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Abstract: The thermal management system architectures proposed for hydrogen-powered propulsion
technologies are critically reviewed and assessed. The objectives of this paper are to determine the
system-level shortcomings and to recognise the remaining challenges and research questions that
need to be sorted out in order to enable this disruptive technology to be utilised by propulsion
system manufacturers. Initially, a scientometrics based co-word analysis is conducted to identify the
milestones for the literature review as well as to illustrate the connections between relevant ideas
by considering the patterns of co-occurrence of words. Then, a historical review of the proposed
embodiments and concepts dating back to 1995 is followed. Next, feasible thermal management
system architectures are classified into three distinct classes and its components are discussed. These
architectures are further extended and adapted for the application of hydrogen-powered fuel cells in
aviation. This climaxes with the assessment of the available evidence to verify the reasons why no
hydrogen-powered propulsion thermal management system architecture has yet been approved for
commercial production. Finally, the remaining research challenges are identified through a systematic
examination of the critical areas in thermal management systems for application to hydrogen-powered
air vehicles’ engine cooling. The proposed solutions are discussed from weight, cost, complexity, and
impact points of view by a system-level assessment of the critical areas in the field.

Keywords: thermal management system; hydrogen-powered propulsion; fuel cells; scientometrics;
co-word analysis

1. Introduction

Stringent environmental regulations set on fossil fuels and ambitious net-zero targets
has resulted in new research that focuses on alternative fuels as potential enablers of low
or zero carbon technologies [1]. In the aviation sector, the ACARE (Advisory Council for
Aeronautics Research in Europe) has announced the Flight Path 2050 in which stringent
targets are stated for civil aircraft of the next generation (e.g., 75% reduction in CO2
emissions per passenger kilometre and a 90% reduction in NOX emissions of flying aircraft
relative to the capabilities of typical new aircraft in 2000) [2]. To overcome these severe
limitations, compressed or liquefied hydrogen have been proposed as a promising option
owing to its possible benefits of zero-carbon emission due to a clean combustion [3–5]. As
an alternative fuel, hydrogen offers several advantages, including high specific energy
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(~2.8 times of the jet fuel), global availability, and safety [6]. However, one of the practical
bottlenecks in the implementation and technology development procedure of hydrogen-
powered air vehicles is the thermal management of the system. Hydrogen has a very low
boiling point (−252.87 ◦C) that could result in boil off in storage or OH radicals that form a
greenhouse gas [7]. Therefore, evident system shortcomings should be established, and
remaining research challenges should be identified to enable this disruptive technology to
be utilised by air vehicle manufacturers.

The focus of this paper is on the thermal management system architecture design,
current and future challenges, and proposing potential solutions for a hydrogen-powered
propulsion technologies. This objective has been achieved through the following steps:
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assumes that similar keywords in documents are a sign of proximity between them that 
enables to demarcate different structures, ideas, and components. Accordingly, the 
reader(s) can obtain an overview of important subjects and detect hidden relationships as 
well as possible interdependencies [9,10]. Other benefits of this technique include the de-
velopment of hierarchical patterns of concepts and the ability to cluster relevant fields of 
knowledge. The immediate merit of this approach is in simplifying the process of policy-
making for science and technology. 
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(TMS) for Hydrogen Propulsion. This goal is realised by analysing the Web of Science 
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One of the scientometric tools used in technology trend identification is the co-word
analysis. Co-word analysis is a well-known concept across various scientific fields and
aims to identify the connections between relevant ideas by considering the patterns of
co-occurrence of words. Concerning scientific publications, this method mainly examines
the titles, abstracts, and available portions of documents [8]. First developed in the 1980s, it
assumes that similar keywords in documents are a sign of proximity between them that
enables to demarcate different structures, ideas, and components. Accordingly, the reader(s)
can obtain an overview of important subjects and detect hidden relationships as well as
possible interdependencies [9,10]. Other benefits of this technique include the development
of hierarchical patterns of concepts and the ability to cluster relevant fields of knowledge.
The immediate merit of this approach is in simplifying the process of policymaking for
science and technology.

In this study, the scientometric analysis is performed with the below objectives:
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2.1. Methodology and Data Collection

The primary and vital step to perform the scientometric analysis is to determine the
database for review and the search strategy. In this step, search terms are created using the
keywords associated with the chosen field. Subsequently, by introducing these conceived
search terms in the advanced search section of the database, the articles containing the
associated search terms in their title, abstract and keywords are obtained.

On 24 September 2021, 684 related articles were retrieved from the WoS database.
Furthermore, 1149 articles were retrieved from the Scopus database. The rationale for using
the WoS database is that Histcite only accepts data from WoS as its input. Likewise, the
Citation Analysis to identify the key articles were conducted using HistCite.

With regards to the analysis of the technology trend, since the output data of the Scopus
database are more extensive in number in comparison with that of WoS, relying on the
Scopus database was beneficial to determine the trend comprehensively. The publication
and citation of articles in the research field over different years in WoS are shown in Figure 1.
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To evaluate the trend in technology development in the TMS for Hydrogen Propulsion
over various years, three-time periods (i.e., Phase 1, 2, and 3) are selected based on the
publications and citations of articles. The chosen periods are shown in Figure 1 and are
as below:

• Phase 1—1991 to 2004 (timespan inclusive of both years).
• Phase 2—2005 to 2016 (timespan inclusive of both years).
• Phase 3—2017 to 2021 (timespan inclusive of both years).

2.2. Identification of Fundamental Articles

After obtaining the required data from WoS, they are imported to HistCite for citation
analysis. The most cited articles are ranked based on the citation score (TGCS) since the
higher citations implies that the quality of that article is higher in the field of research. On
this basis, some of the most important articles are described and presented in Table 1, along
with the information like the authors, title, and their year of publication. The papers listed
in Table 1 are deemed highly relevant by the authors as many works of literature cited
them and spanned over all the three phases mentioned above. They address the need and
importance of utilising hydrogen as fuel while also catering for a few particular aspects of
the TMS, which is the main subject of this paper. Hence, their importance in developing
the work presented in this paper is significant.
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Table 1. Most important articles from Scientometric Analysis and Literature Review.

Sl. No Author(s) Title Year Main Achievements

[15] Longwell JP, Rubin ES, Rosen MA Coal: Energy for the future 1995

• This study emphasises the research for clean fuels and fuel production to minimise the
CO2 emissions and also on the renewable sources of energy for the future.

• Hydrogen and Fuel cell are identified to be potential alternatives for future
high-performance gas turbine engines while also considering other Fischer–Tropsch
liquids as alternatives.

• Identifies the areas of future research challenges for improvement in performance and the
U.S. Department of Energy role in supporting the technology development etc.

[16] Waitz IA, Gauba G, Tzeng YS Combustors for micro-gas turbine
engines 1998

• The air-hydrogen micro-combustor development is described including investigation of
combustion concepts based on pre-mixing upstream of the combustor, feasibility studies
and experimental studies.

• The complexity from a typical gas turbine system is significantly reduced by removing
the requirements of a primary zone in the Combustion strategies, highlights the need to
understand the behaviour of flow within the micro-combustor and indicates the need for
developing miniature diagnostic methods to assist further research in the area.

[17] Selimovic A, Palsson J
Networked solid oxide fuel cell
stacks combined with a gas
turbine cycle

2002

• Modelling and analysis of the networked Solid Oxide Fuel Cell (SOFC) stack and gas
turbine combination are studied to improve the overall system performance.

• An increase in system efficiency (about 5%) was determined and had required improved
thermal management.

[18] Winkler W, Lorenz H
The design of stationary and
mobile solid oxide fuel cell—gas
turbine systems

2002

• The paper explores the reheat (RH)-SOFC-GT-steam turbine (ST) cycle and confirms the
predicted theoretical thermodynamic model efficiency possibility of more than 80%.

• The results from these studies pave the way for future studies while encouraging
additional in-depth assessments of the SOFC-GT technology in various applications.
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Table 1. cont.

Sl. No Author(s) Title Year Main Achievements

[19] Burer M, Tanaka K, Favrat D,
Yamada K

Multi-criteria optimization of a
district cogeneration plant
integrating a solid oxide fuel
cell—gas turbine combined cycle,
heat pumps and chillers

2003

• The gas turbine combined cycle with a solid oxide fuel cell is explored and additionally to
a compression heat pump, a compression chiller and/or an absorption chiller with an
added gas boiler configuration is assessed.

• The fuel cell-gas turbine system, including compression heat pump and chillers, are
proven to reduce the CO2 emissions by half in comparison to the current business
standards and represent a promising option for the future both economically and
environmentally when such advanced integrated systems are implemented.

[20]
Spadaccini CM, Mehra A, Lee J,
Zhang X,
Lukachko S, et al.

High power density silicon
combustion systems for micro gas
turbine engines

2003
• The modelling, design and fabrication, experimental testing of the combustion system for

micro-propulsion and power generation are investigated in depth.

[21] Chiesa P, Lozza G, Mazzocchi L Using hydrogen as gas turbine
fuel 2005

• The study investigates the utilisation of Hydrogen as a fuel for a large and heavy-duty
gas turbine as an alternative to natural gas and studies the behaviour of the gas turbine
considering various parameters when switched from natural gas to hydrogen.

[22] Ertesvag IS, Kvamsdal HM,
Bolland O

Exergy analysis of a gas-turbine
combined-cycle powerplant with
precombustion CO2 capture

2005

• Exergy analysis is employed to investigate a concept for the power plant firing natural
gas with CO2 capture to understand the integration of reforming process and a combined
cycle.

[23] Calise F, d’Accadia MD, Palombo
A, Vanoli L

Simulation and exergy analysis of
a hybrid Solid Oxide Fuel Cell
(SOFC)-Gas Turbine System

2006

• This paper undertakes an exergy analysis and performance simulation of a hybrid
SOFC-GT system for various key design criteria.

• Results close to 60% electrical efficiency is observed, and it is estimated that with the
recovery of the heat losses, the efficiency can reach up to 70%. Thus, it indicates the need
for thermal management to recover the heat losses.

[24] Kvamsdal HM,
Jordal K, Bolland O

A quantitative comparison of gas
turbine cycles with CO2 capture 2007

• This paper assesses various concepts for a natural gas-powered plant with CO2 capture
and identifies that the concepts including novel technologies exhibit better performance
in terms of efficiency.

• The SOFC-GT configuration is found to have the best cycle performance and much better
than the combined cycle plant but identifies this technology as a prospect.
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Table 1. cont.

Sl. No Author(s) Title Year Main Achievements

[25] Calise F, d’Accadia MD, Vanoli L,
von Spakovsky MR

Full load synthesis/design
optimization of a hybrid SOFC-GT
powerplant

2007

• The optimization of the SOFC-GT power plant is investigated in this paper, and a set of
synthesis/design decision variables are determined that significantly lowers the capital
cost of the design.

• In addition, the reduction in the SOFC active area and the area of the compact heat
exchanger is observed through the optimization process.

[26] Mueller F, Jabbari F, Brouwer J,
Roberts R, Junker T, et al.

Control design for bottoming
solid oxide fuel cell gas turbine
hybrid system

2007

• The hybrid system of SOFC-GT control strategy is designed and assessed at several
operating points.

• These simulations have been proven effective for the control system development of the
fuel cell-gas turbine system.

[27] Autissier N, Palazzi F, Marechal F,
van Herle J, Favrat D

Thermo-economic optimization of
a solid oxide fuel cell, gas turbine
hybrid system

2007

• A systematic approach for the selection of a SOFC design for integration with GT is
described in this paper for user’s specifications and identifies the configurations that offer
potential benefits.

