack of yellow Sigatoka.
For estimating the damage in the field, it will act as an alternative method [38] Deep learning
architectures are evaluated for the pest images of soybean and its classification obtained
from the UAV. The performance of Inception-v3, Resnet50, VGG-16, VGG-19, and Xception
was evaluated for different learning strategies with a dataset of 5000 images captured in
actual field conditions [37].

UAVs mounted with traditional RGB cameras using remote sensing technologies
could be considered to detect and quantify pests through UAV aerial images. Focusing on
the 2D geomatic and 3D products, most of the users of UAV platforms need to improve
the application utility and accuracy [39]. Recent advancement in remote sensing technol-
ogy through unmanned aerial vehicles (UAVs) leads to rapid image processing tools for
crop management and surveillance of pests. This UAV remote sensing-based technology
increases the efficiency of existing practices of human surveillance for the detection of
pests like grape phylloxera in vineyards. It uses UAV integrated with advanced digital
hyper spectral, multispectral, and RGB sensors. The predictive model is developed for
phylloxera detection. Under different levels of phylloxera infestation, the combination of
RGB, multispectral, and hyper spectral images with ground-based data at two separate
periods was explored [41] Comparing remote sensing technologies presented in Table 4.

Table 4. Aerial (manned aircraft) based remote sensing.

References Crop Name
Parameters

Camera Pest Name Observations

Xuan Li et al., 2021 [48] alfalfa Multispectral Empoasca fabae Damage assessments

Bhattarai et al., 2019 [49] Wheat Multispectral Hessian fly Arthropod counts

Backoulou et al., 2018a,b [50,51] Sorghum Multispectral Sugarcane aphid Damage assessments

Backoulou et al., 2016 [52] Wheat Multispectral Greenbug Arthropod counts or visual
inspection

Elliott et al., 2015 [53] Sorghum Multispectral Sugarcane aphid Damage assessments
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Table 4. Cont.

References Crop Name
Parameters

Camera Pest Name Observations

Backoulou et al., 2011a,b, 2013,
2015 [54–56] Wheat Multispectral Russian wheat aphid Visual inspections

Mirik et al., 2014 [57] Wheat Hyper spectral Russian wheat aphid Visual inspection of images

Reisig and Godfrey 2010 [58] Cotton Multispectral,
Hyper spectral Cotton aphid Arthropod counts

Elliott et al., 2009 [59] Wheat Multispectral Greenbug Arthropod counts or visual
inspection

Carroll 2008 [60] Corn Hyper spectral European corn borer Damage assessments

Elliott et al., 2007 [61] Wheat Multispectral Russian wheat aphid Proportion of infested plants

Reisig and Godfrey, 2006 [62] Cotton Multispectral,
Hyper spectral Spider mite Arthropod counts

Willers et al., 2005 [63] Cotton Multispectral Tarnished plantbug Sweep net sampling

Fitzgerald et al., 2004 [34] Cotton Hyper spectral Strawberry spider Arthropod counts

Sudbrink et al., 2003 [64] Cotton Multispectral Beet armyworm Arthropod counts

F. W. Nutter Jr. et al., 2002 [65] Soya Bean Multispectral Soya Bean Cyst
Nematode Visual inspection of images

Willers et al., 1999 [66] Cotton Multispectral Tarnished plant bug Sweep net sampling, drop
cloth sampling

Lobits et al., 1997 [67] Grape Multispectral Grape phylloxera Root digging

Hart and Meyers, 1968 [68] Citrus Multispectral Brown soft scale Arthropod counts sooty
mold assessments

Everitt et al., 1994 [69] Citrus Multispectral Citrus blackfly Visual inspections sooty
mold assessments

Everitt et al., 1996 [70] Cotton Multispectral Silverleaf whitefly Visual inspections sooty
mold assessments

Hart et al., 1973 [71] Citrus Multispectral Citrus blackfly Arthropod counts sooty
mold assessments

