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Abstract: This paper focuses on validating a model-free Value Iteration Reinforcement Learning
(MFVI-RL) control solution on a visual servo tracking system in a comprehensive manner starting
from theoretical convergence analysis to detailed hardware and software implementation. Learning
is based on a virtual state representation reconstructed from input-output (I/O) system samples
under nonlinear observability and unknown dynamics assumptions, while the goal is to ensure
linear output reference model (ORM) tracking. Secondary, a competitive model-free Virtual State-
Feedback Reference Tuning (VSFRT) is learned from the same I/O data using the same virtual state
representation, demonstrating the framework’s learning capability. A model-based two degrees-
of-freedom (2DOF) output feedback controller serving as a comparisons baseline is designed and
tuned using an identified system model. With similar complexity and linear controller structure,
MFVI-RL is shown to be superior, confirming that the model-based design issue of poor identified
system model and control performance degradation can be solved in a direct data-driven style. Apart
from establishing a formal connection between output feedback control, state feedback control and
also between classical control and artificial intelligence methods, the results also point out several
practical trade-offs, such as I/O data exploration quality and control performance leverage with data
volume, control goal and controller complexity.

Keywords: reinforcement learning and approximate dynamic programming; virtual state feedback
reference tuning; model reference control; unknown dynamics; input-output observable system;
visual servo; image processing

1. Introduction

The reinforcement learning (RL) paradigm has seen significant recent development
in terms of both artificial intelligence (AI) and in control systems as the two main paths
leading the research, with some of the most popularized achievements belonging to the
former area. However, recent progress has seen hybridization of ideas from the two fields.
The promise of data-driven RL is its ability to learn complex decision policies (controllers)
under uncertain, unknown (model-free), high-dimensional environments. While the AI
approach largely deals with scalability issues, learning efficiency in terms of data volume
and speed, and complex environments, some other features are also well-established, such
as, e.g., using neural networks (NNs) (plain feedforward, convolutional or LSTM-like
recurrent ones) as function approximators, both for the value function and for the policy
function, which is the golden standard. The AI approach presents many contributions,
such as parallel exploration using multiple environments to enrich exploration diversity,
or sparse or dense reward-shaping in various environments under hierarchical learning
problem formulation [1,2], and value function overestimation biasing the learning in
random environments, which is dealt with by multiple value function approximators,
different update frequencies of the critic and policy networks, target policy smoothing, etc.,
in DDPG, TD3 and SAC versions [3–5], to name a few.

Energies 2022, 15, 267. https://doi.org/10.3390/en15010267 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15010267
https://doi.org/10.3390/en15010267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8410-6547
https://doi.org/10.3390/en15010267
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15010267?type=check_update&version=1


Energies 2022, 15, 267 2 of 25

But it should be of no surprise that most of these RL achievements in AI have been
tested under simulation environments, like video games (DQN Atari for example) and
other simulated mechatronics, and not in real world test rigs. In the context of real-world
control problems other issues prevail, such as: stability and learning convergence meet
the learning efficiency in terms of data volume, and mechanical constraints and real-time
implementation requirements being leveraged by efficient function approximators. This is
the reason why classical control theory has addressed RL control from somewhat different
perspectives than AI. In addition, real-world control problems have often and traditionally
been considered as low-dimensional compared to AI problems.

Some of the earliest works in RL, also known as approximate (adaptive) dynamic pro-
gramming, have been established by seminal works of [6–8]. RL for control uses two main
algorithms, namely Policy Iteration (PoIt) and Value Iteration (VI), and their in-between,
Generalized PoIt [7]. In the context of these two popular RL algorithms, the implementation
flavors have witnessed offline and online variants, batch- and sample-by-sample adaptive-
wise, model-based and model-free, and their combinations. Out of the two algorithms,
VI-RL has been arguably considered as the most attractive, since it spans the “unknown
dynamics” control case, and its initial controller and value function approximators bear
random initialization, which is natural when unknown system dynamics are assumed from
start. A significant effort was dedicated to ensuring learning convergence and stability,
more generally under generic function approximators, such as NNs.

Much of the learnability in RL relies on the Markovian assumption about the controlled
system, together with its full state availability. Although different state representations have
been proposed in AI, involving virtual states (called state aliases) built from present and
past system’s input-output (I/O) data samples, it has not benefited from a well-established
theoretical foundation [9]. However, for RL in control systems, the system observability
and controllability are well-founded concepts from a historical perspective [10,11].

Among the vast practical control problems approached by RL under classical control
analysis approach [12–17] and under AI-based analysis approach [18–21], the output
reference model (ORM) tracking has attracted a lot of research attention [12,22–24]. This
control problem tries learning a state-feedback controller to make the controlled system
output behave similarly to the ORM’s output, under the same reference input excitation
signal. The practical implications of ORM tracking are even more appealing when linear
ORMs are used, as indirect feedback linearization is ensured, i.e., a nonlinear system
coupled with a nonlinear controller to make the closed-loop control system (CLS) match a
linear ORM. Such control problem can be posed as an optimal control problem and has
been solved, e.g., by VI-RL and Virtual State-Feedback Reference Tuning (VSFRT) control
learning approaches [24]. This linear ORM tracking has proven itself as the building block
for more advanced hierarchical control architectures [25,26] aimed at generalizing learned
optimal tracking behavior to new unseen trajectories, therefore endowing control systems
with extrapolation reasoning similar to intelligent beings. Such goals have been tackled by
primitive-based learning frameworks [25–30].

Learning LORM tracking control from system I/O data samples with unknown dy-
namics based on a virtual state representation is a data-driven research approach motivated
by the need to solve the control performance degradation occurring due to the mismatch
between the true, complex system and its identified, simplified and uncertain model. This
is considered a nuisance with the model-based control paradigm. In this context, this
work’s contribution is threefold:

(a) a novel convergence analysis of the model-free VI-RL (MFVI-RL) algorithm is pro-
posed. The iterative convergence of the cost function towards the optimal cost and
the convergence of the iterative controller towards the optimal controller are proven,
as updated by VI steps;

(b) an original validation on a visual servo tracking system comprising of an inexpensive
and modern hardware processing platform (Arduino) combined with the software
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platform MATLAB. The visual tracking control validation uses the new state repre-
sentation comprising of present and past I/O data samples;

(c) the proposed MFVI-RL (implemented with NN approximator for the Q-value function
and with linear controller parameterization) is compared with:

(1) a model-based control strategy aiming at the same objective, namely a two-
degree-of-freedom (2DOF) controller for ORM tracking; and

(2) with a competitive VSFRT linearly parameterized controller also sharing the
same learning control objective and the same underlying virtual state repre-
sentation.

The learning process for MFVI-RL and VSFRT utilizes a form of pseudo-state-feedback
control where, in fact, I/O data is used only for reconstructing the virtual state.

The paper is organized as next presented. Section 2 deals with VI-RL convergence
under general assumptions. Section 3 integrates several subsections, such as: the visual
servo system hardware and software description, followed by the LORM tracking problem
formulation, subsequently solved by 2DOF control, by VI-RL algorithm and by VSFRT
algorithm. All three are presented in detail. Performance comparisons reveal the learned
control performance and offer the achieved results’ interpretation.

2. The VI-RL Convergence Analysis for ORM Tracking Systems

The VI-RL convergence analysis is first performed in terms of the original “V” cost
function, for ORM tracking systems for which particular penalty functions are sought.
The result is then straightforwardly extended to the case of extended “Q” cost function,
which characterizes the subsequent MFVI-RL implementation where the controlled system
is assumed with unknown dynamics. Furthermore, the derivations are based on a state-
space model, however this will be relaxed later on since a new state-space representation is
reconstructed from I/O system data samples, using the virtual state transformation concept.
Which implies that from any I/O nonlinear unknown dynamics system model which is
assumed to be observable, we could arrive at a state-space model, with unknown dynamics
a but measurable state. This will be clearly illustrated in the validation case study. For now,
let the nonlinear unknown state-space system be{

sk+1 = f(sk, uk),
yk = h(sk),

(1)

defined in discrete-time, comprising of a transition function equation and an output equa-
tion, respectively. The system state is sk = [sk,1 . . . sk,n]

T ∈ ΩS ⊂ <n, the system’s input is
uk = [uk,1, . . . , uk,mu ]

T ∈ ΩU ⊂ <mu , and the measured (and controlled) output is denoted
as yk = [yk,1, . . . , yk,p]

T ∈ ΩY ⊂ <p. The functions f, h are assumed as unknown on their
definition domains and also continuously differentiable.

The cost function to be minimized is the summed penalties over an infinite horizon,
which reduces to the control problem

C∗ = argmin
C

V(sk) =
∞
∑

i=k
0(si, ui),

s.t. ui = C(si),
(2)

where 0(si, ui) : ΩS → <n is the penalty function which is dependent only on si, and has
the property that 0(si, ui) ≥ 0, ∀si ∈ ΩS, ∀ui ∈ ΩU . The penalty function has the value
0(si, ui) = 0 only when sk = sG, with sG some goal (or target) state.