• The model also considers the losses of the electrodes and the thermal loads management
aspects while performing the optimization.

[28] Mueller F, Gaynor R, Auld AE,
Brouwer J, Jabbari F, et al.

Synergistic integration of a gas
turbine and solid oxide fuel cell
for improved transient capability

2008
• A SOFC-GT hybrid system is simulated to demonstrate that the hybrid system can be

developed to have better and improved transient capabilities.

[29] Bao C, Shi YX, Li C, Cai NS, Su
QQ

Multi-level simulation platform of
SOFC-GT hybrid generation
system

2010

• The internal reforming SOFC-GT hybrid generation system was self-developed and
simulated for different complexities and different system requirements for the studies in
this paper.

[30] Tse LKC, Wilkins S, McGlashan N,
Urban B, Martinez-Botas R

Solid oxide fuel cell/gas turbine
tri-generation system for marine
applications

2011

• The feasibility of a SOFC-GT system along with an absorption heat pump is reviewed in
this paper for marine applications to drive the HVAC and electrical systems.

• The results for a trigeneration system is shown to be much higher when the waste heat
recovery mechanisms are integrated with the system.
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Sl. No Author(s) Title Year Main Achievements

[31] Park SK, Ahn JH, Kim TS

Performance evaluation of
integrated gasification solid oxide
fuel cell/gas turbine systems
including carbon dioxide capture

2011

• Different configurations for the integrated gasification SOFC-GT system were evaluated
for comparison of their performance. Different SOFC thermal management strategies
were incorporated in these models.

• From thermal management of the SOFC perspective, the exit gas recirculation strategy is
identified to have better performance in comparison to the cathode heat exchanger
method.

[32] Zhao YR, Sadhukhan J, Lanzini A,
Brandon N, Shah N

Optimal integration strategies for
a syngas fuelled SOFC and gas
turbine hybrid

2011

• A thermodynamic model for the SOFC-GT hybrid power plant has been assessed to
understand the integration of the fuel cell and gas turbine to develop an optimization
framework.

• The model developed can envisage the performance characteristics for a wide range of
hybrid systems and enables in identifying the tradeoffs in the system design for better
integration techniques of such advanced system configurations.

[33] He F, Li Z, Liu P, Ma LW,
Pistikopoulos EN

Operation window and part-load
performance study of a syngas
fired gas turbine

2012

• A syngas fired gas turbine mathematical model is developed and evaluated to
understand the part-load performance characteristics with variable inlet guide vanes,
degree of dilution of fuel and bleed air.

• The results suggest that the operation of the gas turbine with diluted H2-rich syngas is
challenging and remarks that the possibility of burning H2-rich to benefit the CO2
captured IGCC plants while also highlighting the key challenges are to be explored in the
combustion system.

[34] Yan ZQ, Zhao P, Wang JF, Dai YP

Thermodynamic analysis of an
SOFC-GT-ORC integrated power
system with liquified natural gas
as heat sink

2013

• A parametric analysis of the SOFC-GT system with an Organic Rankine Cycle is carried
out to investigate the behaviour of some key thermodynamic parameters of the system.

• For the SOFC, LNG is used as the fuel from which the cryogenic energy is recovered. The
SOFC reaches the cascade energy utilisation with the recovery of the waste heat.

[35] Barelli L, Bidini G, Ottaviano A Part load operation of a SOFC/GT
hybrid system: Dynamic analysis 2013

• For a SOFC-GT hybrid system, a dynamic optimization model is studied, and the SOFC
behaviour with the part-load functioning of the gas turbine is assessed.

• The results highlight the importance of the detailed design of the heat recovery strategies
for the optimization of the plant’s performance from a dynamic perspective.
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[36] Liu MX, Shi Y,
Fang F

Combined cooling, heating and
power systems: A survey 2014

• The state-of-the-art CCHP system is reviewed, and further, a prime mover is introduced
in the configuration along with thermally activated technologies for different operating
strategies.

• Recent progress in research field and developmental challenges are discussed.

[37] Siddiqui O, Dincer I

Analysis and performance
assessment of a new solar-based
multigeneration system integrated
with ammonia fuel cell and solid
oxide fuel cell-gas turbine
combined cycle

2017

• The thermodynamic modelling and analysis using the exergy and energy approaches are
carried out for solar based systems integrated with NH3 fuel cell and SOFC-GT hybrid
system.

• The results show a 19.3% increase in energy efficiency in comparison to a single
generation system, while the exergy efficiency increase is 17.8%.

[38] Hajabdollahi Z, Fu PF
Multi-objective-based
configuration optimization of
SOFC-GT cogeneration plant

2017

• For a SOFC cogeneration plant, the thermo-economic modelling and analysis are carried
out for multi-objective optimization and analysis of exergy and energy.

• Results show that SOFC is required only for a plant with a high value of exergy efficiency
without any need for inlet air cooling for the case studied.

[39] Azizi MA, Brouwer J

Progress in solid oxide fuel
cell—gas turbine hybrid power
systems: System design and
analysis, transient operation,
controls, and optimization

2018

• A hybrid solid oxide fuel cell-gas turbine system is reviewed in this paper for dynamic
operation and control with different system stall/surge control strategies. In addition,
this article examined the integration with other cycles with the hybrid solid oxide fuel
cell-gas turbine system.

• The results indicate the excellent ability of control and high efficiency for the SOFC-GT
hybrid systems.

[40] Bao C, Wang Y, Feng DL, Jiang ZY,
Zhang XX

Macroscopic modeling of solid
oxide fuel cell (SOFC) and
model-based control of SOFC and
gas turbine hybrid system

2018

• A comprehensive review of the current SOFC technology models and model-based
control of the SOFC-GT system are discussed in detail.

• The transient models were assessed in-depth for off-design and part-load performance
etc., among many considered factors in this study.



Energies 2022, 15, 304 9 of 45

Table 1. cont.

Sl. No Author(s) Title Year Main Achievements

[41] Abbasi M, Chahartaghi M,
Hashemian SM

Energy, exergy, and economic
evaluations of a CCHP system by
using the internal combustion
engines and gas turbine as prime
movers

2018
• A CCHP system for power generation is designed to understand the energy, exergy and

economics when used with different prime mover configurations in this investigation.

[42] Lee YD, Ahn KY, Morosuk T,
Tsatsaronis G

Exergetic and exergoeconomic
evaluation of an SOFC-Engine
hybrid power generation system

2018

• The energetic and exergoeconomic analysis is carried out for a SOFC-Engine hybrid
system, and the results show that such a system has the highest efficiency compared to all
other systems analysed in this study.

• In addition, it highlights the importance of improving the thermodynamic efficiency for
the systems where the exergoeconomic factor is lowest in this study.

[43] Behzadi, A, Habibollahzade A,
Zare V, Ashjaee M

Multi-objective optimization of a
hybrid biomass-based
SOFC/GT/double effect
absorption chiller/RO
desalination system with CO2
recycle

2019

• The SOFC-GT-Chiller-RO system is assessed parametrically from exergy, energy,
exegoeconomic and environmental perspectives.

• Further, the multi-point optimization shows that the exergy efficiency of the proposed
system is 38.16% at optimum operating conditions.

[44]
Osigwe, E. O., Gad-Briggs, A.,
Nikolaidis, T., Jafari, S., Sethi, B., &
Pilidis, P.

Thermodynamic Performance and
Creep Life Assessment
Comparing Hydrogen- and
Jet-Fueled Turbofan Aero Engine

2021

• For a turbofan engine, the cycle performance, energy, and creep life assessment are
carried out in comparison to the jet fuel.

• This study indicates performance improvement in terms of SFC and more extended blade
life (15% more than other literary work on benefits of LH2) while highlighting the
drawbacks of hydrogen as a fuel and recommends areas of future work.
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2.3. Identification of Technology Trend

The data obtained from Scopus was imported into VOSViewer to establish the co-
occurrence network of keywords and their clusters. Each network consists of a set of
clusters in which the keywords within each cluster are related thematically related. There is
also a thematic connection between the keywords of specific clusters. Based on the Co-word
Analysis method, this paper will identify the technology trend.

According to the co-word analysis, a frequently repeated pair of keywords in an article
implies a strong semantic connection. The level of semantic connection rises as the number
of such pairs increases so that a deeper cognitive connection between articles of the same
field can be discovered. As a side note, this method has the potential to delineate the
dynamics of science in general [45–47]. Social and basic sciences have used this approach
to their advantage to map the relations among different concepts and subjects. This method
has also been successfully used in tracking fundamental changes and chronology of social
and perceptual networks [48].

In the subsequent sections, the data from the above-mentioned phases are studied
independently, and their clusters are scrutinised.

2.3.1. Phase 1 (Timespan—1991 to 2004)

The main topics in Phase 1 are categorised under 168 keywords and 27 clusters. For
this purpose, the co-occurrence threshold for the keywords is to be selected as one. Thus,
implying that these 168 keywords are repeated at least once in the title/abstract/keywords
of the articles. Choosing two as the co-occurrence threshold would have given us 22 key-
words and seven clusters. Since the objective of this paper is to examine all the subjects
in this phase, a co-occurrence threshold of one is selected. The co-occurrence network of
keywords in this phase is shown in Figure 2.
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Different clusters in this figure are displayed with different colours. It can be observed
that some clusters resemble separate islands that have no thematic relationship with other
clusters. It seems that these subjects have been mentioned for the first time in this phase. In
Figure 2, keywords with a more significant occurrence are shown in a larger circle.

The top keywords from Phase 1 (1991–2004) that form into 27 clusters are tabulated
in Table 2. Furthermore, Table 3 (which is tabulated for occurrences greater than two)
indicates the main topics of this phase in the form of keywords, occurrences, and total
link strength.
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Table 2. Numbers of Clusters and top keywords for Phase 1 (1991–2004) based on VOSViewer Software.

