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Abstract: Currently, the available studies on the prediction of building energy performance and
real occupancy data are typically characterized by aggregated and averaged occupancy patterns
or large thermal zones of reference. Despite the increasing diffusion of smart energy management
systems and the growing availability of longitudinal data regarding occupancy, these two domains
rarely inform each other. This research aims at understanding the potential of employing real-time
occupancy data to identify better cooling strategies for activity-based-working (ABW)-supportive
offices and reduce the overall energy consumption. It presents a case study comparing the energy
performance of the office when different resolutions of occupancy and thermal zoning are applied,
ranging from the standard energy certification approach to real-time occupancy patterns. For the
first time, one year of real-time occupancy data at the desk resolution, captured through computer
logs and Bluetooth devices, is used to investigate this issue. Results show that the actual cooling
demand is 9% lower than predicted, unveiling the energy-saving potential to be achieved from
HVAC systems for non-assigned seating environments. This research demonstrates that harnessing
real-time occupancy data for demand-supply cooling management at a fine-grid resolution is an
efficient strategy to reduce cooling consumption and increase workers’ comfort. It also emphasizes
the need for more data and monitoring campaigns for the definition of more accurate and robust
energy management strategies.

Keywords: building energy simulations; occupancy pattern; energy efficiency; HVAC; activity-based
working place; demand-response HVAC

1. Introduction

The building sector accounts for 40% of the total energy consumption and, despite
significant efforts in increasing energy performance, this trend is rapidly and continu-
ously growing [1]. Nonetheless, this sector has a significant potential for energy-saving
improvements with large-scale implications: improving building performance is key to
tackling the challenges of climate change and curbing the depletion of resources [2]. Sus-
tainability labels and the Energy Performance Certificate (EPC) aim to address this issue
by providing ranking systems and benchmarks for design and construction. However,
EPCs usually certify the design and rely on simulations and assumptions regarding the
buildings’ construction and operation [3–7]. These previous studies highlighted the gap
between expectations set by energy labels and reality, reflected in higher energy bills and
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environmental impacts, driven particularly by modelling uncertainty in indoor temper-
ature and occupant behavior [8,9]. Indeed, energy simulations are usually performed
assuming that occupancy patterns follow a fixed and repetitive daily schedule, which is
a simplification of the real-time building occupancy [10]. The same assumption is then
traditionally employed to design the heating, ventilation and air conditioning (HVAC),
coupled with a simplified thermal zoning model, usually divided only between perimeter
and central zones by orientation. Ultimately, HVAC systems designed following these
assumptions are then operated accordingly, managing the indoor thermal environment
through the building automation system (BAS). Despite recent advancements in the field
that allow the use of occupancy sensors for BAS optimization, reliance on overly simplified
building thermal response models and the lack of dynamic analysis and prediction of the
occupancy hinders the possibility to exploit these systems to their full potential [11]. In fact,
occupancy-based energy management informed by observations of occupants’ behavior
and use of the space are recognized as key to optimizing both energy efficiency and thermal
comfort within commercial buildings [12,13], as the lack of reliable occupancy information
leads to improper conditioning strategies [13–15]. HVAC systems designed accordingly
to supply the needs of simplified models are incapable of offering the level of respon-
siveness necessary to adopt smarter management strategies based on a demand-supply
approach at a finer scale that catheterizes ABW-supportive workplaces. For this reason,
occupancy prediction in energy simulations is a fast-growing research field, supported
by the available building-related data due to the fast uptake of ICT and IoT (Internet of
Things) technologies within the built environment [10]. Data analytics may unlock the
full potential of the current technologies used to detect occupancy and lead to significant
energy management improvements [16], as accurate and realistic occupancy information is
recognized to be the foundation of proper occupancy-based HVAC management strategies
and energy consumption prediction [17]. However, all the monitored data and available
information are rarely implemented in the building management system BMS, making it
difficult to quantify and assess their possible effect on the building energy performance
over time [10].