Observation 1. In the case of linear quadratic control, the penalty function is commonly
0(si, ui) = sT

i Qsi + uT
i Rui with respect to regulation of the system state towards zero. Here,

Q ≥ 0 and R > 0 are positive definite penalty matrices on the state energy and on the
control input energy, respectively. It is known that the missing input energy penalization
(for R = 0) renders the linear optimal control unfeasible. In the case of ORM tracking
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systems where the time-varying goal state is the result of a reference model dynamic system,
it is possible to define a penalty function independent on the control input energy, e.g.,
as in 0(si, ui) = (si − sG)

TQ(si − sG). This would eventually lead to a feasible optimal
control solution. We preserve notation 0(si, ui) even if there is no explicit dependence on
ui since this will prove to be useful when acknowledging the role of the control input ui in
transiting from one state sk to another one sk+1.

Let V∗(sk) and C∗j (sk) be the optimal cost and the optimal controller. In the following,
min

u
{.} and min

C
{.} will imply the same operation under the constraint that u = C(s).

Starting with an initial controller C0 and V-function V0(sk) = 0, for all possible combinations
of (sk, uk), C0(sk) is solved as follows:

C0(sk) = arg min
u
{0(sk, u) + V0(sk+1)} = arg min

u
{0(sk, u)}. (3)

Having the policy determined, the c.f. update renders

V1(sk) = 0(sk, C0(sk)) + V0(sk+1). (4)

Then, for the iterative VI algorithm the following steps are alternated at each j-th
iteration:

S1. Update the controller

Cj(sk) = arg min
u

{
0(sk, u) + Vj(sk+1)

}
. (5)

S2. Update the V-function

Vj+1(sk) = 0
(
sk, Cj(sk)

)
+ Vj(sk+1) . (6)

Assumption 1. We assume that the system is fully state controllable. This means that any state
sk ⊂ ΩS can be accessed from any other initial state in a finite number of time steps.

Assumption 2. We assume all the states from the process have been uniformly visited, and
each possible action was tried for each possible state. This is equivalent to a complete fully state
exploration, that reveals all the process dynamics.

Definition 1. The transition distance d(sk, sG) = v is defined as the number v of minimum
state transitions from sk to sG using a succession of commands uk, uk+1, uk+2, . . . , uk+v−1.

Definition 2. We define a controller Cj(sk) to be admissible with respect to (2), if it stabilizes
the system (1) from state sk ∈ ΩS to the goal state sG, with V(sk) finite.

Lemma 1. The command selection operation performed at each jth VI-RL iteration consists of
selecting the minimum value of the series rendered by the next j− 1 successive state transitions
penalties

0(sk, u) +0
(
sk+1, Cj−1(sk+1)

)
+0

(
sk+1, Cj−1(sk+1)

)
+ . . . +0

(
sk+j, C1

(
sk+j

))
. (7)

Proof. Having V0(sk) = 0, ∀sk ∈ ΩS and the controller update C0(sk) = arg min
u
{0(sk, u)},

the c.f. and controller update for j = 1 are

V1(sk) = 0(sk, C0(sk)) + V0(sk+1) = 0(sk, C0(sk)) . (8)

C1(sk) = arg min
u
{0(sk, u) + V1(sk+1)} = arg min

u
{0(sk, u) +0(sk+1, C0(sk+1))} . (9)
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This step consists of finding the command u that transitions from the current state sk to
the next state sk+1 (sk

u→ sk+1), rendering the minimal value for 0(sk, u)+0(sk+1, C0(sk+1)).
For iteration j = 2, the c.f. and the controller update are

V2(sk) = 0(sk, C1(sk)) + V1(sk+1) = 0(sk, C1(sk)) +0(sk+1, C0(sk+1)), (10)

C2(sk) = arg min
u
{0(sk, u) + V2(sk+1)} = arg min

u
{0(sk, u) +0(sk+1, C1(sk+1)) +0(sk+2, C0(sk+2))}. (11)

Since V2(sk+1) can be written as a sum of penalties, this operation can be expressed as
the selection of the two-state transitions with minimum cost. This step finds the optimal
command in the first step of the two-stage state transitions series, depicted as

sk
u∗→ sk+1

C1(sk+1)→ sk+2. (12)

Then, the c.f. update at iteration j = 3 is

V3(sk) = 0(sk, C2(sk))+V2(sk+1) = 0(sk, C2(sk))+0(sk+1, C1(sk+1))+0(sk+2, C0(sk+2)).
(13)

Following the reasoning, for any given iteration j, the cost function update is

Vj(sk) = 0
(
sk, Cj−1(sk)

)
+ Vj−1(sk+1)

= 0
(
sk, Cj−1(sk)

)
+ Vj−1

(
f
(
sk, Cj−1(sk)

))
= 0

(
sk, Cj−1(sk)

)
+0

(
sk+1, Cj−2(sk+1)

)
+ Vj−2(sk+2) =

= 0
(
sk, Cj−1(sk)

)
+

j−1
∑

n=1
0
(
sk+n, Cj−n−1(sk+n)

)
.

(14)

The controller improvement step is then

Cj(sk) = arg min
u

{
0(sk, u) + Vj(sk+1)

}
=

arg min
u

{
0(sk, u) +0

(
sk, Cj−1(sk)

)
+ ∑

j−1
n=1 0

(
sk+n, Cj−n−1(sk+n)

)}
.

(15)

This step consists of finding the optimal command u∗ = Cj(sk) in the first step of the
j-stage state transitions series

sk
u∗→ sk+1

Cj−1(sk+1)→ sk+2
Cj−2(sk+2)→ sk+3 . . . sk+j−1

C1(sk+j)→ sk+j, (16)

which concludes the proof. �

Lemma 2. For each iteration j ∈ [0, ∞), the cost function of the goal state sG is Vj(sG) = 0, and
the controller Cj(sG) maintains the system in state sG. Consequently, the c.f. of any state sk 6= sG
is Vj(sk) > 0.

Proof. Since the initial cost function for any state sk is V0(sk) = 0, the controller update for
any state sk at j = 0 is

C0(sG) = arg min
u
{0(sG, u) + V0(sk+1)} = arg min

u
{0(sG, u)} . (17)

The VI-update for the state sG at iteration j = 1 is

V1(sG) = 0(sG, C0(sG)) + V0(sk+1) = 0(sG, C0(sG)) + 0 = 0, (18)

and for any state sk 6= sG is

V1(sk) = 0(sk, C0(sk)) + V0(sk+1) = 0(sk, C0(sk)) > 0 (19)
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The controller update

C1(sk) = arg min
u
{0(sk, u) + V1(sk+1)}, (20)

selects for the state sG the command u that takes the system to the state sk+1 = sG = f (sk, u).
Assuming by induction that Vj−1(sG) = 0, the controller updates as

Cj−1(sG) = arg min
u

{
0(sG, u) + Vj−1(sk+1)

}
. (21)

Since 0(sG, u) = 0 for any u ∈ ΩU , and Vj−1(sG) = 0, the VI update will be
Cj−1(sG) = arg min

u

{
Vj−1(sG) = 0

}
, meaning that the arg min

u
operation will select for

state sG the command u that maintains the system to the state sk+1 = sG = f (sG, u).
The c.f. update renders

Vj(sG) = 0
(
sG, Cj−1(sG)

)
+ Vj−1(sk+1) = 0

(
sG, Cj−1(sG)

)
+ 0 = 0, (22)

proving thus that Vj(sG) = 0, ∀j ∈ [0, ∞).
Also, accordingly to Lemma 1, the cost function Vj(sk) of any sk 6= sG can be written

as

Vj(sk) = 0
(
sk, Cj−1(sk)

)
+

j−1
∑

n=1
0
(
sk+n, Cj−n−1(sk+n)

)
= 0

(
sk, Cj−1(sk)

)
+

j−2
∑

n=1
0
(
sk+n, Cj−n−1(sk+n)

)
+0

(
sk+j−1, C0

(
sk+j−1

))
.

(23)

Since 0
(

sk+j−1, C0

(
sk+j−1

))
> 0, this proves that Vj(sk) > 0 �

Lemma 3. All c.f. Vj(sk) that have its series of penalties ending in the goal state sG are finite, as
j→ ∞ .

Proof. A necessary condition for convergent series is that the sequence of its elements
must converge to zero. Having the sequence of the penalties [0(sk, u),0

(
sk+1, Cj−1(sk+1)

)
,

0
(
sk+1, Cj−1(sk+1)

)
, . . . ,0

(
sk+n, Cj−n(sk+n)

)
], it is required that 0

(
sk+n, Cj−n(sk+n)

)
→ 0

as j→ ∞ . Since only the state sG has penalty 0(sG, u) = 0, it follows that the sequence
must converge to 0

(
sk+n, Cj−n(sk+n)

)
→ 0(sG, u) = 0 . With this result, it follows that the

finite c.f. can be written as

0(sk, uk) + ∑p
n=1 0

(
sk+n, Cj−n−1(sk+n)

)
+ ∑j−1

m=p+1 0
(
sG, Cj−m−1(sG)

)︸ ︷︷ ︸
=0

. (24)

As j→ ∞ , the c.f. is

0(sk, uk) +
p
∑

n=1
0
(
sk+n, Cj−n−1(sk+n)

)
+

∞

∑
m=p+1

0
(
sG, Cj−m−1(sG)

)
︸ ︷︷ ︸

=0
= 0(sk, uk) + ∑

p
n=1 0

(
sk+n, Cj−n(sk+n)

)
.