Timespan/
Phase

Total No. of
Clusters in

the Timespan

Cluster
No. Keywords in the Cluster

Phase 1
(1991–2004) 27

1

Cathode gas cooling—combustion—energy conversion—fuel cells—gas turbines—molten
carbonate fuel cell—nuclear power—partial load thermal efficiency—power

generation—power systems simulations—pressure swing operation—renewable energy
simulation—space power—steam turbines

2
Aerospace—combined cycles—combined system—hybrid system—mathematical

modelling—methane—multistage oxidation—NPSS—polymer electrolyte fuel
cell—reformer—solid oxide fuel cell—steam reforming reaction—system model

3 Helium—high temperature—high temperature reactor—HTGR—HTTR—hydrogen
production—inherent safety—molten salt—performance—test-rise to power—VHTR

4
Catalytic combustion—combined cycle—fuel cell—gas turbine—heat

exchanger—hydrogen combustion—methane oxidation—oxygen
plant—powerplant—reaction mechanism—steam—turbine

5 Chemical equilibrium—chemical reaction—corrosion—Graz cycle—heat
transfer—HRSG—mass transfer—packed bed—steam reforming—waste heat recovery

6 Aspen plus—cell bypass—CO2 acceptor—coal gasification—energy production—fossil
fuels—fuel energy savings ratio—pollution—superheaters—waste incineration

7 Absorption—cogeneration—electronics
cooling—production—refrigeration—temperature—trigeneration—turbines—waste heat

8
Energy storage - molten carbonate fuel cell—hydrogen turbine—integrated coal

gasification –performance of practical cell—thermal efficiency—waste heat
recovery—water gas shift reaction

9 Aerospace plane—cooling—data center—hydrogen—hypersonic—integrated—power
10 ASU—CO2—LNG—recirculated of flue gas—recirculated flue gas—zero emission

11 Ball bearings—bearings—ceramic bearings—rolling element bearings—self-lubricating
bearings

12 Catalytic reaction—jet/supersonic flow interaction—scran jet engine—supersonic
mixing—wedge shaped injector

13 Efficiency optimization—hybrid—MCFC—trigeneration—tubular SOFC

14 Fuel cell plant—exergy analysis—modified productive structure—thermoeconomic
analysis—phosphoric acid fuel cell

15 Heat recovery steam generator—high pressure turbine—hydrogen fuelled
combustors—intermediate high-pressure turbine—intermediate pressure turbine

16 Oxygen collection—reusable—separation device—space launchers—TSTO
17 Air cooling—design—hydrogen cooling—turbogenerator

18
CHP: combined heat and power same as cogeneration

Cogen: short for cogeneration
HRSG: heat recovery steam generator

19 Compact heat exchanger—hydrogen heater—spacecraft applications—turboramjet engine
20 Counterflow diffusion flame—turbulent combustion simulation
21 Diffusion hole—film cooling—hot wire anemometry—turbulent boundary layer
22 Cogeneration cycles—hybrid power cycles—molten carbonate fuel cell plants
23 CO2 capture—flue gas recycle—oxy-fuel combustion
24 Jet impingement—mist/steam heat transfer—turbine blade cooling
25 Innovative technologies—non-proliferation—plant design and construction
26 CGO—metal supported—solid oxide fuel cells
27 Coal based integrated gasification combined cycle plants

2.3.2. Phase 2 (Timespan—2005 to 2016)

The main topics in Phase 2 are grouped under 178 keywords and 23 clusters. To
this end, the co-occurrence threshold of words is taken as two. Thus, implying that
178 keywords are repeated at least twice in the title/abstract/keywords of the article.
Choosing three as the co-occurrence threshold would yield 75 keywords and 14 clusters.
Once again, with the objective of this paper to investigate all the subjects discussed in this
phase, a co-occurrence threshold of two is selected.
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The co-occurrence network of words in this phase is shown in Figure 3. The number
of clusters separated from the others is small. This indicates the deeper connection between
the subjects in this phase.

Table 3. High co-occurrence keywords in the 27 main clusters from VOSViewer.

Keyword Occurrences Total Link Strength

Combined cycle 6 20

Fuel cells 5 23

Gas turbine 5 20

Solid oxide fuel cell 5 20

Thermal efficiency 4 18

Gas turbines 4 9

Heat transfer 3 15

Coal gasification 3 13

Cogeneration 2 13

Pollution 2 12

Steam reforming 2 12

Waste heat recovery 2 12

Hydrogen production 2 11

Power generation 2 10

ASU 2 9

CO2 2 9

LNG 2 9

Zero emission 2 9

Cooling 2 6

Molten carbonate fuel cell (MCFC) 2 5

Hydrogen turbine 2 4

Solid oxide fuel cells 2 4
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The top keywords from Phase 2 (2005–2016) that form into 23 clusters are tabulated in
Table 4. In addition, Table 5 (tabulated for occurrences greater than five) indicates the main
topics of this phase in the form of keywords, occurrences, and total link strength.

Table 4. Number of Clusters and top keywords for Phase 2 (2005–2016) based on VOSViewer Software.

Timespan/
Phase

Total No. of
Clusters in

the Timespan

Cluster
No. Keywords in the Cluster

Phase 2
(2005–2016) 23

1

Carbon capture—combustion—carbon capture and storage—chemical looping–CO2
capture—coal gasification—combustion—computational fluid dynamics—electricity

production—fluid mechanics—fuel flexibility—gas turbines—heat
transfer—hydrogen—IGCC—MCFC detailed model—micro combustor—micro

combustion—modelling—numerical analysis—oxy-fuel—pinch
analysis—process—simulation—reaction engineering—solar energy—thermal

performance

2

AZEP—CCS—cooling—diffusion flame—fuel cells—gas turbine
combustor—gasification—high pressure—hybrid power

system—integration—modelling—oxy-combustion—syngas—thermal barrier
coatings—thermal management—thermodynamics

3

Combined heat and power—dynamic model—energy saving—heat recovery—heat
to power ratio—hybrid system—intermediate temperature—load

following—networked—operating strategy—shutdown—solid oxide fuel cells
(SOFC)—startup—system simulation

4
Aircraft engine—biomass gasification—efficiency—exergy—heat exchanger—heat

pipe—micro CHP—performance—plate fin—recuperator—simulation—stirling
engine—thermoeconomics

5
Bio fuels—carbon dioxide recovery—control design—gas

turbine—reforming—RGA—robust control—SOFC hybrid—SOFC-GT—system
design

6 Applications—cycle tempo—energy utilisation factor—exergy analysis—fuel cell
systems—MCFC—PEMFC—SOFC—system modelling—thermodynamic analysis

7
Brayton cycle—energy efficiency—ethanol—heat integration, hydrogen

production—LH2 cryogenic exergy—nitrogen—power park—steam
reforming—VHTR

8 CHP—combined power plant—energy conservation—fuel cell—hydrogen
energy—optimization—power plant—protection of the environment

9
Absorption chiller—absorption refrigeration—combined cycle—cycle

analysis—distributed generation—hybrid cycle—microturbine—planar solid oxide
fuel cell

10 Ammonia-water mixture—blower recirculation—hybrid power plant—integrated
system control—modular design—parametric analysis—solid oxide fuel cell

11 Biomass—gas turbine combustion—hydrogen enrichment—micro gas
turbine—model—NOx performance analysis

12 Capture—carbon—chemical—economy—gas turbine—looping—sodium

13 Air conditioning—cogeneration—district cooling—thermal
storage—thermodynamic simulation—trigeneration

14 Energy—exergy efficiency—high temperature gas-cooled reactor—liquified natural
gas—liquid hydrogen—organic Rankine cycle

15 Blowoff—flashback—hydrogen fuel switching—lean premixed—swirl number

16 Human machine interface—hydrogen cooling system—supervisory control and
data acquisition—system reliability—Weibull distribution

17 Heat exchangers—hybrid systems– proton exchange membrane fuel cells—molten
carbonate fuel cells– solid oxide fuel cells

18 Alternative energy systems—biogas—energy rationalisation—organic matter

19 Molten carbonate fuel cell—multi-objective optimization—optimization
criteria—power generation

20 All-electric aircraft—electrical propulsion—superconducting motor
21 Hydrogen combustion
22 Temperature distribution
23 Two phase flow heat transfer
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Table 5. High co-occurrence keywords in 23 main clusters from VOSViewer Software.

Keyword Occurrences Total Link Strength

Solid oxide fuel cell 41 109

Gas turbine 39 110

Hydrogen 26 71

SOFC 20 49

Hybrid system 16 42

Exergy 12 38

CO2 capture 12 15

Optimization 9 24

Heat transfer 9 23

Fuel cell 9 22

Micro gas turbine 9 16

Exergy analysis 8 23

IGCC 8 19

Syngas 8 18

Cogeneration 7 24

MCFC 7 23

Combined cycle 7 18

Hydrogen production 7 14

Combined heat and power 6 16

Natural gas 6 12

Molten carbonate fuel cell 6 11

Gas turbine combustion 6 5

Efficiency 5 23

Energy 5 19

Absorption chiller 5 13

Heat exchanger 5 12

Combustion 5 11

Solid oxide fuel cells 5 11

2.3.3. Phase 3 (Timespan 2017 to 2021)

The main topics in Phase 3 are categorised under 115 keywords and 16 clusters. For
this purpose, the co-occurrence threshold of words is taken as two, implying that the
115 keywords are repeated at least twice in the title/abstract/keywords section of the
articles. Choosing three as the co-occurrence threshold would have given us 53 keywords
and eight clusters. Since the aim of this study in this phase is to investigate all related
subjects, a co-occurrence threshold of two is selected.

The co-occurrence network of keywords in this phase is shown in Figure 4. This
indicates that the considered subjects in this research and their relationship with one
another are well identified by researchers. It is observed that only two clusters seem to
have no thematic relationship with other clusters at the time of this study.

The top keywords from Phase 3 (2017 to 2021) that form into 16 clusters are tabulated
in Table 6. In addition, the occurrences of keywords greater than four are tabulated in
Table 7.
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Table 6. Number of Clusters and top keywords for Phase 3 (2017 to 2021) based on VOSViewer Software.

Timespan/
Phase

Total No. of
Clusters in

the Timespan

Cluster
No. Keywords in the Cluster

Phase 3
(2017–2021) 16

1

Absorption refrigeration—biomass gasification—CCHP—combined cooling and
power—combined cycle—economic analysis—environmental analysis—exergy

analysis—heat recovery steam generator—MCFC—organic Rankine cycle—molten
carbonate fuel cell–parabolic trough solar collector—stirling engine

2

Absorption chiller—cathode airflow—desalination—dynamic model—emission
reduction—fuel cell—fuel utilisation—gas turbine—hybrid system—organic

Rankine cycle (ORC)—SOFC/GT—solid oxide fuel cell (SOFC)—thermal
management—thermoeconomic analysis

3
4e analysis—biogas—carbon capture—exergoeconomic—exergy

destruction—exergy efficiency—LNG—micro gas turbine—multi-effect
desalination—multi-objective optimization—poly-generation—solid oxide fuel cell

4 Ammonia—CFD—compressor—deflagration—detonation—gas turbine
combustion—heat exchanger—heat transfer—hydrogen—pulse detonation engine

5
Cogeneration—district heating and

cooling—gasification—modelling—MSW—municipal solid
waste—polygeneration—simulation—SOFC—trigeneration

6
Configuration design—controls—design—experimental—hydrogen
fuel—hypersonic—numerical simulation—optimization—precooled

engine—turbines

7 CO2 capture—efficiency—exergoeconomic analysis—hydrogen production—power
generation—thermal efficiency

8 Biomass—LNG regasification—multi-generation—thermodynamic
cycle—transcritical CO2 cycle—waste heat recovery

9 Electrolyzer—energy—exergy—heat pump—methane

10 Fuel cell gas turbine hybrid—multigeneration system—prime
mover—sustainability—thermal energy storage

11 Combined cooling—feedback correction—rolling optimization—steam
ejector—thermodynamic analysis

12 Air film cooling—blade cooled GT—hybrid cycle—hybrid efficiency—SOFC—ICGT
13 Fuel cell—jet engine—solar—thermodynamics
14 Integrated energy system—multigeneration—prime movers—solar energy
15 Hybrid power plant test rig—MGT—SOFC emulator
16 Distributed energy system—energy storage
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From the Scientometrics and literature review, in Phase 1, it is observed that keywords
such as combined cycle, fuel cell, gas turbine, solid oxide fuel cell, thermal efficiency, and
heat transfer have very strong links. Progression to Phase 2 shows a further increase in the
link strength for keywords in Phase 1 while introducing new keywords of comparable link
strength such as hydrogen, SOFC, hybrid system, exergy, optimization, micro gas turbine,
exergy analysis, MCFC, cogeneration, among many. Even in Phase 3, the link strength of
the keywords from Phase 1 and Phase 2 increases, and additional keywords of comparable
strengths come into view, following a similar trend as observed with previous Phases.