In this regard, occupancy models, built upon information of occupants’ presence
and behavior in the building, are the missing link between real-time space use and en-
ergy modelling and management [18,19]. Nevertheless, most of the studies on predicted
occupancy-based energy performance present low resolution and spatial characterization
of these models [20]. Indeed, most of these studies analyzed single-occupied offices or
multi-occupied offices modelled as lumped thermal zones [20]. Furthermore, the anal-
ysis of occupancy patterns is used to define an optimized HVAC schedule obtained by
grouping occupants with similar patterns or preferences [10,21,22]. Few studies have fo-
cused on the development of an algorithm that could control HVAC based on real-time
occupancy [19,23,24]. The necessity to overcome the simplified approach based on re-
assignment of office space or desk position in open-plan offices becomes essential in the
perspective of activity-based workplace (ABW) models, which is gaining importance in
the commercial sector [25]. ABW relies on the concept that different work tasks need to
be supported by different typologies of the physical environment, thus offering a variety
of different locations for concentration, collaboration, and interactions. Workers are free
to choose their desk location based on their needs and preference and to change location
as they wish during the day [26–28]. ABW-supportive offices are characterized by high
levels of flexibility and fluidity in their occupancy patterns, and the live monitoring of
the occupants’ movements is essential for the HVAC optimization, as opposed to the
grouping of occupants with similar patterns, which is, by definition, in contrast with the
ABW fundamental assumption. Currently, none of the studies on occupancy-based HVAC
management have attempted to understand and quantify the potential savings concerning
ABW-supportive offices. One of the main reasons is the high level of resolution needed for
the analysis, which is rarely available.
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This paper explores the cooling energy performance of an ABW-supportive office based
on real occupancy data at the individual desk level, built upon a one-year data collection
campaign. The objective of this study is to analyze the cooling needs associated with
different occupancy scenarios applied to the specific case of an ABW office located in Sydney
(Australia). It investigates the existing energy gap between the predicted performance,
used for the energy certification and assessed through the simplified model, and the real
occupancy-based performance. The comparison is used as a proxy for the energy-saving
potential to assess and estimate the benefits, if any, that can be found by deploying a smart
HVAC management system to take full advantage of the sensor network and occupancy-
detection strategies typically implemented in most ABWs. The analysis emphasizes the
need for more data and monitoring campaigns for a more accurate and robust energy
management strategy, and it opens the discussion about the possible implementation of
occupancy-based energy management in flexible working environments, characterized by
high fluidity of space utilization, indoor heat gains and thermal comfort requirements.

The novelty of this work lies in the high-resolution of the analysis, which is performed
for the first time at the desk level. This fine grid assessment allows the potential impacts of
more responsive HVAC systems to be determined, opening the discussion about the use of
personal comfort systems as integrated comfort devices in ABW-supportive offices.

This study is an exploratory proof of concept, and it is performed in the framework
of an innovative multidisciplinary research project that investigates occupancy patterns,
motivation and implications within ABW-supportive offices. The overall objective of
the present study is to determine benefits, challenges, and barriers of the adoption of
ABW-supportive offices on a large scale, particularly looking at the three pillars: workers,
buildings and cities. The aim is to determine whether innovative working precincts can
support healthier and more sustainable built environments.

Structure of the Paper

This paper is organized into five main sections, besides the introduction.
Section 2, “Literature Review”, presents an overview of the current research progress

and trends in the field, specifically looking at those studies that focus on occupancy and
response-supply HVAC systems in offices. The scope of this section is to provide the
framework and explain the novelty of this research.

Section 3, “Materials and Methods”, describes the procedure followed in this analysis.
As this paper relies on building simulations, this section focuses on the assumptions used in
the simulation software. Particularly, the sub-sections report simulation inputs regarding:

• The geometrical and architectural features of the model (Section 3.1: “Building
and Envelope”);

• Indoor thermal environments, internal heat gain generation and occupancy pattern
scenarios (Section 3.2 “Occupancy Patterns and HVAC Settings”);

• Finally, it describes how the different inputs are combined in several simulation
scenarios, which are then employed in the simulation campaign.

Section 4, “Results and Discussion”, analyses the simulation results and relates the
findings with existing studies and knowledge.

Finally, Section 5, “Conclusions”, summarizes the analysis and the main findings while
discussing limitations and future studies.