(25)

This proves that all c.f. that have its penalties sequence ending on state sG are finite
and remain constant as j→ ∞ . �

Theorem 1. Let Vj(sk) be the c.f. of a state sk ∈ ΩS with d(sk, sG) = v defined on the set
ΩS ⊂ <n. Then, Vj(sk) converges on ΩS to a limit V(sk) if, whenever j ≥ v + 1, it follows that∣∣Vj(sk)−V(sk)

∣∣ = 0. Moreover, as j ≥ v + 1, Vj(sk)→ V∗(sk) and Cj(sk)→ C∗j (sk) .
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Proof. Let V0(sk) = 0, ∀sk ∈ ΩS. We first show that Vj(sk) is convergent for sk ∈ ΩS with
d(sk, sG) = 1.

Having the controller update for j = 0

C0(sk) = arg min
u
{0(sk, u) + V0(sk+1)} = arg min

u
{0(sk, u)}, (26)

the c.f. and controller update for j = 1 are

V1(sk) = 0(sk, C0(sk)) + V0(sk+1) = 0(sk, C0(sk)),
C1(sk) = arg min

u
{0(sk, u) + V1(sk+1)} = arg min

u
{0(sk, u) +0(sk+1, C0(sk+1))}, (27)

For all the states sk ∈ ΩS with d(sk, sG) = 1, the optimal command u that transitions
to sk+1 = sG will be selected. So, the c.f. of all states sk with d(sk, sG) = 1 at iteration j = 2 ,
can be written as

V2(sk) = 0(sk, C1(sk)) + V1(sG) = 0(sk, C1(sk)). (28)

At any at iteration j, the c.f. and controller update are

Vj(sk) = 0
(
sk, Cj−1(sk)

)
+ Vj−1(sk+1) =

(
sk, Cj−1(sk)

)
+ ∑j−1

n=1 0
(
sk+n, Cj−n(sk+n)

)
, (29)

Cj(sk) = arg min
u

{
0(sk, u) + Vj(sk+1)

}
= arg min

u

{
0(sk, u) + ∑j−1

n=1 0
(
sk+n, Cj−n(sk+n)

)}
. (30)

Since according to Lemma 1 Vj−1(sG) = 0, the selected command u after the controller
update (5) will be the one that transitions the system to sk+1 = sG.

Assuming that Vj−1(sG) = 0, after the controller update (5), the command u = Cj(sk)
that transitions to sk+1 = sG will be selected. The c.f. relative to iteration j + 1 is going to be

Vj+1(sk) = 0
(
sk, Cj(sk)

)
+ Vj(sk+1 = sG) = 0

(
sk, Cj(sk)

)
+ 0 = 0

(
sk, Cj(sk)

)
. (31)

It can be seen that for all states with d(sk, sG) = 1, for any j ∈ [2, ∞), V(sk) = Vj(sk) =
0
(
sk, Cj(sk)

)
, meaning that

∣∣Vj(sk)−V(sk)
∣∣ = 0. This follows since at each iteration j, the

improved controller u = Cj(sk) transitions sk to sG.
Assuming that Vj−1(sk+1) is convergent for all states sk+1 ∈ ΩS with d(sk+1, sG) = v,

it is next proven that Vj(sk) is convergent for all states sk ∈ ΩS with d(sk, sG) = v + 1.
Having the controller update as (5) at iteration j = v, it is assumed for states sk ∈ ΩS

with d(sk, sG) = v + 1 that there exists a command u that transitions the system to a state
sk+1 ∈ ΩS with d(sk+1, sG) = v that has the c.f. finite. According to Lemma 2, the argmin
operator has to choose between different series of j elements, where the one associated with
state sk+1 that has the transition distance d(sk+1, sG) = v, will therefore be selected instead
of any other state sk+1 with d(sk+1, sG) ≥ v + 1, since it represents the minimum penalty
series. As j→ ∞ , the argmin operator will also select the command u that transitions to
the state that has d(sk+1, sG) = v, since according to Lemma 2, its c.f. will remain constant
and therefore finite.

Showing that Vj(sk) = V(sk) from j ≥ v + 1, for a state sk ∈ ΩS with d(sk, sG) =
v + 1, proves that the sequence of v + 1 optimal commands that bring the system to the
goal state sG will be selected as j→ ∞ . Updating Cj(sk) using (5), will find the controller
that bring the system to the goal state using optimal commands, meaning that the found
controller is the optimal controller C∗j (sk). Since the optimal controller can be derived
only from the optimal c.f., this means that Vj(sk) = V(sk) = V∗(sk), from j ≥ v + 1. This
completes the proof. �

The VI convergence proved in Theorem 1 is based on the true V-function parameteriza-
tion, and hence can be used only for systems for which the c.f. is known and for table-based
VI implementations with finite states and actions. For continuous-time nonlinear processes
as in (1), a broad range of function approximators need to be used for the V-function
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Vj(sk) and for the controller Cj(sk). Employing these approximations in the VI operations,
some approximation error is added at each iteration, enforcing thus the V-function and the
controller to be suboptimal. It is next proved that the VI learning scheme also converges
under approximation errors.

Having the c.f. approximation error function δj(sk) : ΩS → < and starting with an
initial V-function Ṽ0, the controller and c.f update are represented as

SA1. Controller update

C̃j(sk) = arg min
u

{
0(sk, u) + Ṽj(sk+1)

}
, (32)

SA2. V-function update

Ṽj+1(sk) = 0
(

sk, C̃j(sk)
)
+ Ṽj(sk+1) = 0

(
sk, C̃j(sk)

)
+ Vj(sk+1) + δj(sk+1). (33)

Equations (32) and (33) show that the approximate V-function and controller follow
the real ones with a small approximation deviation δj(sk+1). As long as the true V-function
parameterization is unknown, the residuals

∣∣δj(sk+1)
∣∣ > 0, making the approximated VI

(AVI) updates (32), (33) differ from (3), (4). Even if the obtained controller is suboptimal, it
must be admissible to make the system reach the goal state sG. To prove the existence of
an approximation error δj(sk+1) upper bound at each iteration j such that the controller
C̃j(sk) will be admissible for each state sk, with the c.f. constant and finite in the original
VI-update, the following definition must be given.

Definition 3. We define Λj as the set that contains all the states sk for which the controller C̃j(sk)
is admissible. Additionally, the complement set Λj represents the set of all states sk for which the
controller C̃j(sk) is not admissible.

Theorem 2. For the c.f. Ṽj+1(sk) at iteration j, ∀sk ∈ ΩS that under any command uk ∈ ΩU
will transition the system to a state sk+1

∣∣sk+1 ∈ Λj , the c.f. approximation error of the state
sk+1

∣∣sk+1 ∈ Λj , denoted as δj
(
sk+1

∣∣sk+1 ∈ Λj
)
, respects the following condition

0
(

sk, C̃j(sk)
)
+ Vj

(
sk+1

∣∣sk+1 ∈ Λj
)
+ δj

(
sk+1

∣∣sk+1 ∈ Λj
)
< 0

(
sk, C̃j(sk)

)
+ Vj

(
sk+1|sk+1 ∈Λj

)
+ δj

(
sk+1

∣∣sk+1 ∈ Λj
)
, (34)

in order to make the controller C̃j(xk) admissible. Additionally, as j→ ∞, Λj → ΩS.