Table 7. High co-occurrence keywords in 16 main clusters from VOSViewer Software.

Keyword Occurrences Total Link Strength

Solid oxide fuel cell 40 94

Gas turbine 28 68

Exergy 19 73

Hydrogen 17 41

Hydrogen production 14 31

SOFC 13 26

Energy 12 48

Multigeneration 12 40

Solar energy 11 35

Efficiency 10 45

Gasification 10 21

Biomass 9 32

Organic Rankine cycle 8 29

Biomass gasification 8 26

Exergy analysis 7 22

Hybrid system 7 19

Molten carbonate fuel cell 7 17

Fuel cell 7 15

Thermodynamic analysis 6 20

Multi-objective optimization 6 14

Optimization 6 14

Micro gas turbine 6 13

Economic analysis 5 20

Absorption chiller 5 14

Waste heat recovery 5 9

Biogas 5 6

Ammonia 4 17

LNG 4 13

Multi-generation 4 11

CCHP 4 10

Polygeneration 4 10

Combined cooling 4 9

Heat exchanger 4 3
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It is also worth noting that the focus on power generation with hybrid systems and
optimising such cycles for better performance has been at the forefront of many of these
researches. Although some literature focuses on aviation applications, it is recommended
for the reader(s) to adopt best practices from both the domains of research to develop
suitable and optimum TMS for applications of Hydrogen in aviation. The subsequent
sections of this paper address the topics related to TMS with the utilisation of hydrogen in
the viewpoint and envision the prospective Engine Fuel System architectures that benefit
the engine performance.

3. Thermal Management

Thermal Management is a concept of utilising the engine fluid systems to extract
the excess heat generated within the various components and systems of the engine and
employing the extracted heat for multiple functions that would improve the engine’s
performance. Thus, developing any TMS for an aero-engine requires integrating all the
three Fluid Systems in the engine, i.e., the Air, Oil, and Fuel Systems [49,50].

As the aero-engine technology transitions towards higher Overall Pressure Ratios
(OPRs) and higher By-pass Ratios (BPRs) to achieve the demands of higher thrust, power,
and improved Specific Fuel Consumptions (SFC) [4], some of the key challenges from the
TMS perspective are,

1. The higher component temperatures.
2. The higher temperature of the working fluids.
3. Higher heat generated within the Engine and its sub-systems owing to points 1 and 2.

Therefore, the TMS and its significance in effectively utilising the excess heat to
improve the engine performance becomes a critical issue. In the state-of-the-art aero-engine
technologies, the recognised heat sources for which the TMS design caters decisively are
accessory gearbox (AGB), bearings, pumps, and generators. Furthermore, the power
gearbox and the constant speed drives in the geared turbofan engines are also heat sources
that require the effective TMS to enhance its performance and operability [50].

To simplify, the main objectives of the TMS are to [49],

• Maximise the utilisation of heat generated and avoid unnecessary heat losses.
• Enable various components and systems to operate at an acceptable limit to ensure

higher component life and performance and thereby reduce the intervention for main-
tenance and services and so forth.

From the Thermal Management perspective, it is worthwhile to note the primary
functions of the said Fluid Systems in the engine, and they are classified broadly as [49],

• Fuel System—Designed to act as a heat sink for the Oil System that scavenges heat
from various components/systems in the engine.

• Oil System—Designed to scavenge the excess heat while providing essential cooling
and corrosion protection to specific components/systems in the engine.

• (Internal or Secondary) Air System—Aids in cooling the engine components, anti-icing,
and cabin environment control.

Although the cooling flow of air is deemed a heat load management practice for the
engine components, this does not fall within the scope of this paper. However, the reader(s)
can note that a comprehensive review of the cooling mechanisms, physics-based modelling
and associated studies, along with the involved control system mechanisms, are available
in the literature [50]. Yet another aspect of the air system that is associated with the thermal
management is an integration with the oil system where the heat exchangers like the surface
air-cooled oil Coolers (SACOC) are employed to further maintain the required operating
temperature of the oil, following a heat exchange between the oil and fuel system via the
fuel oil heat exchanger (FOHE).

Thus, a visualisation of the thermal management model, which is typical and simpli-
fied, is as shown in Figure 2.
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The origin of this model is through a patent registered in 1987 by United Technologies
Corporation based on an integration of the fuel, oil, and air systems to meet the cooling
requirements of gas turbine engines [50]. For the benefit of the reader(s), it is worth noting
that important information is available in the literature, such as the historical development
in the area of TMS for gas turbines, various configurations for consideration. In addition,
the utilisation of different working fluids such as water, therminol, and thermally neutral
heat transfer fluid (TNHTF) are addressed [50].

The TMS model shown in Figure 5 is acceptable as a preliminary concept for an
aero-engine that utilises Hydrogen as the fuel. Hydrogen is in its gaseous state at room
temperature due to its low boiling point (−20.1 K at 1 atm pressure), while its auto-ignition
temperature is much higher at 773 K in comparison to its counterpart convention fossil
fuels [51,52]. Thus, from a thermal management perspective and to further optimise the
engine’s performance, the wide temperature range for operation is offered by hydrogen as
it can act as a heat sink.
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A typical fuel-cooled thermal management model, i.e., the fuel system architecture
employed in the current technologies, can be visualised in Figure 6. Thus, it enables the heat
dissipation from various engine sources to the fuel raising its temperature to the desired
value before introducing it into the combustor.
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The fuel system architecture shown in Figure 6 is typical of the state-of-the-art engine
technologies available in the market. For the application of hydrogen as fuel in the engine,
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the current model requires further modifications. The modifications necessary for the
engine fuel system for thermal management and the fuel system’s operation with hydrogen
covers the subsequent section.

3.1. Engine Fuel System Architecture for Utilisation of Hydrogen

As observed in Figure 6, the fuel system comprises vital components such as fuel drain
tank, low pressure (LP) and high pressure (HP) pumps, heat exchanger (Fuel-Oil), fuel
filters, fuel metering unit and flow meter and supply pipes delivering fuel to the fuel spray
nozzles (FSNs). In addition to these, various other components, such as the control valve,
pressure regulating valves, and flow regulators, are necessary for the safe and reliable
functioning of the system. For utilisation of Hydrogen, another essential feature to be
considered during the conceptualisation and design of the fuel system is Insulation. In
the subsequent sections, the key components of the fuel system, such as the tanks, heat
exchangers, pumps, and insulations, are discussed in more detail. The fuel filters, fuel
metering unit, and flow meter are not considered within the scope of this paper as their
operation is not in tandem with the thermal management system of the engine.

3.1.1. Tanks and Fuel Drain Tank

Hydrogen may be in its gaseous state or liquid state during storage, but in either case,
the main challenge arises from its volumetric density and thus, for aviation, utilising Liquid
Hydrogen (LH2) is deemed more favourable. Another significant challenge is maintaining
hydrogen in the liquid state at around 20–30 K throughout the whole mission of the aircraft.
The thermal heat leakage tends to raise the fuel temperature in the tanks. Though the
withdrawal of the fuel from the tanks would reduce this temperature change, there would
be vaporisation of the remaining fuel due to the temperature change, which occupies the
void created by the fuel flowing out from the tank [53].

The literature distinguishes two types of tank design—integral tanks that fit closely
with the airframe design and non-integral [54]. The former needs a more precise stress
design than the latter, and in terms of volume’s utilisation is believed to be better, allowing
better aerodynamic performances while reducing the fuselage size. Moreover, maintenance
of these integral tanks is easier thanks to being more readily accessible for inspection and
repairs of the insulation [55]. Integral tank structures have also been selected in [56–58],
contrary to [59], which asserted in 2012 that the TRL of integral tank technology was still too
low. Although non-integral tanks may allow more straightforward design and simulation
processes to understand the system behaviour, the former is seemingly preferred.

It is also worth noting that in ENABLEH2 research (an EU funded consortium led
by Cranfield University), a variety of aircraft configurations have been assessed against
numerous criteria and concluded that the blended-wing configuration and the tube-wing
configuration with tanks above the passenger cabin (as proposed by Cryoplane) are appro-
priate for long-range missions [53].

Based on the discussions with the researchers involved with hydrogen propulsion
technology at Cranfield University, it could be estimated that the engine fuel system is
required to deliver the fuel to the FSNs or combustor at a temperature around 400~500 K
for better thermal performance of the engine. Furthermore, at the inlet of the engine fuel
system, the fuel may be delivered by the aircraft boost pumps at around 25~26 K at about
14~20 bar pressure. These values are indicative in nature, and the purpose of mentioning
these values is only to understand the potential range at which the engine fuel system need
to operate from the point of entry of the fuel from aircraft to the FSNs or combustor.

From the engine fuel system perspective, some of the state-of-the-art engines employ
a fuel drain tank with the primary purpose of collecting the residual fuel from the FSNs
and the fuel manifold after a normal shutdown of the engine on the ground to prevent fuel
lacquering and any carbon deposits in the FSNs and tubes. This fuel is usually drained
back to the tank via a dump valve to recirculate into the engine fuel system upon engine
restart. In the event of an in-flight shutdown, the dump valve remains closed, leaving the
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fuel available in the manifolds and the FSNs to aid with the in-flight restart of the engine.
Generally, the sizing of the drain tank would be to collect enough fuel, which would satisfy
the requirements for one normal shutdown and three failed starts.

During the shutdown on the ground or during the excess fuel spill back to the tank
in running condition, the fuel is at a higher temperature and in a vapour state, far above
the critical temperature and pressure. Hence, the design of the fuel drain tank becomes
more complicated as various issues such as size, weight, venting, and much more turn
out to be necessary for safety and reliability, as venting into a hotter environment of the
engine could potentially cause deflagration or detonation [53]. Therefore, it would be more
conducive to circulate the excess fuel during running conditions and usual shutdown back
to the aircraft tank, which has a much larger volume, operating at lower temperature and
pressure than the flow spilt back. Such spill-back to aircraft tank methodology has been in
practice in many current engine technologies; however, it is worthwhile to mention that
it may be necessary to employ some cooling practices and pressure reducing techniques
along the supply lines that is spilling the flow back to the aircraft tank for safety and
reliability purposes. In the parametric study of tank integration for hydrogen [53], the
conclusion was that the tank weight behaves mainly as a function of its diameter, and the
choice of insulation solely depends on the diameter and the venting strategy. Additionally,
it concluded that the dormancy time (minimum time required for the tank pressure to be
equal to venting pressure) is also an essential parameter for design consideration. With the
fuel in its vapour state and at high temperature and pressure spilling into the fuel drain
tank, the need for the venting strategy in the engine becomes significant as the dormancy
time is affected.

Another prime reason for this choice, i.e., spill-back to aircraft tank, is the size and
weight of the tank. The low density of hydrogen implies that the volume in terms of space
for the tank required is much more prominent than its counterparts in current technologies.
Thus, it has implications on the mechanical design of structures and accessories required
for the installation of the drain tank, the life expectancy of components, the ease of accessi-
bility for maintenance of these and other vital components in the vicinity of the tank and
much more.

