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Abstract: In this study, a methodology for automatic recognition of multiple simultaneous types of
partial discharges (PDs) in hydro-generator stator windings was proposed. All the seven PD sources
typical in rotating machines were considered, and up to three simultaneous sources could be identified.
The functionality of identifying samples with no valid PDs was also incorporated using a new
technique. The data set was composed of phase-resolved partial discharge (PRPD) patterns obtained
from on-line measurements of hydro-generators. From an input PRPD, noise and interference were
removed with an improved version of an image-based denoising algorithm previously proposed by
the authors. Then, a novel image-based algorithm that separates partially superposed PD clouds was
proposed, by decomposing the input pattern into two sub-PRPDs containing discharges of different
natures. From the sub-PRPDs, one extracts features quantifying the PD distribution over amplitudes
and the contour of PD clouds. Those features are fed as inputs to several artificial neural networks
(ANNs), each of which solves a part of the classification problem and acts as a block of a larger
system. Once trained, ANNs work collaboratively to identify an unknown sample. Good results
were obtained, with overall accuracies ranging from 88% to 94.8% for all the considered PD sources.

Keywords: partial discharge recognition; multiple simultaneous sources; identification of PRPDs
with invalid PD source; separation of multiple PD types; PRPD pattern; hydro-electric generators

1. Introduction

High-voltage electrical apparatuses are subjected to intense electrical, thermal, and
mechanical stresses during operation [1], resulting in equipment aging. In aged rotating
machines, including hydro-generators, partial discharges (PDs) occur in the stator insula-
tion. PDs are local electrical discharges that do not completely bridge phase bars and the
ground [2]. Partial discharges deteriorate the insulation progressively, and, in the absence
of proper maintenance, eventually result in disruptive failures.

To avoid the great financial and operational losses of such incidents, power utility
companies have resorted to partial discharge monitoring, deemed as the most effective
technique for assessing the condition of stator insulation [3,4]. The idea is to track the
actual health of machine insulation so that one can anticipate potential problems and plan
for maintenance measures accordingly. This is in the context of condition-based monitor-
ing, in which maintenance is performed only when necessary, based on the equipment’s
actual condition [5].

Partial discharges have different characteristics depending on the type of insulation
defect they occur in [2,3]. The task of determining the type of insulation defect based on
the characteristics of PD patterns is called PD recognition. Knowledge of the PD source is
very important in partial discharge monitoring systems [6] because the types of discharges
impose different relative risks to insulation [7]. Given that partial discharges are a complex
phenomenon, PD recognition is often done by experts [2,7]. Great research efforts have
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been made to automate the task of PD recognition, which would certainly help leverage
condition-based maintenance of electrical equipment on a larger scale [8].

In rotating machines, partial discharges usually occur simultaneously at several insu-
lation defects throughout the stator. The characteristics of each PD source will superimpose
in the detected signal, resulting in a complex pattern. Another task in partial discharge
monitoring is the rejection of patterns containing no valid PD source. Such a task reduces
the rate of false alarms, which is important as it avoids the planning of unnecessary main-
tenance interventions. Patterns having only noise or very incipient discharges are too
common to be ignored; they composed the majority of measurements in [4], for example.
In [9], a methodology was proposed to recognize single-source PD patterns, including those
containing only noise, in gas-insulated switchgear (GIS) using deep convolutional neural
networks. Reference [10] proposed to identify noise by grouping discharges in different
clusters in time-frequency maps.

The classification of patterns containing multiple simultaneous PD sources is an
intricate problem [2,3]. It is usually solved with two main approaches.

In the first approach, one decomposes other types of input patterns (e.g., time-domain
signals) using clustering techniques. Most discrimination methods are based on clustering
features extracted from complex PD signals. Reference [6] proposed a new method to
separate multiple sources. The smoothed density and density-peak-clustering techniques
were combined to cluster discharges in the 2D space formed by the charge and energy
of discharges. Time-domain signals are required to perform this separation. Work [11]
describes a discrimination method of multiple simultaneous PD sources by clustering opti-
mized features of the cumulative energy function of partial discharge signals. The method
presented good performance when tested on signals from laboratory measurements and
simulations. In [12], a multi-source PD separation algorithm was proposed based on linear
prediction analysis and the isolation forest technique. Linear prediction is used to create
a feature space by approximating each data point of PD signals as a linear combination
of previous points. The isolation forest quantifies the degree of clustering by calculating
the height score metric. Multiple PD sources are separated by grouping PD signals with
fuzzy C-means clustering technique, in the 3D space formed by two features from the linear
prediction plus the height score. The method was tested on measurements from laboratory
models, and good results were achieved.