Proof. Let Ṽ0(sk) = 0, δ0 (sk ) = 0, Λ0 = ∅, ∀sk ∈ ΩX . The controller update is

C̃0(sk) = argmin
u

{
0(sk, u) + Ṽ0(sk+1)

}
= argmin

u
{0(sk, u)}. (35)

According to Lemma 1, for the state sk = sG with d(sk, sG) = 0, the optimal command
maintains the system to the same state sk+1 = sG. Since δ0(sG) = 0, this command will be
selected by the minimization operation, making thus Λ1 = Λ0 ∪ {sk|d(sk, sG) = 0}. The
c.f. and the controller update at j = 1 are

Ṽ1(sk) = 0
(

sk, C̃0(sk)
)
+ Ṽ0(sk+1) + δ1(sk) = 0

(
sk, C̃0(sk)

)
+ δ1(sk), (36)

C̃1(sk) = arg min
u

{
0(sk, u) + Ṽ1(sk+1)

}
= arg min

u

{
0(sk, u) +0

(
sk+1, C̃0(sk+1)

)
+ δ1(sk+1)

}
. (37)

According to Theorem 1, for sk with d(sk, sG) = 1, the optimal command transitions the
system to the goal state sk+1 = sG. Also, for the state sk = sG, the command that maintains
the system to the goal state sk+1 = sG needs to be selected. If the c.f. approximation
error δ1(sG) has its value, such that the cost of transitioning to sG from any state sk with
d(sk, sG) = 1 will be lower than any cost associated with ∀sk+1 with d(sk+1, sG) > 0,
namely
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min
u

{
0(sk, u) +0

(
sG, C̃0(sG)

)
+ δ1(sG)

}
< min

u

{
0(sk, u) +0

(
sk+1, C̃0(sk+1)

)
+ δ1(sk+1)

}
, (38)

then the arg min
u

operator will not be motivated to choose the command that transits the

system to another state rather than the goal state sG. By selecting the command u for the
state sk, Λ2 = Λ1 ∪ {sk|d(sk, sG) = 1}. Having done so, the c.f. and controller update for
j = 2 are

Ṽ2(sk) = 0
(

sk, C̃1(sk)
)
+ Ṽ1(sk+1) + δ2(sk+1) = 0

(
sk, C̃1(sk)

)
+ V1(sk+1) + δ1(sk+1) + δ2(sk+1), (39)

C̃2(sk) = arg min
u

{
0(sk, u) + Ṽ2(sk+1) + δ2(sk+1)

}
. (40)

For all states sk with d(sk, sG) = 2, the optimal command selected at this iteration by
controller update (32) is the one that transitions the system to a state sk+1 with d(sk+1, sG) =
1. For all states sk with d(sk, sG) = 1, an admissible command can transition the system
to the goal state sk+1 = sG or to any sk+1|d(sk+1, sG) = 1 . Then, the approximation error
δ2(sk+1) for d(sk+1, sG) ≤ 1 must have the value such that

min
u

{
0(sk, u) + Ṽ2(sk+1|sk+1 ∈ Λ2 ) + δ2(sk+1|sk+1 ∈ Λ2 )

}
< min

u

{
0(sk, u) + Ṽ2

(
sk+1

∣∣sk+1 ∈ Λ2
)
+ δ2

(
sk+1

∣∣sk+1 ∈ Λ2
)}

, (41)

making thus Λ3 = Λ2 ∪ {sk|d(sk, sG) = 2}.
At any iteration j, we assume that for some states sk with (sk, sG) = j there exists

a command that transitions to sk+1 ∈ Λj, d(sk+1, sG) = j− 1. The selected command u
by controller update (35) for state sk needs to transition the system to any state sk+1 with
d(sk+1, sG) = j− 1, in order to make sk ∈ Λj+1. Also, for any state sk with d(sk, sG) ≤ j− 1
the selected command u can transition to any state sk+1 ∈ Λj, to make sk ∈ Λj+1. The
approximation error δj(sk+1) for d(sk+1, sG) ≤ j− 1 must then hold the following inequality

min
u

{
0(sk, u) + Ṽj

(
sk+1

∣∣sk+1 ∈ Λj
)
+ δj

(
sk+1

∣∣sk+1 ∈ Λj
)}

< min
u

{
0(sk, u) + Ṽj

(
sk+1

∣∣sk+1 ∈ Λj
)
+ δj

(
sk+1

∣∣sk+1 ∈ Λj
)}

, (42)

making Λj+1 = Λj ∪ {sk|d(sk, sG) = j}. �

Theorem 2 shows that by bounding the approximation error δj
(
sk+1

∣∣sk+1 ∈ Λj
)

such
that the selected command will transition to a state sk+1 ∈ Λj, although the obtained
controller is suboptimal, it will be restricted to be admissible, thus stabilizing the system
asymptotically. This does not guarantee that Ṽj(sk) and C̃j(sk) will remain constant for all
iterations j, but it will ensure that their distance to the original V-function Vj(sk) and the
original controller Cj(sk), will be dependent on the performance of the selected function
approximators.

For the model-free implementation of the VI-RL algorithm, subsequently called MFVI-
RL, the V-function is extended to the so-called Q-function that has both the state and the
command at time k as its arguments. The Q-function update for an arbitrary command uk
in state sk is

Qj(sk, uk) = min
C(·)

{
0(sk, uk)) + Qj−1(sk+1, C(sk+1))

}
= min

C(·)

{
0(sk, uk)) + Vj−1(sk+1)

}
. (43)

The control update step at current iteration is represented by

Cj(sk) = arg min
u

{
Qj(sk, u)

}
. (44)

It results from Theorem 1 that lim
j→∞

Vj(sk) = V∗(sk) and that the right-hand side

of Equation (29) embeds in fact the VI-RL update of the V-function, via the operation
min
C(·)

{
Vj−1(sk+1 )

}
. This means that Qj(sk, uk) and Vj(sk) are paired. It follows that

lim
j→∞

Qj(sk, uk) = Q∗(sk, uk) = min
C(·)
{0(sk, uk)) + V∗(sk+1 )}. This result also implies that
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lim
j→∞

Cj(sk) = C∗(sk). Using function approximators for both the Q-function and the con-

troller, namely Q̃j(sk, uk) and C̃j(sk), the c.f. approximation error δj
(
sk+1

∣∣sk+1 ∈ Λj−1
)
,

must respect the condition min
C(·)

{
0(sk, uk) + Vj

(
sk+1

∣∣sk+1 ∈ Λj−1
)
+ δj

(
sk+1

∣∣sk+1 ∈ Λj−1
)}

< min
C(·)

{
0(sk, uk) + Vj

(
sk+1|sk+1 ∈Λj−1

)
+ δj

(
sk+1

∣∣sk+1 ∈ Λj−1
)}

, in order to make the

controller admissible for states sk that under any command uk ∈ ΩU will transition the
system to a state sk+1

∣∣sk+1 ∈ Λj−1 .
The MFVI-RL using Q-functions is shown convergent to the optimal control which

must also be stabilizing in order to render a finite cost function. At this point, the problem
formulation is sufficiently general, it will be made particular for the output reference model
tracking in the case study.

The next section presents in detail the case study of a visual servo system built for
output reference model tracking purpose. Tracking control is learned with MFVI-RL but
also with competitive methods used for comparisons: a model-based 2DOF controller and
a model-free VSFRT controller.

3. Visual Output Reference Model Tracking Control Design
3.1. The Visual Tracking Servo System Description

Building a hardware system from scratch assumes a well-structured plan, in which
the desired behavior must be established from the system. Several components were
used in the project, which will be presented below [31]: Arduino Nano, webcam, double
H-bridge L298n, a micro actuated DC motor (ADCM) with reduction, two side wheels,
an independent wheel with a supporting role, acrylic chassis, breadboard, power cord,
webcam connection cable to PC, Arduino connection cable to the PC, and a power adapter.

The resulting hardware assembly has a chassis represented by an acrylic plate, having
three wheels, two of which are the side ones, the left one being connected to the ADCM
so that the assembly can perform rotational (yaw) movements, in order to track a fixed or
mobile visual target seen through the webcam [31]. The third wheel is placed in the rear
of the chassis; its free motion has solely the role of facilitating the whole assembly yaw
motion. On top of the acrylic board and in front of the assembly, the webcam captures
images to send back to the PC. The Arduino board was placed in the breadboard, from here
making the connection with the ADCM being used, through the H-bridge. The assembly
can be observed in Figure 1. 
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Figure 1. Hardware connection between the engine, motor driver and Arduino Board [31]. 

 

Figure 2. I/O data collected from the closed-loop visual servo system. 

 

Figure 3. Data used for validating the identified closed-loop visual servo system model (𝜌𝑘-red, 𝑦𝑘-

black). 

Figure 1. Hardware connection between the engine, motor driver and Arduino Board [31].

Sending commands from the MATLAB environment running on the PC to the ADCM,
is handled via Arduino using an USB cable. Arduino sends the commands to the motor
driver, which powers the ADCM. The L298n motor driver operates in this project with a
single motor. It is powered by a 7.5 V input voltage from a power adapter connected to the
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outlet that has an output voltage of 7.5 V. Part of this voltage is used to power the ADCM.
The ADCM selection was made by connecting the D5 pin to one of the two “Enable” ports
of the L298n. Thus, the rotating direction is controlled by the input pins I1 and I2 of the
driver, receiving logical voltage level from pins D11 and D12 of Arduino. Depending on
the state of these two pins (set or reset), the ADCM spin direction is set. For pin D11 having
logical value 1 (5 V) and pin D12 having the value 0 (0 V), the motor will spin clockwise and
when D11 has the value 0 and D12 the value 1, the ADCM will spin in counterclockwise
direction. In each specific direction, the ADCM’s angular speed is set by a PWM signal
generated with Arduino, whose duty cycle value is set in MATLAB and transmitted from
the PC. The ADCM is a carbon-brushed motor from Pololu, 6 V, reduction ration 1000:1,
with 33 revolutions per minute at no load, drawing a nominal current of 0.1 amps. Due to
the high reduction factor, it is ideal for fine low angular speed control.