Figure 7 shows the architecture of the engine fuel system with spill-back to the aircraft
tank. In addition, to cool the excess spill back to the aircraft tank, a surface air-cooled fuel
cooler (SACFC) is proposed as a heat exchanger unit in this architecture. The assumption
revolves around the working principle of this heat exchanger, which is to be the same as that
of the SACOC that uses the cold bypass stream air intending to provide convective cooling
to the hot fuel before it reaches the aircraft tank and ensures that the fuel temperature
reduces to an optimum temperature. This architecture stands as the base for further
discussions in the subsequent sections of the paper that cover the different engine fuel
system configurations based on the heat management strategies.
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3.1.2. Heat Exchangers (HEX)

As discussed in the previous section, using hydrogen as a fuel opens the door to
optimise the engine performance, improving the life expectancy of various components
while controlling the temperature of the fuel [58,60]. Heat exchanger units play a significant
role to achieve this goal. There are many different types of heat exchangers, but the typical
ones are shell-and-tube, crossflow and double-pipe heat exchangers, and these units can
be employed as compressor precoolers and compressor intercoolers as they are promising
in terms of performance; however, it would involve a considerable complexity from ap-
plication perspective within the engine architecture. They can also be used to cool down
the compressor bleed air used for turbine cooling to increase the turbine life expectancy.
Furthermore, installing a heat exchanger in the nozzle allows increasing the temperature of
Hydrogen using the thermal energy expelled by the engine. Such options were proposed
and assessed by NASA in 1978 [58] and validated in the literature [60]. Hence, these
works of literature serve as solid ground to start exploring various applications of the heat
exchangers in the engine and thereby the possible engine fuel system configurations.

For this purpose, the tool TURBOMATCH, developed at Cranfield University, was
used due to its flexibility to adapt and customise any aero-engine to the user’s needs. One
of the limitations of the TURBOMATCH is that it cannot calculate the outlet parameters
of the heat exchangers. Hence, to offer more flexibility for the users, the TURBOMATCH
needs to be accompanied by an external tool that can contemplate different heat exchangers.
A direct consequence of this is the loss of some fidelity to widen its capabilities as the rest
of the literature concerning heat exchangers do, i.e., to say, a slightly reduced accuracy to
allow a considerable increase in its adaptability [61].

The structure of this external tool developed using MATLAB follows a method com-
monly known as ε-NTU, where ε refers to effectiveness and NTU to Number of Transfer
Units. An explanation of this method goes beyond the scope of this paper, but it is worth
highlighting that this structure reduces the necessary iterations and input parameters to
the minimum, especially in comparison with another commonly used technique—the
LMTD method. Thus, allowing the users to execute it without knowing neither any outlet
parameters of the heat exchanger nor heat exchanger’s geometry while ensuring that the
speed of the calculations is not in jeopardy. As this is the case, two different paths follow
for execution [61],

• The first path solves the thermal problem, in which some geometrical parameters can
be used as input to obtain the desired thermal outlet conditions.

• The second path solves the sizing problem, in which imposing some thermal conditions
allows the tool to offer suitable geometrical ranges for those conditions (more precisely,
the U-A parameter, where U stands for overall heat exchange coefficient and A is the
heat exchange surface).

For a broad perspective of the thermal problem in three different types of heat exchang-
ers, i.e., double-pipe HEX (counter-flow condition), cross-flow HEX (unmixed condition)
and shell-and tube HEX (for single-pass, N = 1) effectiveness in terms of the number of
transfer units are calculated. The calculated results are plotted and shown in Figure 8. Via
the sizing problem, generating a similar plot is possible, but it includes the U-A parameters
for the heat exchangers.

Solving either of the problems using the tool and calculating the pressure drop within
the heat exchanger, the necessary inputs for simulations in TURBOMATCH would be
available [61]. Furthermore, these tools simulate the Rolls-Royce Avon engine for different
cases. The first simulation used kerosene as the fuel and without any heat exchangers. In the
second simulation, liquid hydrogen (LH2) was used as the fuel without any heat exchangers.

Further, two more simulations with LH2 including, a heat exchanger in different
positions in each case, is carried out. The simulations aid in understanding the impact of
the fuel and that of the heat exchangers. The variation of air mass-flow rate with combustor
outlet temperatures is as shown in Figure 9 for different engine configurations.
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Similarly, the behaviour of the fuel flow for the configurations mentioned above, with
the combustor outlet temperatures, is simulated and shown in Figure 10, indicating that
any configuration that uses LH2 results in less fuel consumption as LH2 has a higher
gravitometric energy density [62].
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Furthermore, the simulations also indicate that any configuration of the engine that
includes heat exchangers improves the engine’s performance. Specifically, the configuration
that includes turbine cooling air heat exchanger provides the most benefit in terms of thrust,
as indicated by the results (Figure 11).
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These simulations from the tools offer support to the ideas proposed by NASA in
the late 1970s [58] and highlight the use of heat exchangers as units that can enhance the
engine’s performance. Depending on the number and positioning of the heat exchangers,
various configurations of the engine fuel system can be derived. Based on the above
simulation and extending from Figure 7, i.e., the proposed fuel-cooled TMS model, the
different configurations for the engine fuel system are proposed and shown in Figure 12.
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Configuration 1, shown in Figure 12a, adopts the exhaust gas heat exchanger to utilise
the exhaust heat for raising the fuel temperature. The placement of this heat exchanger
is upstream of the LP Pump so that the fuel temperature can be raised to some extent
before it is pumped further into the fuel circuit. During the filling up of the aircraft tank,
if there is any fraction of air left in the tank, the nitrogen (melting point: 63.2 K) [63] and
oxygen (melting point: 54.36 K) [64] in the air might form into ice crystals as the operating
temperature of the tank for hydrogen is much lower (at around 20~30 K). The heat from
the exhaust could potentially raise the fuel temperature so that these ice crystals can melt
before they can venture further into the fuel circuit. In addition to this, another benefit of
using the exhaust gas HEX is that it can reduce the exhaust gas temperature and thereby the
exhaust noise. Since the kinetic energy of the exhaust gas is dependent on the exhaust gas
temperature and pressure, rejecting the exhaust heat into the fuel may potentially reduce
some energy in the flow and thus reduce the noise emission due to the exhaust gases. Of
course, this influences the thrust produced by the engine, as indicated in Figure 11, but this
enables the engine to operate at a relatively higher operating setting. The exhaust Ggas
HEX design principle can follow the same concept of the SACOC, where the convective
heat transfer occurs between the two fluids. Such a model potentially avoids tapping the
exhaust air, which may compromise the exhaust mass flow and thrust requirements.

Configuration 2, shown in Figure 12b, includes a compressor intercooling HEX in
addition to the exhaust gas HEX. The implementation of an intercooler between the com-
pressor stages increases the useful work of the turbine (as the turbine work remains the
same) while the overall compressor work reduces. Since it is much easier to compressor
cold air than hot air, it enables the engines to achieve higher OPRs [65]. To avoid bulky
and heavy heat exchanging units, the Chalmers University of Technology, Sweden, are
investigating this avenue and have proposed a vane-integrated heat exchanger [66] for
turbofan applications. This compact heat exchanger is integrated into the compressor vanes
and utilises the available aerodynamic surfaces to reject the core heat to the fuel. It also
proposes that introducing additional profiled plates can further increase the surface area
available for heat dissipation. Though this could lead to increased pressure losses in the
engine core, the argument is that the design of such plates with improved radial turning
capability would reduce engine size (in terms of length) and weight. Such a configuration
would feature an S-duct between two compressors in the engine. A preliminary study of
this concept is available in the literature [66]. With such a novel concept for heat exchange,
the feasibility and potential of compressor intercooling HEX are deemed desirable for
advanced TMS models that are necessary for the utilisation of Hydrogen as a fuel. It is
also worth noting that the exhaust gas HEX could also be based on such a concept and
can utilise the aerodynamic surfaces of the vanes/struts in the tail bearing housing for
HEX integration.

Figure 12c, showing Configuration 3, introduces the turbine cooling air HEX and a flow
turbine/expander in addition to the features discussed in Configuration 2. As observed
in Figure 11, implementing a turbine cooling air HEX is beneficial in terms of thrust for a
given combustor outlet temperature and is proposed for the additional benefit of improving
the life expectancy of the turbine components. The hot air from the compressor used for
turbine cooling can be passed through a heat exchanger to cool and reject heat to the fuel.
Thus, enabling much cooler air introduction for cooling the turbine components. As the
engine fuel circuit is much larger and more complex, the pumps required to deliver the
fuel must provide higher discharge pressures. However, at the inlet of FSNs or combustor,
the fuel at an optimum temperature and pressure is desired. Thus, employing a flow
turbine/expander upstream of the inlet of the FSNs or combustor would aid to relieve the
excess pressure delivered by the pumps. Such a flow turbine/expander benefits the system
by producing useful work from fuel expansion, which could power the pumps in the
system and reduce the load on the gearbox. Such a flow expander can also be implemented
in the spill-back line to the aircraft tank to assist in relieving the excess pressure while the
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SACFC reduces the temperature. Such conditioning of the fuel before return to the aircraft
tank will be favourable from safe operations perspective for the engine fuel system.

3.1.3. Pumps or Mechanical Compressors

There are two types of pumps in the state-of-the-art engine fuel system—an LP cen-
trifugal pump and an HP gear pump [49]. A plunger-type pump is also used in many
architectures. For utilisation of hydrogen as fuel and to deliver the fuel to the FSNs or com-
bustor by the engine fuel system, the selection of the pump becomes important. Though
there are various types of pumps available, the positive displacement devices are particu-
larly preferred for hydrogen compression as they work on the principle of reducing the
confined volume to squeeze the gaseous hydrogen into smaller space and thereby increas-
ing the gas pressure due to the increased number of collisions of the between particles and
against the walls [67]. And within this current section on pumps, the preferred options
include reciprocating pumps, diaphragm pumps and linear compressors. Furthermore, the
centrifugal and cryogenic pumps are also briefly discussed.

Reciprocating Pumps [67]: Reciprocating pumps, specifically the oil-free configura-
tions, are commonly used for hydrogen applications. These are deemed appropriate for
moderate mass flow and high-pressure applications. Although the detailed working mech-
anism is not a scope of this paper, it is worth mentioning that these pumps are used in
multi-stage configuration to produce high pressure in hydrogen. However, they are not effi-
cient for high flow rates as the flow rates depend on the dimensions of the cylinder and the
speed of compression. Due to moving parts, the recommendation is to operate at an opti-
mum speed to limit the mechanical stresses on the components. Such high-pressure oil-free
pumps are generally prone to rapid failures of the sealing rings due to non-uniform pressure
distribution in the cylinder. Thus, a double-compartment distance piece must be included
in the design of pumps as it also facilitates venting. Such configuration mitigates the risk of
hydrogen leakage due to the embrittlement of steel used in the pumps. Embrittlement is a
significant drawback in hydrogen reciprocating pumps, and hence, the material selection
should involve careful assessment based on several guidelines per the API Standards 618,
where the minimum requirements are available. The technology of the reciprocating pumps
has improved significantly in recent years for hydrogen applications and achieves discharge
pressures and flow rates reaching 100 MPa and 30 Nm3/h, respectively.

Though reciprocating pumps operations is wide with hydrogen applications, they
are not a perfect fit due to several limitations. Due to many moving parts, there is a
challenge and complexity involved in both cost and manufacturing. In addition, the
effective maintenance of the pump system is complex, and heat management due to moving
parts becomes essential. Furthermore, the pressure fluctuation due to the reciprocating
movement of the piston in the cylinder is a source of vibration, noise and affects the life
expectancy of the pump system and the engine fuel system. However, they offer a good
performance under multi-stage configurations due to the high discharge pressure achieved
and the flexibility in capacity and size.