In the second approach, one applies artificial-intelligence algorithms to phase-resolved
partial discharge (PRPD) matrices or image patterns but without using clustering. The
work of Lalitha and Satish [13] was the first to propose multi-source PD recognition based
on PRPD images. Single-source PD measurements were taken in laboratory conditions
and were superposed onto one another to create an artificial data set of multiple-source
PRPDs. Those PRPDs were decomposed with 2D wavelet transform, and features were
extracted and fed to radial basis neural networks for classification. Recognition rates of
about 86% were obtained. Reference [14] presents a methodology for the PD recognition of
two simultaneous sources in medium-voltage motors. Fractal features were extracted from
the typical PRPDs of standards [15], and the resulting fractal map was used as a reference.
When presented to an unknown PRPD, the same fractal features were extracted, and they
were compared to the reference map using the Center Score algorithm, which estimates
the probabilities of belonging to each PD source. In [3], a method for recognition of up
to three simultaneous types of PD was proposed. Fractal features were extracted from
PRPD patterns using image-processing techniques and then inserted as inputs to a non-
linear multi-class support vector machine for classification. The database was composed of
measurements taken from artificial laboratory models. Work [16] proposes the use of an
improved convolutional neural network (CNN) to classify single and multiple PD sources
using only single-source patterns in the training set. The proposed architecture consists
of a CNN followed by multiple fully connected networks, each specialized in identifying
a different PD source. The input patterns were PRPDs obtained from measurements in
artificial models in laboratory. Six types of PDs were considered, and the proposed CNN



Energies 2022, 15, 326 3 of 26

was able to classify up to three simultaneous PD sources. The two works mentioned
represent the main options available for PD recognition: machine learning [3] or deep
learning [16]. Machine learning is the traditional method of first extracting from the raw
data manually predetermined features, which are then used as inputs to classifiers. In
deep learning, the raw data are directly passed to classifiers, which automatically learn a
subset of features and use it to identify the sample. Many works in the literature report
that deep-learning-based classifiers outperform their machine-learning counterparts only
when the database is relatively large [9,17]. This is expected by theory because, since deep
classifiers usually have more hyperparameters, they are more prone to overfitting, and, to
compensate for that, more training samples are necessary for adequate generalization of
the problem. Due to the complexity of partial discharge measurements and limited access
to real-world machines, it is hard to build large PD databases [17].

There are some shortcomings in the mentioned works, as well as in the overall litera-
ture on PD monitoring. First, most studies trained and tested their recognition methodolo-
gies with artificial models in laboratory conditions. Signals collected in these conditions
were less infected by noise and interference; hence, the statistics calculated overestimated
the accuracies that would be obtained in real-world online conditions [9]. The work [16],
for example, reported recognition rates greater than 96%, but this metric was calculated on
patterns obtained in laboratory conditions with very little noise. Such high recognition rates
might be unrealistic for online measurements in hydro-generators, which is a much harder
problem. Another disadvantage is that usually up to six PD sources are differentiated,
which does not cover all possible types. Additionally, most recent advancements in PD
denoising and separation of multiple sources rely on the time-domain PD signals, which
may not be available in storage-constrained applications due to the high sampling rate
required to record these signals. Finally, the majority of studies do not seem to have the
functionality of identification of patterns with no valid PD source.

This study mitigates many of those limitations. We propose a methodology that is
capable of classifying multiple simultaneous PD sources, including the functionality of
recognizing samples not having valid PD activity. The data set was formed of PRPDs
obtained from measurements in online hydro-generators containing multiple simultaneous
PD patterns. Noise and interference were removed with a modified version, tailored for the
multiple-source case, of our previous work’s denoising algorithm [18]. For this purpose,
partial discharges were clustered in different groups in each PRPD, which is a contribution.
Moreover, a new algorithm separates PD clouds, even if they are partially superposed, and
its output is the input sample decomposed into two sub-PRPDs containing discharges of
different natures. Features are extracted from the sub-PRPDs, including a novel attribute
that quantifies the shape of PD clouds. The classification task was decomposed into
smaller problems, each solved with an artificial neural network (ANN) trained with one
of those features. All the algorithms in the methodology treat PRPDs as images. To the
best of our knowledge, this is the first study to develop a method combining all these
functionalities. The proposed methodology achieved good performance on the tested
samples, with accuracies ranging from 88% to 94.8%.