However, the micro reduction ADCM used is not built for precise position control
(as demanded by a video servo tracking system), while a dedicated one is costlier. The
ADCM has a variable dead-zone (DZ) around about 0.156 V (per each rotational direction)
which is time-varying due to the multiple magnetic and thermal effects that occur after
longer time usage. A logical solution is to compensate the DZ, but due to the mentioned
phenomena, the DZ thresholds are impossible to compensate exactly. However, an approxi-
mate compensation is actually performed, allowing acceptable positioning visual tracking
accuracy [31].

In practice, there are certain video tracking platforms involving advanced image
processing and features detections techniques, combined with advanced localization tech-
niques of complex motion dynamics, such as unmanned aerial vehicles (UAVs), as done,
e.g., in [32]. In work [32] the focus is to ensure tracking reliability under complex practical
conditions, including huge scale variation, occlusion and long-term task. Other visual
tracking solutions were proposed in [33–35]. Such a tracking approach relies on low level
controllers which could be designed based on the proposed learning strategies carried
out in this work. The main advantage of our platform is its cost efficiency and flexibility,
allowing for affordable educational and research activities.

Further on, at the software level, color-based identification of the moving target object
(in this project, a blue ball) was performed in MATLAB. The implementation of the object
identification process involved several steps. A general position control goal is to track the
desired object (blue ball) to keep its position in the image center.

After setting up the desired image capture settings such as resolution (640× 360) and
the RGB (red, green and blue) image color type, to be able to process it, the next step is
to extract the RGB components. Three 2D matrices are extracted using the commands (in
MATLAB code style): r = img (:,:, 1); g = img (:,:, 2); b = img (:,:, 3) where img is the captured
image object. To emphasize the tracked object whose blue color is known inside the image,
a single 2D matrix is obtained having each pixel intensity level denoted “blueComponent”
calculated with (matrix element-wise operation) [31]

blueComponent = b –
r
2
− g

2
. (45)

The next step is to set some threshold values in order to identify the regions inside the
image that are considered “sufficiently blue”, to include the object to be identified. This
is ensured by the bwareafilt function which extracts objects from an image depending on
their size or their area. For the detection of unique objects, an analysis of the connected
components is performed, in which case each blue region is assigned a unique ID. We
ensure that the largest blue object inside the scene is the ball. The image center coordinates
being easily calculated as

xc =
nx

2
, yc =

ny

2
. (46)

where nx, ny are the image width and height, with respect to the top-left corner. Identifying
the center of gravity (CoG) of the identified ball object is the next action. The MATLAB
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function logical first converts numeric values into logical values for the final 2D image. The
calculation of the center of gravity of the target object was performed by the regionprops
function which measures the properties of a specific region of an image. The function
returns the measurements for the property set of each connected component (object) in
the binary image. The function can be used for both contiguous or adjacent regions and
for discontinuous regions. Regarding these types, we can say about the adjacent regions
that they are also called objects, connected components or blobs. The object’s CoG specific
coordinates (ox,oy), locates its position within the image. The system’s controlled output is
defined as y = yc − oy. In sample-based measurement in discrete-time, it will denote yk.

To complete the system overview in the proposed design, we denote the PC command
sent from the MATLAB environment to the ADCM as the duty cycle factor uk ∈ [−1; 1].
Regardless of the DZ size, this uk is sent to the ADCM by adding an offset value for each
direction of rotation corresponding to the DZ threshold values. The position reference input
rk sets the desired distance of the object center to the image center. In most applications,
rk = 0 means that the assembly (the camera in particular) should rotate in order to keep
the tracked object in the center. Normally, both yk, rk are measured in pixels, leading to a
magnitude of hundreds of pixels, depending on the image size. A normalized value of yk
is being used by dividing its pixel value with 1000. Therefore, normalized reference inputs
rk are used as well. The system is capable of consistently processing the frames in native
resolution and all the subsequent controller calculations, for a sample period of Ts = 0.125 s.
This sample period was established after many statistical evaluations, by timing all the
image transfer, visual processing tasks and control law evaluations [31]. Timer objects were
used for software implementation convenience, to properly run the recurrent control tasks.

3.2. The Visual Servo Tracking in Model Reference Control Setting

The controlled system is formally described by the discrete-time I/O equation (with k
the sample index)

yk = f
(

yk−1, . . . , yk−ny, uk−1, . . . , uk−nu

)
, (47)

with system control input uk ∈ Ωu ⊂ < inside the known domain Ωu, system output yk ∈
ΩY ⊂ < in known domain ΩY, unknown integer orders ny, nu ∈ Z∗+, and unknown dy-
namic nonlinear continuous differentiable map f : ΩY × . . .×ΩY ×Ωu × . . .×Ωu → ΩY .
System (47) is assumed to be observable and controllable; these are common data-driven
assumptions extracted from working interaction with the system, from technical specifica-
tions or from literature survey. Lemma 1 in [36] allows for a virtual state space construct
equivalent model of (47) defined as

xk+1 = F(xk, uk),yk = [1, 0, . . . , 0]xk = xk,1, (48)

where xk = [YT
k,k−τ

, UT
k−1,k−τ

]
T ∆
= [xk,1, xk,2, . . . xk,2τ+1]

T ∈ ΩX ⊂ <2τ+1, more specifi-

cally with Yk,k−τ =
[
yk . . . yk−τ ]

T =[ xk,1 . . . xk,τ+1]
T , Uk−1,k−τ =

[
uk−1 . . . uk−τ ]T =

[xk,τ+2 . . . xk,2τ+1]
T , where τ ∈ Z∗+ has the role of a nonlinear observability index similar

to the one in linear systems theory. Here, τ is defined as the minimal value for which the
true state of (48) is recoverable from I/O data samples uk, yk. When the order of (48) is
unknown, so is τ. In practice, one starts with an initial value and searches for the one which
achieves the best control when using the virtual state xk for feedback. Some remarkable
features are synthesized in the following observations.

Observation 2. Systems (47) and (48) have the same input and output, hence from
I/O perspective their control is the same. The means to achieve control may be different,
however the intention is to attempt state feedback control on the virtual system (48) and
feed it as input to the true system (47). System (48) is fully state-observable, with measurable
states and with partially known dynamics F(.) : ΩX ×Ωu → ΩX where domain ΩX is
completely known since it is built on known domains Ωu, ΩY.



Energies 2022, 15, 267 13 of 25

Observation 3. Time delays in (47) can also lead to a fully observable description (48)
by proper definition of additional states. If present, the (assumed constant) time delays
should be known and easily measured from the historical I/O response data.

The visual tracking problem in model reference control intends to find a control law
which makes the output yk in (47) match (or track) the output of a linear output reference
model (LORM) best described in its discrete-time state space form as{

xm
k+1 = Gxm

k + Hrk,
ym

k = Lxm
k ,

(49)

where xm
k =

[
xm

k,1, . . . , xm
k,nx

]
∈ ΩXm ⊂ <nx is the LORM state, rk ∈ ΩR ⊂ < is the reference

input in known domain ΩR and ym
k ∈ ΩYm ⊂ < is the LORM output within a known

domain. Note that (49) is a state space realization of a more compact linear pulse transfer
function (PTF) M(Q) which relates ym

k = M(Q)rk, among all infinite realizations’ triplet
(G, H, L). Here, Q is the unit time step advance operator (Qym

k = ym
k+1). Selection of M(Q)

is not arbitrary. Under classical model reference control guidelines, it should account for
true system dynamics (47) and its bandwidth, and it should include the true system’s time
delay and nonminimum-phase dynamic if it is the case.

The ORM control problem is formally expressed as in

u∗k = arg min
uk

V∞
LRMO(uk), V∞

LORM(uk) =
∞
∑

k=0

[
yk(uk)− ym

k
]2,

s.t.(48), (49),
(50)

where the explicit dependence of yk on uk has been captured. The intention is to find
an explicit closed-loop control law uk = C(sk, rk) with sk some regressor state depen-
dent on the control design approach. For example, if sk = xk, the control renders uk =
C(yk . . . yk−τ , uk−1 . . . uk−τ , rk) which is a recurrence equation accommodating many con-
trol architectures (PI/PID, etc.). However, other selections of sk are possible, as illustrated
in the following sections. Essentially, when driven by the same rk, we should ideally get
yk = ym

k , i.e., the system’s output (also the closed-loop system (CLS) output) equals the
ORM output. The class of ORM tracking control problems belong to the “dense rewards”
settings, as opposed to the “sparse rewards” case which is found in many AI-related
environments, whereas in classical control, the problem is known as a model reference
control.