Diaphragm Pumps [67]: Diaphragm pumps are considered highly effective for hydro-
gen applications due to: low power consumption and cooling requirements, and high
throughput. They are generally suitable when handling pure gases that are highly reac-
tive as this isolates the gases/fuel and piston. Since the motion translation is by another
hydraulic fluid which further translates the motion to an isolating element called the di-
aphragm, this diaphragm movement reduces the available volume to increase the pressure.
The typical hydraulic fluid used in this pump is the oil, and specific feed is to be incorpo-
rated in the engine oil system to cater for this requirement. For good pumping efficiency,
the oil pressure becomes vital here. As the diaphragm is in contact with oil on one side
and hydrogen on the other, the material selection for the diaphragm is vital to ensure
that durability and corrosion resistance meets the desired limits. The diaphragm design
must also be robust and take into account that the flow rates can cause the failure of the
diaphragm due to mechanical stress and, hence compromising the durability.
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With the separation of the hydrogen circuit from the oil circuit in the pump, the risk of
hydrogen leakage can be mitigated and managed with careful design. The compactness
and high efficiency offered by the diaphragm pumps make it desirable for engine fuel
system design where hydrogen is in use as a fuel.

Linear Compressors or Pumps [67]: Compared to their mechanically-driven counter-
parts, linear compressors have lesser moving parts due to the direct connection of the
piston to a linear motor coupled with a resonating spring mechanism. The low number of
moving parts makes the overall system much more straightforward, easier maintenance,
and is much more cost-effective. Among the linear motors commonly used to drive the
piston in linear pumps are the magnetic type, i.e., moving-coil type or moving-magnet type.
In aerospace applications, moving-coil linear motors have been used in numerous cases as
it offers high efficiency, longer life and low vibration and noise. For hydrogen applications,
this is considered an innovative technique for increasing pressure in recent years.

The absence of crank-shaft assembly in linear pumps implies that the temperature, gas
flow, and supply voltage influence the movement of the piston. This influence is both an
advantage and a disadvantage, to be fair. It enables the piston position to be optimised and
makes the pump versatile for the desired performance, which is advantageous. However,
the complexity involved in the control system design has been deemed a disadvantage
and found an expensive cost. Thus, the recommendation is to consider techniques like
continuous manipulation of supply voltage when employing linear pumps.

Centrifugal Pumps: In literature, centrifugal pumps are generally used for hydrogen
applications in rocket engines as they are relatively simplistic in design, reliable, offer a wide
operating flow range and adequate performance [68]. In addition, NASA’s investigation
in the late 1970s [58] utilised the centrifugal pump in the engine fuel system. However,
they also reasoned that the positive displacement pumps (at the time) would have design
speeds less than 10% of those of centrifugal pumps and would be heavier for the head rise
and flow rates considered for their research. Additional lubrication requirements were
reasoned to be the prime factors for significantly reducing operating life since LH2 is not
a good lubricant. It is also reasonable to mention that NASA based their research [58]
on operating LH2 (saturated liquid) at 345 kPa at the inlet of the HP pump, for which a
centrifugal pump was the choice.

However, in recent years, the technology of the positive displacement pumps has
evolved considerably, and they are some of the prime features in state-of-the-art aero-
engines. In addition, since the concept proposes raising the temperature of the hydro-
gen/fuel upstream of the inlet of the pumps in the configurations shown in Figure 12, the
performance of the centrifugal pumps in a two-phase flow regime and for the pure gaseous
state of hydrogen must be investigated thoroughly to understand its suitability in terms of
application for an engine fuel system for hydrogen utilisation.

Cryogenic Pumps: Ideally, the use of Cryogenic pumps is to pressurise LH2 instead of
the gaseous hydrogen. Employing such pumps may also aid the hydrogen liquefaction,
which benefits the storage strategy for hydrogen. Utilising such a pump can offer high
discharge pressures but at low temperatures. Though they offer much higher volumetric
efficiency than the mechanically driven pumps, the low temperature operating require con-
tinuous monitoring of the insulation for the pump system and results in higher complexity
in terms of controlling the vacuum stability [67].

From the perspective of thermal management and the configurations of the engine fuel
system proposed, such a pump could be introduced in the fuel spill back line to the aircraft
tank after the SACFC, which could also potentially liquefy the hydrogen from gaseous
state to LH2. However, to pursue this idea, it is recommended to consider the energy cost
to liquefy hydrogen, which the literature deems as a definite drawback [68].

In literature [67], there are more types of pumps explored for the application of
hydrogen, and hence, a thorough investigation of the pumps for the requirements of the
fuel system in tandem with the proposed engine fuel system architectures for thermal
management would be beneficial for the selection of pumps.
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3.1.4. Insulation

Insulation is a method to avoid thermal leaks in the system when operating hydrogen
as a fuel. It becomes particularly vital when certain accessory systems in the engine fuel
systems operate at different conditions or require insulation for such systems’ operating
performance. A compromise must be made between insulation efficiency and material
density to minimise the heat leaks. The thermal conductivity of the wall should be as
low as possible. For the reader’s benefit, it is worth noting that much literature covering
insulations is in tandem with the hydrogen storage tanks and are available for hydrogen
applications [56,69,70]. It concludes that the preference must be towards the low-density
foam and multi-layer insulation (MLI) under vacuum, as aerogels are still too fragile
for now. Foams are usually directly sprayed on the tank as spray-on foam insulation
(SOFI) [55].

The MLI is commonly used to insulate satellites and space probes and designed to
limit the radiative heat transfers using reflective materials such as gold. It is otherwise
not very effective against other types of heat transfers and should be limited to vacuum
applications. For aerospace applications, the MLI system utilises several thermal radiations
shields normal to the flow direction of the heat and usually comprises a reflective foil
over the outer side of the tank wall to minimise radiative losses. These radiation shields
comprise alternating layers of metal foil and insulating material of low conductivity and
low emissivity materials. Performance and use of MLIs are affected by parameters such
as residual gas type in the insulation and its pressure. Since the MLIs are sensitive to
the layer density, it is prudent that any local compression is avoided [5], both during
manufacturing and during installation. Accomplishing the vacuum between these layers
makes this technology valuable. However, in literature, it is identified that besides its
low thermal conductivity, MLI upon vacuum can represent a safety risk due to vacuum
leaks [55]. Likewise, it also asserts that though the vacuum shell technologies represent a
promising solution, they still have a very low TRL [59]. MLIs’ thermal behaviour degrades
drastically for pressures higher than 100 mPa (0.001 mbar) and could be hazardous [5,55].

Vacuum insulation minimises the hydrogen boil-off; however, to attain vacuum,
venting equipment is necessary for the region of vacuum. In addition, to avoid the air entry
into the tank system, ensuring that there is no interaction with low-temperature hydrogen
or LH2 and air is necessary as such interaction freezes the air and blocks the flow. The
tank’s design must withstand any buckling when subjected to the external pressure that
the vacuum jacket is experiencing. In addition, it may necessitate additional stiffeners
between the outer and inner walls, which adds complexity in design and mainly increases
the tank’s weight. Though this may seem to be a promising solution, it results in heavier
tanks that would require additional equipment to maintain the pressure in the vacuum
chamber, making it expensive for implementation and operation [5].

Foam insulation might represent a suitable compromise to reach the performance
objectives as it utilises low density and low thermal conductivity materials. In literature,
two types of foams are selected for comparison—polyurethane and closed cells foams. Both
have a similar thermal conductivity at 20 K, around 0.005 W/m/K. Polyurethane has a
33% lower density (32.0 kg/m3 against 51.1 kg/m3) [55]. Thicker layers may be needed
to prevent hydrogen leaks as H2 is a very small molecule that can pass through some
materials [71,72].

A numerical comparison of four combinations of insulation methods based on SOFI,
MLI and vapor cooled shield (VCS) is available in the literature [69] where the latter is an
active insulation method. It asserts that, for safety reasons, SOFI should always serve at
least as a guarantee of insulation efficiency in case of vacuum leaks. Part of the originality
of the approach in this study is the different vacuum degrees considered [69]. However,
since this work doesn’t focus on aviation, it is hard to draw parallels. Though it concludes
that variable density MLI + VCS (VDMLI + VCS) represents the best way to limit heat flux
into the tank, it is certainly the heaviest studied solution [69].
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3.1.5. Supply Pipes

Very little literature specifically addresses the ducts and pipes required for the ap-
plication of Hydrogen in an aero-engine. The NASA study has assessed and selected a
configuration of the supply pipe in terms of length, diameter, and material [58]. As this is
from the late 1970s and keeping in mind technology improvement, it is sensible to draw
parallels from these assessments but must be received with reservations.

The fuel supply pipes route through different zones where the engine’s temperature
and pressures are different. From the proposed engine fuel system configurations in
Figure 12, the inference is that the supply pipes route through some hot zones of the engine.
Based on the engine fuel system design, i.e., to operate hydrogen in a fully vapour state or
in the liquid state, there may be two-phase flow through the pipes due to the heating of
the pipes in the hot zones. Such two-phase flow could also occur due to the operations of
specific accessory components involved in the engine fuel system. Thus, it would alter the
vapour ratio of hydrogen (for LH2 operation in the circuit) and thereby influence the overall
performance of the engine fuel system. Even for the heat exchanger work discussed in the
earlier sections, this was one of the challenges to establishing a high-fidelity model. From a
TMS perspective, heating of the pipes could potentially aid in raising the fuel temperature,
but the magnitude of heat addition from the engine’s hot zones would become hard to
establish quantitatively.

The literature [73] attempts to establish a suitable model for variable liquid/vapour
ratios. Furthermore, at the Universiti Putra Malaysia, methods to insulate Liquid Nitro-
gen (LN2) ducts were explored using computational fluid dynamics, which considered
polyurethane foam and Vacuum Insulated Pipe (VIP) and concluded that the polyurethane
foam insulation would be sufficient for LN2 pipes [74]. The same approach could poten-
tially aid in assessing the insulation requirements of the hydrogen pipes depending on the
engine fuel system operating condition, i.e., with LH2 or gaseous hydrogen or two-phase
flow, and parallels drawn must be carefully reviewed as LH2 is much colder than LN2
(nitrogen melting point: 63.2 K [63]). Similar studies are available with promising methods
matching the experimental results that explore transferring the cryogenics while minimiz-
ing heat leakages, and nitrogen was considered the candidate for this study, too [75]. Thus,
the supply pipes are to be reviewed and assessed separately.

Table 8 summarises the major components, i.e., the fuel drain tank and spill-back to
aircraft, HEXs and pumps for the fuel system. The benefits and challenges are tabulated for
the reader(s) benefit in the form of a small synopsis.

3.2. Fuel Cells

Fuel cell (FC) application in the aviation industry is another important field of research
that has drawn much attention in recent times. Therefore, it becomes essential to consider
the possibility of applying the fuel cells in aero-engine applications. Fuel cells directly
convert chemical energy into electricity with a very high efficiency. The oxidation of
hydrogen by oxygen to form water (Equation (1)) is the reaction common to every hydrogen-
fuelled FC.

2H2 + O2 → 2H2O (1)



Energies 2022, 15, 304 31 of 45

Table 8. Summary of the major components.

Summary of Components

Tanks Benefits Challenges

Fuel Drain Tank
• Advantageous to collect excess fuel spill back during engine shutdown on

the ground and failed starts.
• Aids in recirculation of the excess fuel spilt back to the fuel system and

thereby the combustor as necessary.