Remote sensing data is used for studying the infestations of pests and insects in
agricultural fields efficiently. In winter wheat (Triticumaestivum) fields in Kansas, USA,
the association between Hessian fly (Mayetiola destructor) infestation and normalized
difference vegetation index (NDVI) is evaluated using aircraft data and multispectral
satellite. In each field, Hessian fly infestation was surveyed with multiple sampling points
in a uniform grid fashion. The results have proven an increase in pest infestation with
decreased NDVI in both aircraft and satellite data. NDVI satellite data performed better
than NDVI aircraft data in pest infestation fields. The results show that remote sensing
technology data can be used for monitoring the health of wheat plants and areas of poor
growth [50]. Infestations of pests and insects in the agriculture field are not uniform and
can proliferate in intensity and size. Remote sensing with multispectral data is used for
assessing the sorghum fields for the infestations by sugarcane aphids. The difference in the
normalized differenced vegetation index (NDVI) with bi-temporal images and analysis of
changes in the image captured is efficient for assessing the infestation of temporal changes
in the sorghum field by the sugarcane aphids. Experimentation on comparing changes in
the field and distribution categories concerning normalized differenced vegetation index
(NDVI) image classification from the sorghum field with infested sugarcane aphid, an
essential technique for assessing the infestations of temporal changes by sugarcane aphids
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in sorghum fields [72] Comparing orbital based remote sensing technologies presented
in Table 5.

Table 5. Orbital (Satellite) based remote sensing.

References Crop Name Parameters

Camera Pest Name Observations

MarianAdan et al., 2021 [73] avocado Multispectral Persea mite Visual Inspections

Michael Gomez Selvaraj et al.,
2020 [74] Banana RGB,

Multispectral Yellow sigatoka Visual Inspections

Bhattarai et al., 2019 [50] Wheat Multispectral Hessian fly Arthropod counts

Ma et al., 2019 [23] Wheat Multispectral Wheat aphid Arthropod counts

Abdel-Rahman et al., 2017 [75] Corn Multispectral Stem borer Arthropod counts

Zhang et al., 2016 [76] Corn Multispectral Oriental armyworm Damage assess-counts

Lestina et al., 2016 [77] Wheat Multispectral Wheat stem sawfly Arthropod counts

Luo et al., 2014 [78] Wheat Multispectral Wheat aphid Arthropod counts damage
assessments

Huang et al., 2011 [79] Wheat Multispectral Aphid Arthropod counts

Reisig and Godfrey, 2010 [59] Cotton Multispectral Cotton aphid Arthropod counts

Reisig and Godfrey, 2006 [63] Cotton Multispectral Spider mite Arthropod counts

Remote sensing tools coupled with Machine Learning have a lead role in monitoring
the crop and surveillance of pests. Early warning systems use remote sensing applications
to classify crops and pest-affected areas that provide accurate and cost-effective data
at different agricultural fields with proper spatial, temporal, and spectral resolutions.
However, monitoring more significant landscapes is challenging, therefore combining high-
resolution UAV satellite images of data through efficient machine learning (ML) models
and advanced mobile applications, which helps detect the disease-affected part.

The hybrid model system is developed by combining a custom classifier and object
detection model (RetinaNet) for disease classification and banana localization; we have
used RGB-UAV aerial images from the Republic of Benin and DR Congo fields. This
result proves better accuracy under different testing with performance metrics and reveals
that RGB-UAV mixed model successfully classifies the object classification and detection
among healthy and diseased crops with 99.4% accuracy. Thus, this approach provides high
potential support systems for making major banana diseases in Africa [76].

Monitoring the pests and diseases makes vital in providing treatment practically
in affected regions. The accuracy level of the crops affected by insects and pests gets
improved when the environmental parameters are coupled with the vegetation index.
Furthermore, similar symptoms can be identified for different pests and diseases in crop
growth. Therefore, the information of growth period helps obtain the changes incurred in
the crop concerning infection of insects and pests. An approach is developed by integrat-
ing environmental parameters and crop growth, experimenting with image performance
classification effects, and discriminating the crops affected by the pests and diseases with
Landsat-8 satellite images (Bi-Temporal).

The integrated model with environmental factors and temporal growth indices proved
with good results of 82.6% accuracy. In addition, it performed better in discriminating
damages using Landsat-8 satellite images in winter wheat crops. Further, to enhance the
accuracy level of the advancement models by integrating multi-temporal remotely sensed
data with multisource, which provides a detailed spatial crop pest and disease distribution
to meet the current requirements of precision agriculture [23] Comparing ground based
remote sensing technologies presented in Table 6.
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Table 6. Ground based Remote Sensing.