2. Literature Review

The so-called energy performance gap identifies the discrepancy in energy consump-
tion between the prediction and the actual use. De Wilde [3] conducted a literature review
and discerned three major typologies of gaps between (1) consumption predicted through
building simulation models and actual metered energy used, (2) consumption predicted
through machine learning techniques and actual metered energy used, and (3) consumption
predicted at the design stage and consumption indicated in the energy certificate. Starting
from the third definition, Cozza et al. [8] conducted a thorough literature review on the
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energy performance certificates to reveal those parameters that contribute to generating
the gap. In their studies, they introduced the concept of ‘optimal consumption’ as that
value that sits between the theoretical consumption, predicted during the design stage,
and the actual consumption, metered during the operational phase. They also indicated
those parameters that can close the gap between these three values, identifying occupancy
modelling during the prediction phase as a major player. Similarly, Van Dronkelaar et al. [7]
investigated 62 buildings and quantified the energy gap to be approximately 34% of the
total energy used, with a standard deviation of 55%. A detailed analysis of the dominant
factors indicated that the uncertainties in modelling occupant behavior can impact the gap
in the range of 10% to 80%. The relevance of the internal heat gains due to occupancy as
a source of prediction error is reiterated by Molin et al. [29], who compared the annual
energy use obtained through building simulations and measured different Swedish low-
energy buildings. Their results indicated that the simulated energy was 7% lower than the
measured values, mainly due to the internal heat gains, which was identified as the most
important factor for the energy performance. Further, the difference between prediction
and actual performance can be found in indoor thermal quality as well. Gaceo et al. [30]
monitored 700 houses in Spain for 7 years and compared their performance with the pre-
dicted performance, revealing that the temperature difference varied up to 5 ◦C, which
can be translated into energy consumption, considering that 1 ◦C can lead to a 7% increase
in energy.

Despite all major building energy certificates and building standards still relying
on a fixed occupancy schedule, the benefits of using occupancy patterns derived from
observations and actual trends are significant. For example, Menezes et al. [5] suggested
using post-occupancy evaluation (POE) to gather the relevant knowledge to increase the
accuracy of the models usually employed for the energy prediction, further indicating that
POE-based assumptions in prediction modelling can lead to results within 3% of the actual
energy consumption.

Real occupancy patterns can not only increase the accuracy of energy prediction, hence
closing the performance gap, but can also be employed in the heating, ventilation and
air conditioning (HVAC) system management and operation. Earlier studies investigated
demand-driven control strategies clustering occupants with similar thermal requirements.
Yang et al. [22] demonstrated that HVAC operation schedules based on personalized demand
can save up to 9% of the total energy. Following this idea, Capezzoli et al. [10] grouped
occupants based on their occupancy patterns, finding that an occupancy-based HVAC
system reduces energy consumption by 14% compared to occupancy-independent systems.

However, with the advent of new sensing technologies and prediction algorithms,
these clustering strategies have been superseded in favor of real-time control strategies,
which appear to better suit open-plan offices without assigned workstations. Model
predictive control (MPC) uses real-time occupancy sensing coupled with energy prediction
to optimize both energy and comfort [31].

Dong and Lam [32] tested an MPC system on two bays of an open plan office, obtaining
an average energy saving of almost 19% for both bays when compared to a standard HVAC
schedule-based operation. Similarly, Corbin et al. [33] coupled real-time optimization and
MPC, connecting EnergyPlus to the building automation system, obtaining up to 54%
energy savings. This percentage has been exceeded by Zaho et al. [34], who found that the
same system was able to reduce energy consumption by almost 62%.

The majority of the studies were performed in open-plan offices; however, Aftab et al. [11]
demonstrated the feasibility of the system in public indoor spaces where people are free to
circulate. In their study, a highly accurate detecting system allowed 30% energy savings
to be achieved using low-cost software (Raspberry Pi), indicating that MPC can be highly
feasible in real settings.

MPC can be further refined by feeding the predicting algorithms with both occu-
pancy and weather forecast data [35]. Širokỳ et al. [36] investigated these systems for
heating, discovering a potential for energy reduction in the range of 15% to 28%, while
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Ascione et al. [37] aimed at optimizing set point temperatures with a day-ahead planning
horizon, demonstrating that this strategy can save operating costs up to 56%. However, all
these studies account for either a very simple geometry, with only a few thermal zones or
low-resolution occupancy detection. For example, Wang et al. [22] used a detailed spatial
occupancy detection, but a two-zone architectural model; Zhou et al. [38] divided the space
into four thermal zones; Dong and Lam [32] studies was proved for a maximum of four
occupants; and Goyal et al. [39] undertook a theoretical study on a single thermal zone.