• Fuel temperature and pressure during spill back to drain tank are higher,
and thus the design of the fuel drain tank would be complicated due to
issues such as size, weight, venting etc.

• Venting in the hotter environment of the engine can cause deflagration or
detonation, which is a safety risk.

• Might potentially require insulation due to maintaining the fuel at lower
temperatures.

• Will require additional mechanical structures/components to support the
installation of the drain tank (which would be larger in volume).

• Accessibility for maintenance of the mechanical structures/components
and other vital components in the vicinity would be complicated.

Spill-back to Aircraft Tank
• Can potentially overcome the risk of deflagration or detonation due to

venting in the hotter environment of the engine as the aircraft tank is much
larger in volume and would be operating at lower temperatures and
pressures than the flow spilt back.

• May necessitate additional cooling strategies to reduce the temperatures
and pressures of the fuel spilt back to the aircraft tank for safety.

• Adds weight to the engine due to the introduction of additional cooling
HEX(s) in the spill-back to aircraft line but considerably lesser in weight
compared to the design and installation of the drain tank for hydrogen.

Heat Exchangers Benefits Challenges

Exhaust Gas HEX
• Utilises the heat from the exhaust to raise the fuel temperature.
• Installation at the upstream of the LP Pump aids in melting any nitrogen or

oxygen crystals before they can venture further into the fuel circuit.
• Vane-integrated HEX application can utilise the aerodynamic surfaces of

the vanes/struts in the Tail Bearing Housing of the Engine for heat
exchange.

• Reduction in exhaust gas temperature could potentially reduce the exhaust
noise to some extent.

• Conventional HEXs like the shell and tube or double pipe configuration
will be bulky and heavy.

• Such configuration will require tapping/bleeding the exhaust gas and
affect the thrust.

• Vane-integrated HEX configurations are expensive, and the maintenance
costs are high.

• In case of any leaks, identification and repairs are complex and might
require the replacement of the entire unit.

• Adds complexity to the control system design for continuous monitoring
and leak identification if any.
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Table 8. cont.

Summary of Components

Tanks Benefits Challenges

Compressor Intercooling HEX
• An intercooler between the compressor stages will improve the useful

work produced by the turbines.
• Vane-integrated HEX application can utilise the aerodynamic surfaces of

the vanes in the compressor stages.
• It can potentially reduce the engine size in terms of length if the radial

turning capability can be improved by design.

• In case of any leaks, identification and repairs are complex and might
require the replacement of the entire unit.

• Potential risk of leakage of hydrogen into hot or fire zones in case of leaks.
• Costs of manufacturing and maintenance costs are very high.
• Adds complexity to the control system design for continuous monitoring

and leak identification, if any.

Turbine Cooling Air HEX
• Offers benefit in terms of thrust for a given combustor outlet temperature.
• In addition, aids in improving the life expectancy of the turbine

components.

• Design and installation are complex as the turbine cooling air path is in
the engine’s core.

• Routing fuel pipes in hot areas will add complexity and risk in design.
Bleeding the cooling air and re-introducing it is also complicated.

Pumps or Mechanical
Compressors

Benefits Challenges

Reciprocating Pumps
• The oil-free type configurations are often used in Hydrogen applications.
• Deemed appropriate for high-pressure applications where the mass flow

rate is moderate.
• Design with a double-compartment distance piece mitigates the risk of

hydrogen leakage due to embrittlement of steel used in the pumps.
• Can achieve discharge pressures up to 100 MPa and flow rates of 30

Nm3/h.

• Flow rates depend on the dimensions of the cylinder and the speed of
compression. Thereby the efficiency of the pump.

• Due to moving parts, the compression speed is limited by the mechanical
stresses of the components.

• Prone to sealing ring failures and hence a double-compartment distance
piece becomes an essential part of the design.

• The introduction of the double-compartment distance piece will also
necessitate venting strategies.

• Owing to many moving parts, manufacturing is complex and hence
expensive. In addition, maintenance of the pumps is complex due to heat
management requirements.

• Source of noise and vibration.
• Life expectancy is usually affected due to pressure fluctuations due to the

reciprocating motion of the piston.
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Table 8. cont.

Summary of Components

Tanks Benefits Challenges

Diaphragm Pumps
• Low power consumption and cooling requirements, and high throughput

make Diaphragm pumps highly effective and favourable for hydrogen
applications.

• Separation of the hydrogen circuit and the hydraulic fluid circuit (typically
oil) aids in mitigating and managing the risk of hydrogen leakage.

• Compact and high efficiency.

• Requirement of additional hydraulic fluid.
• When oil is used as the hydraulic fluid, the engine oil system must cater

for specific feed to the pump.
• For good pumping efficiency, oil pressure becomes vital.
• Diaphragm material selection must ensure durability, robustness, and

corrosion resistance.

Linear Compressors or Pumps
• Lesser moving parts compared to mechanical pumps.
• The overall design of the pump is simpler, easy to maintain and

cost-effective.
• Longer life, high efficiency. Low vibration and noise.

• Gas flow, temperature and voltage supplied influence the movement of
the piston.

• Piston position optimization for versatility makes the control system
design complex and expensive.

Centrifugal Pumps
• They are generally used in rocket engines for hydrogen applications.
• Simplistic in design and reliable.
• Wide operating flow range and adequate performance.

• Pump performance may be affected in the two-phase flow of hydrogen.
• For applications with gaseous hydrogen, the design of the pump is

complex and will require very low clearance between the impeller and
the hub.

Cryogenic Pumps
• Offers high discharge pressure, high volumetric efficiency than the

mechanically driven pumps.
• It can aid in the liquefaction of hydrogen and benefit the storage strategy

when employed in the spill-back to the aircraft tank line of the fuel system.

• Operates at low temperatures.
• May necessitate insulation for the pump system and results in complexity

in maintaining the vacuum stability.
• The energy cost of liquefaction is high and is deemed as a definite

drawback.
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Over time, different types of fuel cells have been developed, and the most studied for
applications in the aviation sector are proton-exchange membrane fuel cells (PEMFC) and
solid oxide fuel cells (SOFC). The former has a membrane that allows the selective passage
of H+ ions and generally work at low temperatures. Hydrogen dissociates at the anode
into protons and electrons. Electrons are transported through the external circuit, while
protons cross the electrolyte membrane and react with oxygen and electrons to form water
(Figure 13). Their start-up time (about 1 s) is significantly lower than that of SOFCs (about
10 s) [76]. The SOFC’s main feature is that the electrolyte is solid and mainly composed
of ceramic material. The chemical reaction happening inside it is the same as in PEMFCs
(Equation (1)). The majority of SOFCs work based on an oxygen-ion conducting mechanism,
in which oxygen, receiving electrons from the anode, is dissociated into O2- anions. These
anions pass through the electrolyte and react with the hydrogen in the anode generating
water and electrons that travel back to the cathode (Figure 13). Both the PEMFC and SOFC
illustrations are shown in Figure 13.
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Despite the attention to fuel cells in aviation, this technology is still in the early stages.
In addition to completely replacing the engine, the SOFCs could be used to power the
APUs, which allow the engine to start up and provide power for internal services such as
air conditioning and lighting. APUs are also activated during the taxing phase and are
contributing to total emissions [77]. Besides decreasing carbon emissions, powering the
APU with a SOFC would significantly reduce the noise produced, reportedly a massive
problem in 40% of the airports [78]. Unfortunately, SOFCs are still too heavy, and their
low power density would result in excessive fuel usage. Therefore, these devices can
be introduced onboard only after developments in their power densities. On the other
hand, since the system generates power directly, fewer components are required for power
treatment. Hence, the total weight of the system, excluding the SOFC stack, is lowered.

In both types of fuel cells (PEMFCs and SOFCs), the amount of heat generated due to
exothermic reactions, overpotentials and irreversibility within the cell, is large. Addition-
ally, the combustion of excess fuel at anode-off gas generates heat, which can significantly
increase the temperature. Since FCs need specific operating temperatures to work ade-
quately, thermal management is a crucial aspect to be considered. SOFCs, for example,
require a temperature sufficiently high (approximately 600 to 1000 ◦C) to ensure sufficient
conductivity of the ceramic electrolyte. However, without the excess heat removal, the high
temperatures can trigger sintering processes or cause deformations or cracks due to the
different thermal expansion coefficients of the components [79].
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Regarding PEMFCs, high temperatures can degrade the membrane and the catalyst,
while low temperatures negatively affect the kinetics. Local hot spots can also occur in
both FC types, which lead to sealing failures or damages to the electrodes. Furthermore,
their presence can cause sealing failures, compromising the whole structure [80]. Guk
et al. [81] reported that this phenomenon occurs more at the FC inlet, where higher pressures
frequently generate leakages and hydrogen crossflow, which cause direct oxidation and a
consequent temperature increment. An appropriate gas channel structure can mitigate this
problem, as described in the [77], and an innovative delta8 SOFC stack development that
increases the convective heat transfer reduces the temperature gradient.

Although several geometries have been described in the literature, the implementable
structures are limited by aircraft design requirements and must be designed accordingly.
Generally, multiple cells are assembled in stacks to produce sufficient power. In this
case, an uneven current distribution may occur, causing considerable stress on some cells
rather than others [79]. A basic approach for proper thermal management includes good
insulation and the presence of heat exchangers to pre-heat the incoming gases and increase
thermal efficiency. As far as stack cooling is concerned, the strategies vary according to
the FC type and power output. Conventional cooling methods proposed in the literature
include cooling with cathode air, liquid cooling, cooling with separate air, cooling with
heat spreaders, and evaporative cooling [82] and are illustrated in Figure 14. In addition
to maintaining an optimum stack temperature, this strategy aims to minimise the thermal
gradients within the cell, which should not exceed 10 ◦C/cm to prevent damaging the
internal structure [83].
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The most common cooling mechanism (for both PEMFC and SOFC) is air cooling,
in which the airflow through the cathode (or in additional channels) provides good ther-
mal regulation; however, it may be ineffective for local temperature control [84]. Other
drawbacks of this method involve the large size of the cathode channels (resulting in
high FC volumes) and the possibility of the PEMFC membrane drying out due to the
high airflow [82]. On the other hand, several works opposed the use of this method for
applications requiring power outputs above 5–10 kW [85–87]. For systems with a power
output greater than 2 kW, liquid cooling can be used instead of air cooling. However, this
method is more expensive than air cooling because of additional cooling loops or heat
exchangers. Deionised water is commonly used due to its high thermal capacity. Besides,
it can also be mixed with an antifreeze coolant such as ethylene glycol to work in cold
environments [88]. Alternatively, several studies are investigating the use of nanofluids
containing nanoparticles (e.g., Al2O3, CuO) which increase the thermal conductivity, thus
decreasing the power required by the pumps [89,90].
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In evaporative cooling, the latent heat due to phase change is exploited. As a result,
the refrigerant flow is lower than in liquid cooling, and, consequently, the system is less
expensive and more compact. It is also possible to exploit the different densities of the
phases to circulate the fluid without requiring additional pumps [91]. Because the stack
temperature is required to be lower than the coolant boiling temperature, an appropriate
fluid must be chosen.

An alternative solution for both PEMFC and SOFC is represented by the use of heat
pipes integrated within the structure. The fluid inside the pipe absorbs heat, evaporates,
and is transported to the cold zone, where it condenses, releasing heat to the environment.
Dilling et. al. [92], reported that an integrated liquid metal heat pipe into a planar SOFC
can obtain a significant heat transfer and a flatter temperature profile. Since the cooling is
provided almost entirely by the heat pipes, it lowers the required air.