The motivation of this work was to propose an algorithm combining, for the first time,
many functionalities that are necessary for the classification of multiple simultaneous PD
types in hydro-generators operating in real-world conditions, which is of great interest to
power utilities. For that, the contributions of this study are the following:

• a novel recognition method of multiple simultaneous PD sources;
• the development of a new input feature that quantifies the shape of PD clouds;
• the proposal of a new algorithm to detect invalid samples, which contain no readily

identifiable PD source;
• a new method of separation of multiple PD sources partially superposed in the

PRPD image.
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2. Data Set Obtained from Online PD Measurements in Hydro-Generators

The data set used in this work was built the same way as in our previous study [18]
but with some important differences. It is composed of online PD measurements from
hydro-generators of the Tucuruí and Coaracy Nunes power plants (Northern Brazil).

Measurements were performed as described in [18]. Capacitive couplers were used
as PD sensors. Signals picked up by the sensors were digitized with the NI-USB 5133
oscilloscope and then processed by the Instrumentation for Monitoring and Analysis of
Partial Discharges (IMA-DP) [19] acquisition setup. In each measurement, the signal was
acquired for 700 AC cycles; all PDs detected during this interval appeared as high-frequency
pulses in the signal. IMA-DP scans for all the peaks in the captured signal and registers
the number of peaks as a function of their amplitude and the phase angle of the AC
cycle at which they occurred in patterns called PRPDs. IMA-DP performs this mapping
by discretizing each of the amplitude and phase ranges in 256 equal bins, resulting in
256 × 256 PRPDs. Mathematically, PRPD is a matrix whose element at index (i, j) is the
quantity of PDs detected during acquisition whose peaks lie within the i-th amplitude and
j-th phase angle bins. PRPDs are what constitute the database.

The generators of the Tucuruí power plant have different power ratings and construc-
tion designs compared to those at Coaracy Nunes. Additionally, the data set was built of
measurements taken over many years, at different seasons of the year and at several times
of the day. Thus, measurements represent multiple conditions of operation of different
types of machines, captured at different stages of their aging process. The result is that the
database is statistically representative of the phenomenon of partial discharges in rotating
machines. Automatic PD-recognition algorithms that perform well on this data very likely
have generalized the task of classification (good accuracy on new samples).

The PRPDs’ true PD sources were manually labeled by a human expert among the
types of PD commonly found in rotating machines [15,20]: internal void (InV), internal
delamination (InD), delamination between conductors and insulation (DCI), slot, corona,
surface tracking (Trk), and gap discharges (Gap). Figure 1 shows clear PRPDs (little
contamination with interference and noise) associated with each one of these sources. The
manual labeling was performed considering the expert’s knowledge of the generators and
the PRPD characteristics correlated with the underlying PD source, which are the symmetry
of PDs in positive and negative polarities and the shape of PD clouds [15,20].
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Figure 1. Examples of clearly defined PRPDs from the data set, each associated to the PD source:
(a) internal void, (b) internal delamination, (c) DCI, (d) slot, (e) corona, (f) surface tracking, and
(g) gap discharges. Figure adapted from [18] for convenience.
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Figure 1. Examples of clearly defined PRPDs from the data set, each associated to the PD source:
(a) internal void, (b) internal delamination, (c) DCI, (d) slot, (e) corona, (f) surface tracking, and
(g) gap discharges. Figure adapted from [18] for convenience.
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Figure 2 shows the PD source distribution in the data set. Unlike the data sets of [18],
there were patterns with multiple simultaneous PD sources and also a great number of
unidentified (Und) samples. Und patterns do not present valid PD sources; there is only
noise, or the PD clouds are so malformed (low height, density, etc) that they were not
considered valid by the specialist during labeling. Another remarkable difference from [18]
is the absence of merged PD sources, i.e., every one of the considered PD types can be
distinctively identified by the recognition system developed here, whereas, in [18], the
samples of some PD sources were treated as belonging to the same class (merged). This is
because of a new input feature proposed in this study, which is able to differentiate between
slot and corona and between internal void and internal delamination based on the shape of
PD clouds.
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Because PRPDs are from online measurements, they are contaminated with many
types of interference and noise [21]. All of the disturbances in the data sets of [18]—intense
noise, crosstalk, and an ambiguous shape of PD clouds—were also present here. These
disturbances, combined with the presence of multiple simultaneous sources, are exempli-
fied by the PRPDs of the data set shown in Figure 3 and greatly increased the difficulty
of automated PD recognition; such obstacles cannot be avoided and are very common in
online measurements; therefore, any classification methodology to be of practical use must
be robust enough to deal with them. The recognition methodology proposed in this study
is able to tackle all these obstacles.
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Figure 3. Examples of hard-to-identify PRPDs from the database: (a) intense noise, (b) additional PD
clouds (pointed by blue arrows) caused by crosstalk, (c) PD cloud of ambiguous shape, (d,e) multiple
simultaneous PD sources, and (f) unidentified pattern. Green arrows and labels indicate the dominant
PD clouds and the PD source(s) identified by the expert.