This study responds to the need for accurate occupancy detection coupled with a
fine-grained architectural geometry while, for the first time, assessing the energy-saving
potential associated with an ABW-supportive office.

3. Materials and Methods

The whole-building simulation uses a real case study to integrate a real-time occupancy
scenario. The analysis is performed following a standard simulation approach using
DesignBuilder, one of the most diffused whole building thermal simulation software. The
model was built starting from the architectural drawings and, when no information was
available, the assumptions have been based on the Australian National Construction Code
(NCC) [40]. The climate data has been retrieved from the 2021 TMY (typical meteorological
year) database [41], published by the Scientific and Industrial Research Organisation
(CSIRO), an Australian Government agency responsible for scientific research.

The following sections describe the simulation inputs used in this analysis.

3.1. Building and Envelope

The case study used for this analysis is a commercial building located in Sydney Centre,
Australia, which accommodates one large financial organization as sole tenancy. The whole
building is approximately 26,000 m2, and it is distributed over 12 floors, all connected
through a central atrium. This building was designed as a 6-star Green Star Office and a
5-star NABERS energy rating, which is the National Australian Built Environment Rating
System [42], which certifies the energy efficiency of a commercial building based on the
actual energy bills.

The exploratory nature of the study limits the analysis to one floor, floor eight. This
floor is considered to be a good proxy for the whole building concerning layout and fit outs.
The office is designed to offer the maximum flexibility of spaces, with several different
typologies of furniture used to encourage different working environments. Individual
cockpits and small meeting rooms are also provided to offer spaces for concentrated
working and small team-based collaborative working. These features are essential to
support the fluidity of spatial use typical of ABWs, which, ultimately, results in varying
occupancy patterns. To account for the atrium, the thermal model includes the entire
building, whereas all floors are modelled with standard internal gains. The eighth floor is
modelled in detail to accommodate the desk-level occupancy scenario.

Simplified geometry: The simplified geometry model is designed according to the
standard practice usually employed for energy certification and HVAC design. The floor-
plate is divided into zones according to orientation and proximity to the façade, resulting
in four perimeter zones and four internal zones. In this case study, the internal areas
are mainly dedicated to meeting rooms or services; hence, the floorplan is divided into
12 zones, as represented in Figure 1. Of these zones, five are open-plan offices, six are
meeting rooms and one is the corridor and atrium. The actual HVAC control strategy is
highly similar to the proposed division, with four perimeters and two central zones, and
meeting rooms equipped with occupancy sensors for temperature setback control during
unoccupied hours.

Fine-grained geometry: The second geometrical model accounts for a finer resolution
of the control strategy. In total, 95 different thermal zones are modelled, as represented in
Figure 1. Although the current HVAC system is not able to provide a conditioning strategy
at this level of resolution, such fine granularity allows understanding of the potential
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benefits of a tailored HVAC management strategy based on customized conditioning load
and a flexible design approach.
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Figure 1. Floorplan of floor 8 for the thermal simulation. The fine-grained model (below) reports
existing wall partitions in grey and fictitious partitions used only to divide the space into different
thermal zones in yellow. In the simplified model (above) the grey areas are delimitated by real
partitions, while the red zones are thermal zones only.

Facades: The façades are standard curtain walls which are completely glazed with
spandrel panels to hide the slab edges, horizontal shading fins toward the east and vertical
and horizontal fins toward the north. The thermal resistance of all the components is
modelled based on the NCC assumptions [40] and is reported in Tables 1 and 2. According
to the NCC, the thermal performance of opaque elements is expressed as an R-value, while
for windows and opaque elements the U-value is used. It must be noted that the results are
analyzed not as absolute values but as differences between the scenarios, minimizing the
possible errors introduced by the modelling phase and the assumptions made.

Table 1. Thermal performance of the opaque elements of the envelope. Modelled based on standard
values reported by the NCC [40].

Component R-Value (m2K/W)

Horizontal spandrel panel 1.0
Concrete slab 3.7
Slab on grade 2.0

Internal partitions 1.4
Concrete floor 2.0

Table 2. Thermal and visual performance of the transparent elements of the envelope. Modelled
based on standard values reported by the NCC [40].