Regarding tubular SOFCs, an annular heat pipe design decreased the temperature
gradient by 10 ◦C/cm [93]. It further demonstrated that the reduction could significantly
increase the power density. However, despite the promising results, the heavy stainless-
steel envelope presents some challenges that need to be addressed before introducing this
solution in mobile applications.

If the fuel cells are integrated into the system, the fuel is delivered to fuel cells instead
of the FSNs, provided that the gas turbine system is fully equipped to operate without a
combustor and can be purely powered by fuel cells. If otherwise, a hybrid application of
the gas turbine and fuel cell (as discussed in various literature in Table 1) can be adopted,
and the power generated via the fuel cell can be utilised for other specific purposes within
the engine or the aircraft as mentioned earlier. Hence, the architecture of the engine fuel
system based on the configurations proposed in Figure 12 could be extended for fuel cell
application and are illustrated in Figure 15. To this end, it is assumed that the engine is
powered by the fuel cell entirely and would be devoid of a combustion system. These
configurations can be further optimised depending on the fuel cell operating conditions,
such as the fuel temperature and pressure required at the delivery to the fuel cells, and
thus influences the placements and number of HEXs required in the configuration for the
functioning of the Engine Fuel System.

As shown in Figure 15, depending on the power capacity of the fuel cell, it can be
employed to one or more systems such as the fan or propeller, the auxiliary power units
(APUs), pumps, and gearbox. Otherwise, the power can be stored in a battery to be
used as and when necessary. From the thermal management perspective, the concerns
with delivering the fuel at optimum temperature and pressure can be addressed via the
configurations discussed in the previous sections. The cooling strategies discussed in the
current section can address the interests of maintaining the fuel cells at optimum operating
conditions. Thus, the fuel cell integrated system will require a further optimised TMS
model that incorporates various strategies and best practices.
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4. Discussions

In the ENABLEH2 research, the recommended setting for hydrogen and air mixture
diffusion characteristics is in the range of 300–600 K operating between 1–15 bar pressure
and at lean-burn conditions [94]. It validates the estimated values (400–500 K) taken in the
earlier sections for the fuel delivery temperature by the engine fuel system to the combustor
as the estimated values fall within the recommended range. Furthermore, the fuel inlet
conditions at the entry of the engine fuel system (14–20 bar at about 25~26 K and less
than the critical temperature of 33 K) is considered by the authors as an acceptable range,
as it is indicated in the literature [5] that the aircraft tanks for hydrogen are generally
operating between 1 to 3.5 bar. Here, the assumption is that the aircraft boost pump
increases the pressure and a slight increase in temperature compared to the usual LH2
storage temperature (~20 K) in the tank. Therefore, these indicative values used can be
justified based on the information available in the literature.

The Chalmers University of Technology are investigating the fuel and heat man-
agement systems for a LH2 powered aircraft and have published a report highlighting
multiple heat recovery options in the engine and the possibility of different designs for
assessment [95]. In this approach, the rejection of the core heat to the fuel is carried out
by employing a precooler, vane-integrated HEX [66], turbine air cooling and exhaust gas
HEX. Furthermore, an indicative value of the operating temperatures for the engine fuel
system with respect to these components is provided in the literature [95] and is illustrated
in Figure 16.
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The heat management model proposed by the Chalmers University of Technology
validates the conceptualised heat management strategies of the configurations proposed
in this paper. Although the difference can be seen with the placements of the HEXs. It
can be argued that different engineering strategies towards the same problem are seen.
In the configurations proposed by this paper, the compressor precooler is not considered
but is deemed a viable option for improving the engine’s performance. The indicative
temperature values proposed at the exit of the HEXs in the literature [95] may be a good
starting point for further detailed evaluations as the operating temperature range of the
engine fuel system considered in this paper is within the bandwidth of operation shown in
Figure 16. Since information such as pressures or the placements of the HEXs and pumps
are not provided in the literature [95], it provides an opportunity to explore the engine fuel
system design and its behaviour in future studies and analysis.

Utilisation of hydrogen for improved TMS in an aero-engine and the fuel-cooled TMS
model requires the modifications in the engine fuel system that are already discussed and
necessitate a higher number of the control and pressure relief valves in the architecture.
These additional components require integration with the engine electronic control (EEC)
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to ensure that the operation of these components is appropriately optimised with the
engine fuel system and the requirements of the fuel mass flow by the combustor as per the
engine operating settings. This integration with the EEC for the best control system design
becomes vital.

The various new HEX configurations proposed requires integration with different
fluid systems both at the cold and the hot end of the engine, and appropriate flow control
to these HEXs is to be monitored and controlled via the EEC, depending on the engine
demand at various operating conditions.

The introduction of advanced HEX designs, such as the vane-integrated HEX, with the
TMS, offers advantages as discussed while it also introduces complexities and challenges
from a maintenance perspective. In case of any hydrogen leaks from these integrated
HEXs, identifying the source of the leak and associated repairs to address the issue may
be challenging. Even if there is no leak, the same could be true when any other issue may
have compromised the HEX. It could also potentially require the entire unit to be swapped,
which makes the maintenance more expensive as it can be expected that the manufacturing
cost of such complex design would also be expensive.

Another foreseeable risk is the possibility of hydrogen leakage into the engine’s hot
zones or fire zones during the engine operation. This leakage could occur through any
components such as the end fittings of the supply pipes, HEXs, or pumps. From the
safety perspective, it becomes prudent to consider some contingency strategies during the
detailed design and analysis of the TMS models. A suggestion to this end would be to
have an appropriate feedback system to the EEC so that the fuel feed can be cut off at the
leak’s location.

Furthermore, based on the selection of the pump type for the engine fuel system,
there may be the necessity of integration of another fluid system with the pump either
for lubrication in the case of a reciprocating pump or for hydraulic pressure via the oil
system (or separate hydraulic circuit if a different fluid is intended to be used) for the
diaphragm pump.

In some designs of the pumps, it may be necessary to have a venting outlet via a
pressure relief valve for operation during certain conditions. Therefore, there must be
a strategy for safe venting in the engine to ensure the safe and reliable operation of the
engine fuel system. Such venting may also be necessary at various points in the fuel
system, which must be reviewed in depth during the detailed design of such a fuel-cooled
TMS architecture.

It can be observed that concerns discussed in the previous paragraphs all relate to the
EEC control system design, and hence the engine’s control system becomes much more
complex and integrated. For such a complex control and monitoring of the fuel system, the
need for instrumentation and feedback and control loops may be necessary, and it may also
be required to have a continuous monitoring strategy implemented for dynamic operation
of the fuel system.

The proposed configurations of the engine fuel system for fuel-cooled TMS introduce
more components into the overall engine architecture. It introduces additional weight to
the engine and thereby affects the power to weight ratio of the engine. Besides, the added
components, the support structures necessary for installing these components must also
be considered, as they add weight to the engine and further compromise the power to
weight ratio. Furthermore, due to the additional components, it may become necessary to
increase the engine’s overall size to accommodate the components. Due to this increase in
size, other penalties in terms of drag etc., may be introduced.

The fuel cell integration into an aero-engine, although attractive, is quite a challenge
due to the complexity involved with the thermal management of the fuel cells. In addition,
since the technology is under development, it could be recognised that the implementa-
tion would require more detailed research and assessment of the various issues. As the
technology continues to improve the power densities, the integration of the fuel cells may
become more feasible. However, it is also worth noting that the power generation capacity
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of the fuel cell is also another important aspect to be reviewed in the future in tandem
with the increased of the engine and other systems introduced into the engine fuel system
architecture, as discussed in previous sections. This review of the power capacity must be
carried out for various scenarios and throughout the flight mission. Furthermore, if the
engine is fully powered by the fuel cell, the power capacity necessary to cater to all the
systems in the engine becomes crucial.

In the fuel cell configurations, the storage of power via a battery shown in Figure 15
would be more conducive in a stationary gas turbine application due to the concerns with
the weight of the battery. However, such an inclusion in the configuration for aviation
application would theoretically allow the aircraft to extend the range. Like the idea of more
electric aircraft mature with the technology development and integrated systems, it could
be noted that the fuel utilisation for the electrical power for operating the engine would
necessitate the storage systems like batteries and the improvement in the areas battery
management systems may also become essential necessitating further investigations into
the thermal management strategies. The inclusion of batteries may present safety issues
such as overheating, swelling due to overcharging or a high discharge rate, among many.
Therefore, the battery health monitoring and addressing the thermal loads of the battery
systems is another challenging aspect of the overall thermal management strategies.

Regarding battery health monitoring, it is recommended that the battery status, such
as its temperature, charge capacity and levels, voltage, and current during charging and
discharging, may be continuously monitored. To this end, additional components, heat
exchanger units, instrumentation, and feedback and control loops may be necessary to
monitor and maintain the optimum operating conditions for the battery systems. In addi-
tion, it may be necessary to consider the possibility of operating the battery continuously,
i.e., continuous charging and discharging of power for certain function. Such demand
tends to complicate the range prediction for the aircraft. All these challenges would neces-
sitate additional complexity in the EEC control architecture and design to ensure that the
operations of the battery systems in tandem with the fuel cells and the engine would be
optimised and effective. The weight and cost are also other factors that may make such
integrations challenging.

Typically, in an aero-engine application, the weight is a primary criterion, and it may
have a limitation on the type of TMS model that can be adopted for the required engine
performance. Based on engineering judgment, the proposed configurations are assessed
for such models’ weight, impact, cost, and complexity (WICC) as shown in Figure 17.
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A similar analogy can be drawn for the configurations proposed with the fuel cells,
and it could be expected to follow. However, as the future development in the technology
addresses the power density issues and strategies to increase the power capacity, may vary
the inferred trend.

5. Conclusions

A comprehensive review of the development in hydrogen-powered propulsion sys-
tems thermal management is carried out through the scientometric analysis to identify the
technology trend, key achievements, and the important issues in the field. The requirements
for the TMS design and development are identified to utilise hydrogen’s capability to act as
a heat sink and enhance the engine’s performance. To this end, the necessary modifications
in the current state-of-the-art TMS models have been reviewed and the key challenges are
identified. Furthermore, main components of the engine fuel system for fuel-cooled TMS
architecture including fuel tanks, drain tank, heat exchanges, pumps, supply pipes, and in-
sulation are discussed to cater for the selection in hydrogen applications for an aero-engine.
Consequently, the following potential solutions for future studies and development are
proposed to address the identified challenges:

Configuration 1: TMS and engine fuel system architecture with exhaust gas
heat exchanger.

Configuration 2: TMS and engine fuel system architecture with exhaust gas heat
exchanger and compressor intercooling.

Configuration 3: TMS and engine fuel system architecture with exhaust gas heat
exchanger, compressor intercooling, turbine air cooling heat exchanger, and flow expander.

The benefits offered by each of configuration and the practical challenges from im-
plementation, installation and integration viewpoints are presented. Furthermore, for the
application of fuel cells in aviation, the potential challenges are discussed from the TMS
perspective. With an underlying assumption of an engine fully powered by the fuel cells,
the above mentioned TMS configurations are extended for the fuel cell applications as well.
Finally, the proposed configurations are assessed for such models’ weight, impact, cost, and
complexity (WICC) Based on engineering judgment to pave the way for future practical
research work in the field of thermal management system design and development for
hydrogen-powered air vehicles’ propulsion technologies.
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