References Crop Name Parameters

Camera Pest Name Observations

MaríaGyomar Gonzalez-Gonzalez
et al., 2021 [80] Citrus Hyperspectral Tetranychus urticae visual inspection of the

leaves

Martin and Latheef 2019 [81] Corn Multispectral Banks grassmite
spotted spidermite Damage assessments

Alves et al., 2019, 2013 [82,83] Soyabean Hyperspectral Soybean aphid Arthropod counts

Samuel Joall and et al., 2018 [43] Sugar Beet Multispectral,
Hyperspectral

Beet
Cyst Nematode Visual Images

Martin and Latheef, 2018 [84] Pinto bean Multispectral Two-spotted spider Controlled
infestations

Fan et al., 2017 [85] Rice Hyperspectral Striped stem borer Damage assessments

Herrmann et al., 2017 [86] Bean Hyperspectral Two spotted spider
mite Damage assessments

Abdel-Rahman et al., 2013, 2010,
2009 [87–89] Sugarcane Hyperspectral Sugarcane thrips Arthropod counts, Damage

assessments

Mirik et al., 2012 [90] Wheat Multispectral Russian wheat aphid Visual inspections

Zhang et al., 2008 [91], Luedeling
et al., 2009 [92] Peach Hyperspectral Spider mite Arthropod counts, Damage

assessments

Fraulo et al., 2009 [93] Strawberry Hyperspectral Two spotted spider
mite Arthropod counts

Li et al., 2008 [94] Sorghum Hyperspectral Corn leaf aphid Arthropod counts,

Xu et al., 2007 [95] Tomato Hyperspectral Leaf miner Damage assessments

F. W. Nutter Jr. et al., 2002 [65] Soya Bean Multispectral Soya Bean Cyst
Nematode Visual inspection of images

Everitt et al., 1996 [70] Cotton Multispectral Silverleaf whitefly Visual inspections

Peñuelas et al., 1995 [96] Apple Hyperspectral European red mite Arthropod counts

Using spectral sensors with infrared range and 50 nm sensor bandwidth in soy-
bean fields, a cumulative abundance of A. glycines could be effectively quantified. A.
glycines on soybean are detected by simulating ground-based hyperspectral data with
multispectral sensors. This approach reduces the complexity and cost while compared with
counts of manual aphids with potential scouting of pests in soybean and crop production
systems [82].

For the last few decades, most agriculture fields are using RS technologies for precision
agriculture with different applications such as crop monitoring, Prediction of Yields, and
Pest Management. Further, these techniques are also used for plant stress and nutritional
deficiencies. RS technologies can detect pests and insects successfully in a wide variety of
crops and fields. The average usage of different types of RS Platforms is shown in Figure 10.
Precision Accuracy is more important in the economic development of the agriculture field,
and the accuracy yields to monitor the crop infected by the pest and quality of the crop
properly. Further, the precision accuracy rate in the agriculture field by RS technologies is
shown in Figure 11.
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5. Economic Benefits of UAV Technologies

The UAV based remote sensing technology helps the farmers in the agricultural
fields for gaining more productivity globally. There will be certain regions like South and
Southeast Asia, Western and Central Europe, Central America and the Caribbean, and
Southern Africa can be adapted with these kinds of new technologies without major human
adaptations to increase productivity for a sustainable growing population.

There are more economic benefits for the society that could be derived from the remote
sensing technology and unmanned aerial vehicle. Especially for developing countries like
India and African countries, the usage of UAV leads to reduction in damage of crops and
increase yields. If farmers can be encouraged to use this technology on the commercial
side, it will eventually help them to increase the production of crops. Once the farmers are
producing crops on a larger scale, it will help them to export the agricultural products to
other continents. This will balance the problems in the economy of developing countries
through an increase in export and reduction in import of agricultural produce to some
extent. Moreover, it will gradually help increase employment which will reduce poverty
and improve the standard of living for people.

6. Conclusions

Unmanned aerial vehicle in precision agriculture has critical challenges which are
described as payload, Sensors used in the UAV, cost of UAV, flight duration, data analytics,
environmental conditions, and requirements. Cost is the main challenge for UAV use, which
is added with various needed sensors, mounting parts, technology-based applications, and
the software needed for data analytics. Nowadays, commercial companies offer services
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for renting out the various UAVs with all needed remote sensing devices. Data analytics is
also a vital challenge to attain results at a periodic interval of time once the data have been
collected from the various sensors mounted on the UAVs. It creates numerous terabytes of
data stored, processed, and analyzed adequately with the appropriate software. Similarly, it
is hard to develop a UAV that can detect both hotspots of the pest and the solutions applied
for them since payload and flight duration are limited for UAV use in fields. Weather
conditions such as rain, snowfall, clouds, and fog are another factor that limits the UAV
activities and the sensing process. The farmers can easily adapt to this technology that is
compatible with their agriculture requirements and cost-effective solutions.
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