3. Proposed Recognition Methodology of Multiple PD Sources
3.1. Overview

Before presenting the methodology, it is important to review some terminology defined
in our previous study [18]. The noise gap is the horizontal band around amplitude zero
without PDs. ANGPD discharges (an acronym for “Adjacent to Noise Gap PDs”) are close
to the noise gap, and the other discharges are called N-ANGPD (Non-Adjacent to Noise
Gap PDs). ANGPD clouds are candidates to belong to PD sources InV, InD, DCI, slot, and
corona, whereas N-ANGPD discharges are potential surface tracking and gap sources. PDs
termed higher or lower have higher or lower absolute amplitudes than others. Those terms
are illustrated in Figure 3.

The common PD sources in rotating machines produce PRPDs typically characterized
according to Table 1 [15,20]. Following the categorization of Table 1, it is possible to classify
PD sources using a two-step process. First, a preliminary separation can be performed
based on the symmetry between positive and negative PDs, and then the PD clouds’
shape is considered to resolve between sources with the same symmetry information. The
proposed PD recognition methodology was structured with that same reasoning.

Table 1. Characteristics of the typical PRPD associated to each PD source [15,20].

PD Source Symmetry between
Positive and Negative PDs Shape of PD Clouds

InV Symmetric Rounded
InD Triangular

DCI Higher-amplitude negative PDs Not applicable

Slot Higher-amplitude Triangular
Corona positive PDs Rounded

Tracking Not applicable Vertical N-ANGPD clouds
Gap Pair of horizontal N-ANGPD clouds

In this study, a PD-recognition methodology that is able to identify a single or multiple
typical sources in rotating machines is proposed. It is capable of identifying up to three
simultaneous PD types: the dominant ANGPD source plus surface tracking and/or gap
discharges. The dominant ANGPD source is the one associated with the pair of positive
and negative ANGPD clouds with the highest number and density of PDs. Gap-discharge
clouds are detected even if they are partially superposed onto the ANGPD clouds. The
absence of ANGPD and/or N-ANGPD sources can also be detected. The technique is an
extension of those previously proposed by the authors in [18,22]; it operates entirely on
PRPD patterns, which are treated as images.

Figure 3. Examples of hard-to-identify PRPDs from the database: (a) intense noise, (b) additional PD
clouds (pointed by blue arrows) caused by crosstalk, (c) PD cloud of ambiguous shape, (d,e) multiple
simultaneous PD sources, and (f) unidentified pattern. Green arrows and labels indicate the dominant
PD clouds and the PD source(s) identified by the expert.

3. Proposed Recognition Methodology of Multiple PD Sources
3.1. Overview

Before presenting the methodology, it is important to review some terminology defined
in our previous study [18]. The noise gap is the horizontal band around amplitude zero
without PDs. ANGPD discharges (an acronym for “Adjacent to Noise Gap PDs”) are close
to the noise gap, and the other discharges are called N-ANGPD (Non-Adjacent to Noise
Gap PDs). ANGPD clouds are candidates to belong to PD sources InV, InD, DCI, slot, and
corona, whereas N-ANGPD discharges are potential surface tracking and gap sources. PDs
termed higher or lower have higher or lower absolute amplitudes than others. Those terms
are illustrated in Figure 3.

The common PD sources in rotating machines produce PRPDs typically characterized
according to Table 1 [15,20]. Following the categorization of Table 1, it is possible to classify
PD sources using a two-step process. First, a preliminary separation can be performed
based on the symmetry between positive and negative PDs, and then the PD clouds’
shape is considered to resolve between sources with the same symmetry information. The
proposed PD recognition methodology was structured with that same reasoning.