Component U-Value (W/m2K)
Solar Heat Gain

Transmittance (−)
Light

Transmittance (%)

High-performance DGU
(total system, including

glazing and frame)
2.8 0.4 65
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3.2. Occupancy Patterns and HVAC Settings

Two different occupancy patterns have been tested to assess and quantify the impacts
of the occupants’ movements and desk preferences. The first scenario is modelled based
on the NABERS Handbook requirements [43]. NABERS certifies the energy efficiency of
a commercial building based on the actual energy bills. However, the Handbook is used
during the design stage as a decision-making tool to guide the design toward the best
outcome possible; hence, the impact on the final energy efficiency is undeniable. NABERS
gives the assumptions that must be used to define the occupancy patterns and the indoor
heat gains. Occupancy is expressed as a fixed daily schedule repeated weekly over a year,
as shown in Figure 2. The occupancy is expressed as a rate of the maximum capacity of each
zone, with a maximum value of 0.7 from 09:00 to 17:00 on weekdays. Hence, this scenario
presents not only a repetitive schedule but also stable occupancy conditions homogenous
across all thermal zones.
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Figure 2. Occupancy schedule as defined by NABERS Handbook.

The second scenario is built upon real-time occupancy data at the desk level for
12 continuous months. Occupants’ presence has been registered through computer logs,
providing information about location and duration of time spent on each machine. A
thorough analysis of the occupancy patterns and trends were focused on other separate
publications by the same team. Occupancy data collection and analysis revealed that this
floor was underutilized during the whole year of monitoring, due to organizational reasons
and allocation of spaces. The underutilization is seen, in this study, as an unpredicted event
that reinforces the discussion about the need for a more resilient HVAC design.

The data at the desk level is averaged per hour and grouped by thermal zone so
that each thermal zone is characterized by a different occupancy pattern generated by the
monitored data. The first iteration of simulations assumes that the HVAC system is active
from 07:00 to 19:00 on weekdays, from 9:00 to 12:00 and 17:00 to 18:00 on Saturdays, and
from 17:00 to 18:00 during Sunday and public holidays. The temperature is set at 24 ◦C
during winter and 21 ◦C during summer. These temperatures follow the recommendation
of the AS 1837-1976 [44] to keep setpoint temperature for offices in the range of 21 ◦C to
24 ◦C. It must be noted that the common practice currently adopted in Australia often
differs from this standard, and tenancy agreements often prescribe a stable 22 ◦C indoor
temperature all year round [45]. Although the exact reasons for this are unclear, a probable
reason is the tendency to design, build and manage commercial buildings at their peaks,
significantly boosting the capacity to handle possible tenant loads [45]. In this paper, the
HVAC control algorithm has not been modelled as dependent on the occupancy patterns,
but it rather represents the standard case where the cooling system reacts to the internal
gains deriving from occupants. This analysis allows the actual cooling loads of a commercial
building characterized by fluid internal gains to be benchmarked and compared to the
homogenous scenario adopted for energy certification and HVAC design.
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3.3. Scenarios

Finally, Table 3 provides a comparison of the assumptions used in the three scenarios.
The only parameters that are varied are the geometrical model, the occupancy schedule
and the HVAC operation settings. Although some of the parameters, such as equipment
and lighting loads, are influenced by the occupancy patterns, in this study they are kept
constant to isolate the effects of the HVAC design and management strategies on the cooling
energy savings. Cleary, if accounted for, the final difference between the two scenarios
would be even more pronounced.

Table 3. Summary of the assumptions used in the scenarios.

Parameters Simplified Scenario Reference Scenario
NABERS

Real-Time Occupancy-Based
Scenario

Construction As per Tables 1 and 2 As per Tables 1 and 2 As per Tables 1 and 2
Office layout and

thermal zones Simplified Fine-grained Fine-grained

External climate Typical meteorological year Typical meteorological year Typical meteorological year

HVAC system types VAV internal zone, chilled
beams on perimeter

VAV internal zone, chilled
beams on perimeter

VAV internal zone, chilled
beams on perimeter 1

HVAC set point temperatures 21 ◦C heating, 24 ◦C cooling 21 ◦C heating, 24 ◦C cooling 21 ◦C heating, 24 ◦C cooling

HVAC hours of operation

07:00–19:00 weekdays
9:00 to 12:00 and 17:00 to

18:00 weekends and
public holidays

07:00–19:00 weekdays
9:00 to 12:00 and 17:00 to

18:00 weekends and
public holidays

On-demand

Lighting and equipment load As per NABERS As per NABERS As per NABERS
Occupancy schedule NABERS as per Figure 2 NABERS as per Figure 2 Real-time monitored data

1 It must be noted that the real building where data collection took place is also equipped with chilled beams in
the internal zone. As results are expressed in energy loads rather than consumption and as the difference between
scenarios, findings and conclusions are not affected.