Differently from the model reference adaptive control (MRAC) but nevertheless shar-
ing the same overall goal of output reference tracking, the control solution to (50) should
be a stationary, non-adaptive controller. Formulation of the penalty function may impact
the resulted control performance significantly. For example, non-quadratic Lyapunov
functions serving the role of penalty functions in adaptive control have been proposed
in MRAC [37,38]. Based on Observation 1, herein we employ quadratic penalties since we
preserve interpretation parallelism with the linear quadratic controller case. A quadratic
penalty combined with a linear system renders an infinite-horizon cost that is quadratic
convex with respect to the state, which facilitates the existence and uniqueness of a global
minimum, but also its analytic derivation. Such desirable properties are expected also with
smooth nonlinear systems, to some extent at least.

3.3. Closed-Loop Input-Output Data Collection

The simplest standardized controller, namely the proportional (P)-type one will be
used to stabilize the positioning process and to further collect I/O data for finally learning
more advanced ORM tracking control. Its transfer function is HR(s) = kp, where kp is the
transfer coefficient. As shown in [31], this type of controller is recommended in the case
of simple driven processes with a single large time constant, with or without an integral
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component. In this case, the servo positioning has an integral component. The P controller’s
law in discrete-time (with transfer function HR(Q) = kp)

uk = kp(ρk –yk), (51)

is used with kp = 0.19 established following experimental tests to give satisfactory tracking
performance. Here, ρk is the reference input to the control system. The tracking scenario
implies a sequence of successive piecewise constant reference input values ρk (each value is
kept constant for 10 s) with the amplitude uniformly randomly distributed in [−0.19; 0.21].
Additive noise on uk is applied for enhancing exploration (also understood as persistent
excitation) with the following settings: the command uk receives an additive noise with
uniform random amplitude in [−0.1; 0.1], every three samples.

The ORM continuous-time transfer function is selected as

mre f =
Ω2

n
s2 + 2ξΩns + Ω2

n
, (52)

where Ωn = 1 sets the response speed and ξ = 0.7 sets the magnitude overshoot. This
transfer function was discretized by using the zero-order hold method with the sampling
period Ts = 0.125s, to render:

M(Q) =
0.007367Q + 0.006949
Q2 − 1.825Q + 0.8395

. (53)

For M(Q), a state-space controllable canonical form transform is xm
k+1 =

[
1.8251 −0.8395

1 0

]
xm

k +

[
1
0

]
rk,

ym
k =

[
0.0074 0.0069

]
xm

k ,
(54)

which will be used to generate the input-state-output data for the ORM. Meanwhile, a
different reference input rk which excites the ORM was also selected as a sequence of
successive piecewise constant values where each value is kept constant for 15 s and the
amplitude is uniformly randomly distributed in [−0.19; 0.21]. The switching periods of
the reference inputs ρk, rk was not a negligible problem, their values trade-off exploration
and lengthy collection time [31]. The I/O data samples contained within the trajectory{

uk, yk, rk, xm
k
}

will be subjected to various control design approaches. A number of
2400 samples for 300 s of collection were obtained, as in Figure 2.
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3.4. The Visual Servo System Identification

In order to apply a model-based control design dedicated to ORM tracking, a pulse
transfer function of the visual servo system must be identified. Since the system has an
integral component, the identification is indirectly performed, by firstly identifying the
closed-loop pulse transfer function ρk → yk , based on closed-loop data from Figure 2 [31].
A set of validation data for the same dynamics is generated, as in Figure 3.
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A second-order output-error (OE) recurrent model for the closed-loop visual servo
system transfer function is selected, being identified as (and whose step response is shown
in Figure 4) [31]
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1− 1.73Q−1 + 0.7617Q−2 . (55)Energies 2022, 15, x FOR PEER REVIEW 2 of 3 
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The closed-loop transfer function allows for identifying the I/O visual servo system
model as [31]

HPC(Q) =
MCL(Q)

(1−MCL(Q)) HR(Q)
=
−0.4365Q−1 + 0.5966Q−2

1− 1.647Q−1 + 0.6483Q−2 , (56)

whose step response is shown in the Figure 5. Note that the identified MCL(Q) has a non-
minimum-phase character which is not observed in the true system, this non-minimum-
phase is a result of the imperfect DZ compensation. Additionally, the model HPC(Q)
appears as a first-order lag with a large time constant, although its true dynamics must
contain an integrator. However, the incipient step response phase (first 20 s) overlaps with
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that of an integral-type system. Finally, the indirectly identified HPC(Q) can be used for
model-based control design.

Energies 2022, 15, x FOR PEER REVIEW 2 of 3 
 

 

 

Figure 4. Step response of the OE identified model [31]. 

 

Figure 5. The step response of 𝐻𝑃𝐶(𝑞) [31]. 

 

Figure 6. Unit reference input step response of the closed-loop with 2DOF controller, vs. the ORM 

unit step response. 

Figure 5. The step response of HPC(Q) [31].

3.5. The 2DOF Model-Based Control Design

The 2DOF (also known as RST) control design procedure is next described, for the case
with the same imposed dynamics in terms of setpoint tracking and disturbance rejection.
Assume that HPC(Q) can be written in the form

HPC(Q) =
K(Q + β)

Q2 + α1Q + α0
Q−d =

B(Q)

A(Q)
Q−d, (57)

which is validated for the identified model since ∂(B(Q)) = 1, ∂(A(Q)) = 2, d = 0 (the
operator ∂(.) measures the polynomial degree) in our case. With the ORM transfer function
(53), in the case of the 2DOF controller without stable zero compensation (HPC(Q) has a
non-minimum-phase zero) and with integral component in the controller to ensure zero
steady-state tracking error and steady-state disturbance rejection simultaneously, we first
define the polynomials as factors for B(Q) = BC(Q)BNC(Q):

BC(Q) = 1, BNC(Q) = K(Q + β). (58)

The denominator Am(Q) = Q2 + p1Q + p0 from the imposed M(Q) will actually
set the step-response character of the closed-loop system. An artificial, maximal degree
polynomial Bm(Q) is constructed as Bm(Q) = K(Q+β)(1+p1+p0)

K(1+β)
= (Q+β)(1+p1+p0)

1+β such
that it will simultaneously fulfil a set of conditions set out in [39], namely ∂(Bm(Q)) ≤
∂(B(Q))+ d and Bm(1) = Am(1). After factoring Bm(Q) = BNC(Q)Bm(Q), the polynomial
Bm(Q) results Bm(Q) = (1 + p1 + p0)/[K(1 + β)].

The polynomials R(Q), s(Q) and T(Q) are imperative in the 2DOF controller design.
Firstly, it must be ensured that ∂R(Q) = ∂s(Q) = ∂T(Q) = n [39] where ∂A(Q) =
∂Am(Q) = n = 2 in our case. Then, R(Q) = B+(Q) R(Q) must be monic (leading
coefficient is 1) and since R(Q) must have an integral component, based on BC(Q) = 1, we

must further explicit R(Q) = (Q− 1)
=
R(Q). Due to the degree condition n = 2, we must

write
=
R(Q) = Q + r0. Then, s(Q) = s2Q2 + s1Q + s0, fulfils the degree condition, while

the observer polynomial Ao(Q) = Q2 is selected to ensure minimal degree fulfilment of
the polynomial equation [39]

Ao(Q)Am(Q) = A(Q)(Q− 1)
=
R(Q) + BNC(Q)s(Q), (59)

equivalent to

Q2(Q2 + p1Q + p0) =
(
Q2 + α1Q + α0

)
(Q− 1)(Q + r0) + K(Q + β)

(
s2Q2 + s1Q + s0

)
≡

Q4 + p1Q3 + p0Q2 = Q4 + (Ks2 + r0 + α1 − 1)Q3 + [K(s0 + βs1) + α0(r0 − 1)− α1r0]Q + Kβs0 − r0α0.
(60)
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The above polynomial equation was solved as a compatible determined system of

linear equations in the unknown coefficients of
=
R(Q), s(Q):

Ks2 + r0 + α1 − 1 = p1,
K(s1 + βs2)− r0 + α0 + α1(r0 − 1) = p0,

K(s0 + βs1) + α0(r0 − 1)− α1r0 = 0,
Kβs0 − r0α0 = 0

≡


K 0 0 1

βK K 0 α1 − 1
0 βK K α0 − α1
0 0 βK −α0




s2
s1
s0
r0


=


p1 − α1+1

p0 + α1 − α0
α0
0

.