Table 1. Characteristics of the typical PRPD associated to each PD source [15,20].

PD Source Symmetry between
Positive and Negative PDs Shape of PD Clouds

InV Symmetric Rounded
InD Triangular

DCI Higher-amplitude negative PDs Not applicable

Slot Higher-amplitude Triangular
Corona positive PDs Rounded

Tracking Not applicable Vertical N-ANGPD clouds
Gap Pair of horizontal N-ANGPD clouds

In this study, a PD-recognition methodology that is able to identify a single or multiple
typical sources in rotating machines is proposed. It is capable of identifying up to three
simultaneous PD types: the dominant ANGPD source plus surface tracking and/or gap
discharges. The dominant ANGPD source is the one associated with the pair of positive
and negative ANGPD clouds with the highest number and density of PDs. Gap-discharge
clouds are detected even if they are partially superposed onto the ANGPD clouds. The
absence of ANGPD and/or N-ANGPD sources can also be detected. The technique is an
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extension of those previously proposed by the authors in [18,22]; it operates entirely on
PRPD patterns, which are treated as images.

During this research, we did not find a feature that would single-handedly be capable to
accurately differentiate between all the typical PD sources mentioned in IEC 60034-27-2 [15].
Therefore, the recognition task was divided into smaller problems. This approach usually
results in shorter training times and better generalization due to the simpler individual
classifiers [23].

The proposed methodology is based primarily on fully-connected feedforward artifi-
cial neural networks. It consists of training, validation, and testing stages. In the first two
phases, different ANNs are trained so that each solves a smaller problem of the classification
task in an isolated manner. In the testing stage, the previously trained ANNs are combined
hierarchically to perform PD recognition on unknown samples.

The training and validation stages are illustrated by the block diagram of Figure 4.
First, the input pattern is subjected to a PRPD image-denoising algorithm for suppressing
spurious discharges that are not related to the underlying PD source(s). The algorithm is
based on our proposal of [18] but with some modifications to address the multiple-source
case (Section 3.2). Next, a novel image-processing technique is applied to separate horizon-
tal N-ANGPD clouds partially superposed onto the ANGPD discharges (Section 3.3). The
image denoising yields groups (clusters) of denoised N-ANGPD and ANGPD discharges.
From these groups, two sub-PRPDs are generated: one containing only N-ANGPD PDs
and the other with only ANGPD clusters.
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From the patterns known to have surface tracking and/or gap activity (as labeled
by the specialist), the clouds of their N-ANGPD sub-PRPDs were used to optimize the
thresholds of a manually predetermined set of rules (Section 3.5). In the testing stage, those
rules are used to identify the presence of such PD sources by analyzing the dimensions
and positions of a PRPD’s N-ANGPD clouds.

The dominant ANGPD PD source is identified by the cooperation of four types of
neural networks: ANNs-0, ANNs-1, ANNs-2, and ANNs-3. Some of their hyperparameters
are listed in Table 2; the topology (number of hidden layers and hidden neurons) is
determined heuristically in Section 4.2. As detailed in Sections 3.8 and 3.9, the networks
were trained and tested with several combinations of mutually exclusive subsets of training,
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Figure 4. Flowchart of the multiple-source PD recognition methodology—training and validation
stages. ANNs-0 are neural networks that detect whether the pattern’s ANGPD clouds are noisy;
ANNs-1 perform preliminary separation with histograms; and ANNs-2 and ANNs-3 resolve between
InV and InD and between slot and corona based on the contour feature, respectively.

From the patterns known to have surface tracking and/or gap activity (as labeled
by the specialist), the clouds of their N-ANGPD sub-PRPDs were used to optimize the
thresholds of a manually predetermined set of rules (Section 3.5). In the testing stage, those
rules are used to identify the presence of such PD sources by analyzing the dimensions and
positions of a PRPD’s N-ANGPD clouds.

The dominant ANGPD PD source is identified by the cooperation of four types of
neural networks: ANNs-0, ANNs-1, ANNs-2, and ANNs-3. Some of their hyperparameters
are listed in Table 2; the topology (number of hidden layers and hidden neurons) is
determined heuristically in Section 4.2. As detailed in Sections 3.8 and 3.9, the networks
were trained and tested with several combinations of mutually exclusive subsets of training,
validation, and test data. The numbers of PRPDs forming those subsets are also listed in
Table 2 for each network type.
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Table 2. Information about the types of neural networks used.