4. Results and Discussion

The analysis revealed that the fine-grained real occupancy scenario allows the energy
consumed by the building for cooling purposes to be reduced by up to 9.5% when compared
to the fine-grained NABERS occupancy scenario and when 5% of the simplified scenario is
considered, as shown in Figure 3. Although this saving can be considered small, it is worth
noting that this analysis was performed on only one floor of a 12-storey height building;
hence, the total reduction may be even more significant. This result indicates that the
fine-grained geometry is, alone, able to generate savings, which are further increased by a
flexible demand-supply HVAC management. In ABW-supportive offices, ideally, workers
can use the space freely, thus making the possible trends of occupation difficult to predict.
Hence, space use, cooling loads, and energy consumption are overestimated at peaks.
However, when the real occupancy is considered, it becomes clear that the responsiveness
of the system is the key to reducing the overall energy consumption.

This suggests that current modelling approaches are unable to correctly estimate the
cooling needs of large spaces, while the HVAC design does not provide the flexibility
required by supply-demand control.

Figure 4 reports the cooling reduction percentage by thermal zone; only open-plan
offices are analyzed. The bottom layer represents the thermal zoning of the fine-grained
geometry, while the middle layer reports the savings introduced by the real-time occupancy
scenario (fine-grained geometry and real occupancy). Finally, the top layer represents
the savings introduced by the simplified scenario (simplified geometry and NABERS
occupancy). All savings are calculated regarding the NABERS reference scenario, meant
as the combination of fine-grained geometry and NABERS occupancy (description of the
scenarios in Table 3).
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When the fine-grained scenario is considered, interestingly, the top-left corner is the
only part where the real-time occupancy pattern brings higher cooling loads and, thus,
may result in increased energy consumption in this specific thermal zone. This anomaly is
due to the high occupancy rate of this zone, which is generally always occupied by non-
nomad workers who consistently sit every day at the same location and desk throughout
the year. This behavior persists despite it being against the assumed way of working the
organization has adopted. Hence, the general occupancy rate results are higher than 0.7,
generating higher cooling loads than expected, which is coupled with the low ability of
this small thermal zone to deal with overheating. Although the overall impact of this zone
does not change the general trend of cooling load reduction, this zone also highlights the
unpredictability of the occupancy patterns, as well as the high fluidity in space utilization
found in ABW-supportive offices from one zone to the other. The same trend is observed in
the simplified geometry, where the whole thermal zone is negatively impacted, showing
higher cooling loads. Considered from the HVAC management viewpoint, this finding
calls for an update of the way the systems are designed and operated, to increase their
adaptability to spatially and temporally variable cooling needs. Additionally, it also
underlines the compelling need to expand the current knowledge about occupancy patterns
and trends in ABW-supportive offices to better define HVAC management strategies that
must be considered at the design stage to account for such variability.

Figure 5 shows the total cooling needs per month in all scenarios. It is evident that the
real-time occupancy leads to a slight but consistent reduction of the total cooling loads. It is
worth noticing that May to September corresponds to the winter period in the Southern
hemisphere; hence, the cooling loads are naturally lower.

The mid-seasons register a higher potential for energy reduction, ranging from 9%
to 12%. This value is the result of the mix of lower occupancy rates and variable climatic
stimuli, which reduce the internal heat load. This may result in exceeding the setpoint
temperature and lower temperature that minimizes the pressure on the HVAC systems.
Figure 5 suggests that the standard approach usually overestimates the cooling needs
during the winter and mid-seasons, which ultimately may lead to an incorrect HVAC
and definition of inappropriate maintenance strategies. It must be noted that different
occupancy patterns may also result in lower energy consumption for both lighting and
appliances. In this case, the total energy saving that can be expected is even higher, as is
also demonstrated in precedent studies [46,47].
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Practically, these results indicate that the adoption of PMC in the whole building
may optimize the overall indoor thermal quality while reducing the energy needed to
maintain comfort.