(61)

The solution to (61) will produce R(Q) of the form R(Q) = Q2 + r1Q + r0. Finally,
T(Q) = Bm(Q)Ao(Q) = t2Q2 renders the transfer function description of the 2DOF
controller as [31]

uk =
T(Q)

R(Q)
ρk −

s(Q)

R(Q)
yk =

t2Q2

Q2 + r1Q + r0
ρk −

s2Q2 + s1Q + s0

Q2 + r1Q + r0
yk, (62)

which in its recurrent filter form writes as

uk = −r1uk−1 − r0uk−2 + t2ρk − s2yk − s1yk−1 − s0yk−2. (63)

Using this scheme, we validated the 2DOF controller with the identified system model
HPC(Q) in closed-loop with unit reference input step response, in Figure 6.
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The experimental validation of the designed 2DOF controller used with the true visual
servo system is depicted in Figure 7 below, on a test scenario.
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3.6. The MFVI-RL Control for ORM Tracking

MFVI-RL requires some Markovian assumptions about the controlled system, hence
the controlled extended system will be

sk+1 = E(sk, uk)⇔

 xk+1
xm

k+1
rk+1

 = E

 xk
xm

k
rk

, uk

 =

 F(xk, uk)
Gxm

k + Hrk
t(rk)

, (64)

where E(.) is some generic nonlinear map which is partially unknown, (F(.) is partially

unknown) over the extended state, and sk =
[
xT

k ,
(
xm

k
)T , rk

]T
. The domain ΩS of sk is

known, as the domains ΩX , ΩXm , ΩR are known. In addition, rk+1 = ≈(rk) is the reference
input generative model which is user-defined. Many types of practical reference inputs
comply with this generative model equation (e.g., piece-wise constant model rk+1 = rk).

MFVI-RL is able to learn the ORM tracking control solution for the system (64) without
complete knowledge of E(.). The extended states-space system representation (64) can
perfectly replace the dynamics (47) in the problem definition (50). Note that yk, ym

k in
(50) depends on components of sk (yk is the first component from the vector xk while
ym

k = Lxm
k ). In its off-policy offline version (more popularly known as Q-learning), MFVI-

RL starts with a dataset of transition samples (known as tuples or as experiences) of the
form Ds =

{(
s[i]k , u[i]

k , s[i]k+1

)}
for a number of i = 1, B elements.

MFVI-RL relies on the estimate of a “Q-function” which is an extension of the original
cost function V(sk) = ∑∞

i=k γi−kπ(si, ui). We notice that V(s0) = V∞
LORM whenever the

discount factor γ = 1 and the penalty term is defined, like in π(si, ui) =
(
yi − ym

i
)2 which

explicitly captures the ORM tracking goal. Using the Bellman equation to which we
associate the controller uk = C(sk), the Q-function is defined as QC(sk, uk) = π(sk, uk) +

∑∞
i=k+1 γi−k−1π(si, C(si)) = π(sk, uk) + γVC(sk+1) = π(sk, uk) + γQC(sk+1, C (sk+1)).

To cope with infinitely dense state and control input domains, it is common to param-
eterize both the Q-function and the controller with (deep) neural networks (NNs). In the
following, the MFVI-RL steps with a generic NN approximator for the Q-function (which
is expressed as Q(sk, uk,θ) with θ being the NN weights) and a linear controller defined
by uk = KTsk = K0yk + . . . + Kτyk−τ + Kτ+1uk−1 + . . . + K2τ+1uk−τ + K2τ+2xm

k,1 + . . . +
K2τ+nx+1 xm

k,nx
+ K2τ+nx+2 rk where K ∈ <2τ+nx+2, are presented in Algorithm 1.
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Algorithm 1. The MFVI-RL Algorithm 1 for ORM tracking

1. Choose a reference model with dynamic M(Q), under the rules and in terms of
specifications which are representative for model reference control. Build a state space
realization (49) from M(Q).

2. Run data collection experiments on system (47) to obtain a dataset of I/O samples {uk, yk}.
In the same time-frame or in a simulated process afterwards, generate

{
rk, xm

k , ym
k
}

using a
prescribed generative reference input model rk+1 = ≈(rk) and the state-space (49). Make
sure the domains ΩY and ΩYm are correlated in amplitude. The collection of both {uk, yk}
and

{
rk, xm

k , ym
k
}

must be sufficiently exploratory i.e., the variables should cover all
combinations of their values inside their respective domains. This is usually achieved for
long enough trajectories. However, good coverage of the state-action space in a shorter time
is achievable in various ways: straightforward procedures include adding noise and
avoiding already visited combinations by recording the tracks.

3. Select the observability index τ. Data-driven construct the virtual trajectory {uk, yk, xk}
which defines the virtual state-space system (49). Couple this trajectory with

{
rk, xm

k , ym
k
}

to

construct transition samples
(

s[i]k , u[i]
k , s[i]k+1

)
, i = 1, B from (64).

4. Select an initial parameterization for the NN modeling the Q-function, let this be denoted as

Q
(

sk, uk,θ0
)

where θj lumps all the NN tunable weights at iteration j. Select K0 as the
initial controller parameter, it need not be stabilizing for MFVI-RL algorithm (e.g., random
initial value is feasible).

5. At current iteration j, prepare the Q-function NN input patterns as ins =

{
[s[i]

T

k , u[i]
k ]

T}
and the target output patterns as outs =

{
π
(

s[i]k , u[i]
k

)
+ Q

(
s[i]k+1, Kj−1T

s[i]
T

k+1, θj−1
)}

, for

all i = 1, B. Train the NN using the I/O patterns, based on architecture-dependent training
settings. It is equivalent to solving

θj = arg min
θ

1
B ∑B

i=1

(
Q
(

s[i]k , u[i]k , θ
)
− π

(
s[i]k , u[i]

k

)
− Q

(
s[i]k+1, Kj−1T

s[i]k+1, θj−1
))2

which is the well-known MSSE cost.
6. For each s[i]k , i = 1, B in the dataset, find u[i]∗

k = arg min
u

Q
(

s[i]k , u, θ j
)

. For a bounded infinite

domain e.g., Ωu = [−1; 1], this minimization will be approximately done by enumerating a
finite set of equidistant values for u e.g., {−1,−0.9, . . . , 0.9, 1}. Although apparently
exhaustive and not as accurate as a gradient based search scheme, this minimization can be
efficiently implemented even for multivariable systems where the dimension of Ωu is
acceptable (up to three). Build the overdetermined system of linear equations

(
s[1]k

)T

. . .(
s[B]k

)T

Kj =

 u[1]∗

k
. . .

u[B]∗

k

⇔ Ξ1Kj = Ξ2, (65)

and solve it by ordinary linear least-squares as Kj = pinv(Ξ1)Ξ2 where

pinv(Ξ1) =
(

Ξ1
TΞ1

)−1
Ξ1

T . Another possible gradient-based search solution for finding

Kj is to train the cascaded network Q
(

s[i]k , KTs[i]k ,θj
)

w.r.t. K, over all inputs s[i]k , i = 1, B,
with the target values set to zero.

7. If the number of maximal MFVI-RL algorithm iterations was reached, or there is no
improvement in the control parameter (‖Kj −Kj−1‖ < threshold), exit the algorithm;
otherwise increment j and go to step 5.

For the MFVI-RL practical implementation of learning visual servo tracking, the Q-
function is a deep neural network of feedforward type, with two hidden layers having 100
and 50 rectified linear unit (ReLU) activation function, respectively. A single neuron in the
output with linear activation predicts the Q-value of a state-action input. Training settings
include: 90%–10% training-validation data splitting with random shuffling; early stopping
after 10 consecutive increases of the MSSE cost on the validation data; and maximum
500 epochs with a scaled conjugated gradient descent backprop algorithm. The entire
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training data is used as one batch in each epoch, therefore the “replay buffer” consists of all
the transition samples in the experience replay mechanism. This can be considered a deep
reinforcement learning approach belonging to the supervised machine learning field.

Starting with the I/O data collection from the closed-loop system under the P-type con-
troller and with the ORM input-state-output data collected offline, the trajectory

{
uk, yk, rk, xm

k
}

has 2400 samples out of which only 2369 obey the piecewise-constant generative reference
input model rk+1 = rk. A total number of 100 iterations lead to the MFVI-RL controller matrix
K = [−0.6337, 0.3008,−0.1373,−0.0838,−0.0527,−0.0007, 0.0041, 0.3094]T for the controller
modeled as uk = KTsk, shown performing in Figure 7. We stress that the linear controller
structure complies very well with the 2DOF controller structure (and with the subsequent
VSFRT controller structure), in an attempt to investigate and check the best achievable
framework-dependent control performance.

3.7. The VSFRT Learning Control Design for ORM Tracking

The VSFRT feedback control concept is briefly detailed in this section. Since it relies
on state information for feedback, it uses again a state-space model, this time it is the
model (48), together with a different rationale for computing offline the virtual reference
input. It generalizes over the classical nonlinear virtual reference feedback tuning (VRFT)
concept [40–47] in the sense that the control law is not explicitly depending on the output
feedback error as in uk = C(ek = rk − yk) but rather in the form uk = C(xk, rk), or, more
generally, depending on the lumped regressor sk =

[
xT

k , rk
]T hence resulting in the law

uk = C(sk). Starting from a dataset of I/O samples {uk, yk} collected from the system (47),
VSFRT computes the virtual trajectory {uk, yk, xk} of (48) first. The virtual reference is
afterwards computed as r̃k = M−1(Q)yk. From this, the virtual lumped regressor builds the
dataset of states as

{
sk =

[
xT

k , r̃k
]T
}

, k = 1, B. The VSRFT principle solves (50) indirectly
by solving a controller identification problem posed as [48]

ϑ∗ = arg min
ϑ

VN
VR(ϑ), VN

VR(ϑ) =
1
B ∑B

k=1(uk − C(sk,ϑ))2, (66)

which specifies that the controller fed with sk and parameterized by ϑ should output uk
obtained in the first place in the collection phase. A remarkable observation is that sk in
VSFRT does not contain the ORM state xm

k as in the MFVI-RL case, since it is viewed as an
unnecessary redundancy [24]. Hence, the ORM state-space model is useless, except for its
I/O model M(Q). VSFRT does not require the Markovian assumption about the system
state-space model, hence it does not require a reference input generative model because
the VRFT principle is different about getting rk. The VSFRT steps are next described in
Algorithm 2 for the case of a linear control uk = KTsk = K0yk + . . . + Kτyk−τ + Kτ+1uk−1 +
. . .+K2τ+1uk−τ +K2τ+2rk where K ∈ <2τ+2 (notice the resemblance with MFVI-RL control,
except for the ORM states). In the linear controller case, ϑ = K.