Figure 6 shows the monthly cooling load reduction achieved in the real-time occu-
pancy scenario compared to standard occupancy per thermal zone of the open plan area.
The darker color represents the savings range where most of the thermal zones of the
analyzed category sit, while lighter shades represent that fewer thermal zone fit into these
percentage ranges.
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The thermal zones belonging to the open-plan office show a higher seasonality of
the savings potential, with the peak reached during winter when the cooling loads are
naturally lower. The summer savings vary between 1% and 17%, toward the lower band of
the range, while in winter they vary between 7% and 66%, with the majority between 10%
and 20%.

Figure 6 also shows the lowest average percentage of savings for the open-plan zones,
which is achieved during early autumn, from March to May (Southern Hemisphere).
However, Table 4 indicates that the temperature may not be the driver for this tendency.
Especially in the first two months, the mean minimum temperatures are still lenient and not
critical enough to determine this behavior. Accordingly, the main reason can be attributed
to the occupancy patterns, which determine higher indoor heating loads, and, thus, cooling
needs are closer to the ones calculated with the standard-based approach. Therefore, this
can indicate the presence of a seasonal variation of the benefits that can be generated with
a real-time occupancy management system.

Figure 7 reports the same information related to the cockpits: the monthly cooling load
reduction achieved in the real-time occupancy scenario compared to standard occupancy,
per thermal zone of the open plan area. The darker color represents the savings range
where most of the thermal zones of the analyzed category sit, while lighter shades represent
that fewer thermal zone fit into these percentage ranges.

The trend that can be observed in this typology of space is completely different from
the one observed for open-plan spaces: cockpits don’t have a seasonal prevalence, nor
a major saving band. Cockpits are generally used more often than meeting rooms, as
they offer an individual working environment, suitable for focused work. As such, the
occupancy pattern is highly variable with a relatively quick turn-over of workers; hence,
the provision of a stable comfortable thermal environment throughout the day is opted for.
For this reason, strategies to optimize the temperature setpoint and the HVAC schedule
are difficult to predict, and the potential energy savings are difficult to exploit. These
spaces have quite stable savings throughout the year, with completely different values.
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The space associated with the lowest savings sits between 0.5% and 4.5%, while the one
associated with the highest allows for savings between 21% and 35%. One cockpit presents
a completely inverse tendency compared to the one usually found in this analysis, with the
lowest savings during winter, due to its less intense use during these months. Cockpits are
informal spaces designed to accommodate the frequent change of occupants during the
day, and different trends highlight a strong preference for few cockpits compared to others.
Despite the high energy savings achievable, it must be noted that such flexible spaces with
unpredictable use call for more flexible HVAC management strategies which can adapt to
the fluid occupancy patterns and assure comfortable environments.

Table 4. Monthly mean maximum and mean temperature in Sydney [48].

Month Mean Maximum
Temperature (◦C)

Mean Minimum
Temperature (◦C)

January 26.0 18.8
February 25.8 18.9

March 24.8 17.6
April 22.5 14.8
May 19.5 11.6
June 17.0 9.3
July 16.4 8.1

August 17.9 9.0
September 20.1 11.1

October 22.2 13.6
November 23.7 15.7
December 25.2 17.6
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Table 5 shows a simple calculation of the total number of hours within different
temperature thresholds.

The real-time occupancy scenario presents 14% more hours within the range 21 ◦C
to 25 ◦C, indicating that it is more comfortable throughout the year when compared to
the scenario with a standard occupancy schedule. On the other hand, the latter scenario
seems to present 20% fewer hours with the temperature above 28 ◦C, suggesting a possible
overheating issue for the real-time occupancy scenario. However, higher temperatures
are mainly registered when space is not occupied. This analysis highlights that a real-
time occupancy-based HVAC management strategy may not only reduce the total energy
consumption, but also lead to an improved thermal environment while offering to cool
only when, and where, it is needed.
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Table 5. Number of hours on a year at different operative temperatures.