Commonly, nonlinear controllers modeled as NNs have also been employed in many
settings [24,48–54]. Most of these deal with tracking applications extensively [55–62]. In the
case of mildly nonlinear systems, linear state-feedback controllers, such as the proposed
one, have proven functional. In fact, using the input patterns {sk} and the output patterns
{uk}, one can train any approximator for the controller using appropriate methods by
minimizing the cost function (66), which is the popular MSSE cost. Several intercoupled
aspects of how can VSFRT serve for transfer learning to the MFVI-RL controller have been
thoroughly investigated in [24], where other aspects, such as using principal component
analysis and autoencoders for dimensionality reduction of the state, have been tested as
well. Depending on the VSFRT NN controller complexity, it can be framed within the deep
learning type of applications.
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Algorithm 2. The VSFRT Algorithm 2 for ORM tracking

1. Choose a reference model dynamic M(Q) under the rules and in terms of specifications
which are representative for model reference control.

2. Run data collection experiments on system (47) to obtain a dataset of I/O samples {uk, yk}.
Here, uk should be persistently exciting to make yk capture all of the system’s dynamics.
This is a sort of exploration condition, as in MFVI-RL. The excitation condition is usually
ensured by (additive) exploratory noise, whether in an open- or in closed-loop.

3. Select the observability index τ. Data-driven build the virtual trajectory {uk, yk, xk} which
defines the virtual state-space system (48).

4. Compute the virtual reference input as r̃k = M−1(Q)yk. Here, a series of aspects are of
interest. M(Q) commonly has a low-pass behavior, making M−1(Q) as a high-pass filter. If
yk is noisy, low-pass prefiltering is strongly advised, which could be done, for instance, as a
zero-phase filtering. This filtering is not the same as the classical VRFT pre-filter L(Q) as it is
not applied on the entire regressor vector sk but only on yk. Further, even if M−1(Q) is
non-causal, it can be implemented offline.

5. Build the regressor vector
{

sk =
[
xT

k , r̃k
]T
}

, k = 1, B.

6. Form the overdetermined system of linear equations sT
1

. . .
sT

B

K =

 u1
. . .
uB

⇔ Ξ1K = Ξ2, (67)

and solve it by ordinary linear least-squares as K = pinv(Ξ1)Ξ2 where

pinv(Ξ1) =
(

Ξ1
TΞ1

)−1
Ξ1

T . This, in fact, solves the controller identification (66) over the
controller parameter K.

For our practical implementation on the visual servo tracking, the same dataset of I/O
data was used for VSFRT control design; namely, there were 2400 samples of trajectory
{uk, yk, xk}. There is no need for a specific generative reference input model, hence all
samples were used. Before computing the virtual reference r̃k = M−1(Q)yk, the output was
prefiltered through the low-pass filter QM(Q). The reason is that there exists some high-
frequency content in yk due to the imperfect DZ compensation in the collection experiment
with the P-type controller. Different from the classical VRFT setting, the role of the prefilter
here is not to make the controller identification cost function match the ORM tracking
cost function, but to merely minimize the DZ’s negative influence. Solving (66) with (67)
renders K = [−0.3469,−0.1222, 0.1001, 0.0488, 0.0060, 0.3565]T and the resulted VSFRT
controller is uk = KTsk, performing in Figure 7.

3.7.1. Testing the Controllers and Measuring the Resulted Tracking Control Performance

For a fair evaluation of the ORM tracking control, the index

f itscore[%] = 100
(

1−∑N
i=1

(
yk − ym

k

)2
/
(

∑N
i=1

(
yk − yk

)2
))

, (68)

was measured, where the mean value is defined yk = 1/N ∑N
i=1 yk for N = 950 samples.

This fit score metric is more practical and correlates well with the cost V∞
LORM in (50). It also

represents the percentage expression of the R2 Pearson coefficient of determination used in
statistics. The ORM tracking performance for the visual servo system is shown in Figure 7,
in terms of mean response and 95% confidence intervals obtained after five runs with each
of the 2DOF, MFVI-RL and VSFRT controllers. The actual values of f itscore are rendered in
Table 1 below.
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Table 1. 2DOF, VSFRT and MFVI-RL tracking performance score when learning uses closed-loop IO
data, measured on f itscore [%] [31].

Trial 2DOF VSFRT MFVI-RL

1 75.4897% 18.8667% 80.8252%
2 62.1113% 25.3567% 81.9418%
3 73.7258% 49.2332% 78.1441%
4 70.1448% 39.4324% 72.6856%
5 69.4888% 54.4153% 73.2465%

Average 70.1921% 37.4609% 77.3686%
Std 5.1563% 15.1837% 4.2540%

From a testing viewpoint, we do not move the blue ball target manually since this
behavior is hardly reproducible. Instead, we change the reference setpoint distance of the
image center with respect to the detected blue ball as a sequence of piecewise constant
steps. This piecewise constant variation of the reference is then filtered through the linear
ORM. This ORM’s output should be tracked accordingly with all tested controllers (An
illustration of the test scenario with the MFVI-RL controller is to be found in the movie that
can be accessed and viewed at the following address https://drive.google.com/file/d/
1VI8mbi7GOyaOE4ceIxJyaEPvRVBqTQPP/view?usp=sharing (accessed on 7 November
2021)).

A linear controller parameterization was used in this case study, to verify and discrim-
inate the control capability of MFVI-RL and VSFRT, compared to the model-based 2DOF
controller. As seen from the results recorded in Table 1, the MFVI-RL controller achieves the
best statistical result, even better than the 2DOF model-based controller, which supports the
conclusion that model-free design can in fact surpass the model-based design which relies
on approximate identified system models. The inferiority of VSFRT with respect to both
the baseline 2DOF controller and MFVI-RL controller, observed in Table 1, indicates that
the I/O data exploration issues is the main responsible factor. This conclusion is supported
by the fact that VSFRT has been shown to be superior to MVFI-RL when applied to other
systems, such as aerodynamic or robotic ones [24]. In fact, VSFRT was able to learn better
control with fewer transition samples and with less exploration. This observation confirms
that the exploration issue in data-driven control is still an open problem and efforts are
needed to define exploration quality indexes. These indexes must be accounted for and
balance the overall responses to the big questions of data-driven control, such as what is
the tradeoff between the controller complexity and parameterization vs. the control goal vs.
the optimal data volume and exploration quality?

On the application level, all three compared controllers are limited in the achievable
linear ORM tracking performance. The reason lies with the visual servo system actuation
quality from the ADCM: it has a time-varying dead zone whose thresholds in each rotation
direction change with longer runs, owing to electromagnetic effects. A perfect compensation
is therefore impossible to achieve without an adaptive mechanism. The used ADCM is
certainly not suitable for quality positioning systems. Under these adversarial settings,
the learned control for the visual servo system ORM tracking is deemed satisfactory and
it achieved the desired quality level. With better actuators, the tracking performance is
certainly expected to increase. In conclusion, such video servo systems are widely usable
in real world applications, such as surveillance cameras, motion tracking, etc.

4. Conclusions

Learning controllers from I/O data based on the new virtual state representation was
validated in a data-driven style using MFVI-RL and VSFRT frameworks. This validation
is important since, on one hand, it makes a strong connection between modern control
concepts and classical control concepts such as ORM tracking, two-degrees-of-freedom
control and classical control performance indices. On the other hand, it uses machine
learning methods and tools to achieve the control goal, therefore bridging the gap between

https://drive.google.com/file/d/1VI8mbi7GOyaOE4ceIxJyaEPvRVBqTQPP/view?usp=sharing
https://drive.google.com/file/d/1VI8mbi7GOyaOE4ceIxJyaEPvRVBqTQPP/view?usp=sharing
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control systems and artificial intelligence. The generalizability of these techniques is
straightforward extendable to more, nonlinear, multivariable systems. Validation on more
systems like the visual servo will confirm the viability of the proposed frameworks and
open the road to more systematic investigations. It will also lead to automatic control
design tools with powerful generalization capability, belonging to the next generation of
intelligent and autonomous control systems.
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