Temperatures
(◦C)

Standard NABERS
(Number of Hours)

Real Occupancy
(Number of Hours)

21 5.7 15.2
22 264.2 356.8
23 191.5 323.2
24 524 657.3
25 2238.2 1937.7
26 1280.2 1180
27 1507 1448.3
28 1485.7 1386.8
29 803.2 790.5
30 250 445.8
31 59.5 133
32 51 85.3

5. Conclusions

This paper investigated the energy savings derived from an occupancy-based cooling
system when compared to standard occupancy schedules, which are currently applied for
the energy certification system and HVAC design in Australia. It presents the case study
of a large activity-based-working-supportive office, designed to offer different working
environments and encourage the high fluidity of spatial use. Transient building thermal
simulations have been used to quantify these savings and to analyze the different energy
patterns associated with the different working environments. Results show that it is
possible to identify a 9% yearly reduction of the general cooling loads for floor 8. This is
suggestive of the potential for even higher benefits when the same analysis is performed at
the entire building scale.

This investigation suggests that the use of over-conservative schedules and assump-
tions of uniform variation in loads across zones when designing HVAC systems are not
capturing the opportunities for savings within activity-based workplaces, and could lead
to overdesign of the systems, as well as overestimation of the energy consumption. The
application of standardized occupancy schedules applied homogenously across floor plates
during the energy prediction and simulation phase, as recommended in codes, does not
reveal opportunities and challenges for appropriate HVAC systems, and it leads to the
risk that systems could be under- or oversized without the flexibility to respond quickly to
changing needs, hindering the possibility to apply a fine-grained demand-response HVAC
strategy based on real occupancy profiles. Indeed, the current system is unable to provide
the agility and responsiveness to scale down when necessary.

This paper highlights the opportunities for energy savings arising from variable loads
coupled with the need to respond effectively when these loads are ramped up in key areas
or zones. For the savings to be realized, designed HVAC systems need to be dynamically
responsive (the results show high variability in occupancy at zone and desk level) to the
changing heat loads. It emphasizes the need for a heightened level of collaboration between
HVAC systems’ design and control strategies, including feedback loops for intelligent
environmental control, to take the clear opportunity for reductions in operational cooling
energy offered.

This study has potential practical implications for HVAC management and design. In
particular, it indicates that employing a model predicting control strategy can reduce the
energy consumption of the building, suggesting that organizations may profit from both
economic and social benefits based on the energy savings and increased comfort conditions.

This study is based on a case study, and it uses a one-year occupancy dataset. Hence,
the results depend on the occupancy management approach that the organization under-
took during the observation period. Clearly, different approaches may lead to different
quantitative results. The floor analyzed in this paper was under-occupied during the
year of data collection, due to organizational management strategies that occurred in that
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period. Therefore, the final results may differ if a year with the standard occupation would
be considered. However, during the lifetime of a building, the management approach
will undoubtedly vary over time; this may also be due to unpredictable events such as
lockdowns and increased work-from-home practices. This study calls for more resilient and
flexible HVAC systems, able to react to different situations and provide high comfort levels,
as well as energy-efficient solutions. This paper opens a discussion about activity-based
workplace design, energy efficiency and indoor environments.

The limitations of this study include the use of one floor only, which prevents quan-
tifying the overall energy savings that can be generated when a flexible demand-supply
HVAC control is employed. Further, this analysis relies on energy simulation only, without
validation on a real building. However, on the other hand, it employs, for the first time,
one-year of real occupancy patterns monitored at a fine-grid resolution. The novelty of
this work lies in the application of the principles of occupancy-based HVAC management
to activity-based workplaces at the single desk resolution. This allows us to look at the
savings in a very high resolution, identifying the areas and the working environments with
the highest potential of reduction. Additionally, the research questions the suitability of
current HVAC design strategies to fully capture the high variability of occupancy patterns
in such office buildings, while paving the way for future studies on HVAC control strategies
based on occupancy detection and prediction.

Future research will build upon these results to investigate and identify the cost-
optimum solution that will enable the potential savings highlighted in this study to be
achieved. Further, this analysis will be expanded to the whole building to understand the
feasibility of demand-supply HVAC on a large scale. The economic feasibility of highly
flexible HVAC systems is still an open discussion in the field, and more research may lead
towards the identification of market needs and requirements to enable more sustainable,
cost-beneficial and efficient solutions.
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