Property Type of Neural Network
ANNs-0 ANNs-1 ANNs-2 ANNs-3

Number of input neurons 6 32 32 32
Number of output neurons 2 3 2 2

Activation functions Hyperbolic tangent in the hidden layers;
softmax in the output layer

Size of training/
validation/test sets

2430/810/
809

195/66/
66

51/18/
17

102/35/
34

From the ANGPD sub-PRPD, neural network ANN-0 detects whether the pattern’s
ANGPD clouds are noisy by analyzing simple cloud characteristics such as height and
density (Section 3.7). Next, the ANGPD sub-PRPDs with a valid ANGPD PD source
(as labeled by the specialist) are partitioned into different subsets (Section 3.8) to train
other three types of neural networks, each fed with one of the input features: amplitude
histograms [18] and the novel contour attribute, described in Section 3.6. The first neural
network (ANN-1) uses histograms to perform preliminary recognition, by merging InV
with InD patterns (class InV/InD) and slot with corona (Slot/Corona) into two different
groups of samples. Those mergers are necessary because the histogram does not accurately
capture the differences in cloud shape that differentiate those classes [15,18]. The other
neural networks (ANN-2 and ANN-3) solve these ambiguities with contour features, which
are more sensitive to the cloud shape.

The testing stage is illustrated in Figure 5. An input pattern is subjected to the
algorithm of noise removal and multiple source separation (Sections 3.2 and 3.3). In the
N-ANGPD sub-PRPD, one looks for surface tracking and gap PDs by comparing the
dimensions and positioning of its clouds against predetermined thresholds. From the
ANGPD sub-PRPDs, several metrics were extracted and used by the ANN-0 network to
estimate whether ANGPD clouds are noisy or valid. If both clouds are deemed as noisy,
it is considered that there is no ANGPD PD source in the pattern. If at least one cloud is
judged valid, the pattern is classified by a cascade of trained networks ANN-1, ANN-2, and
ANN-3. ANN-1 identifies the sample based on its amplitude histogram. If ANN-1’s output
is DCI, this already is the system classification for the ANGPD PD source, since this class is
characterized solely by the symmetry between positive and negative PDs (Table 1) [15,20].
If ANN-1’s output is InV/InD or slot/corona, contour features are calculated and passed
to the corresponding auxiliary neural network (ANN-2 or ANN-3) to solve the ambiguity.
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Keeping the practice of [18] of describing the algorithms independently from the
PRPD dimensions, in this study, the parameter values of the denoising and multiple-source
separation algorithms are described as functions of the number of pixels A forming the
width/height of a PRPD pattern. In the case of this study, A = 256.

The following subsections provide more detailed descriptions of the stages forming
the methodology, especially the novel contributions (shown as boxes in blue in Figures 4–6).
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3.2. Modifications to the Denoising Method of Our Previous Work

The denoising algorithm used in this study was based on the description of [18] but
with some adaptations to better suit PRPDs with multiple simultaneous types of discharges.
The denoising algorithm is shown in Figure 6, highlighting which steps were modified or
added relative to the description of [18].

The noisy PRPD was subjected to two independent filtering paths, one tailored for low-
density N-ANGPD clouds (pixel submatrix filtering) and the other for ANGPD discharges
(four steps in this study). The steps of ANGPD phase delimiting and removal of non-
dominant ANGPDs rely on rough contours (CR), which are functions of phase that estimate
the amplitude of the boundary between ANGPD and N-ANGPD discharges at each phase
angle. The ANGPD phase delimiting stage operates on smooth contours (CS), which are
equal to the filtering of rough contours with exponential moving averages (EMA(CR)),
followed by a linear transformation to change its values from row coordinates to absolute
amplitudes [18].

Rough contours are functions of a free parameter g. Smaller g produces rough contours
passing at lower amplitudes. The first modification is that, in this study, rough contours
were calculated with g = 0.0117A in ANGPD phase delimiting and with g = 0.0195A
in the removal of non-dominant ANGPDs, whereas, in [18], g = 0.0273A was used for
both of those stages. The values of g in both steps are smaller so that rough contours do
not encompass low-amplitude N-ANGPD clouds, a common situation in this database.
Different values of g were used also because of the different goals of the steps: in the
ANGPD phase delimiting step, the rough contour needs to follow the high-density dis-
charges of ANGPD clouds to obtain accurate phase bounds, and, in the next step, the noise
of low- and medium-amplitudes must be removed to better isolate the ANGPD clouds
from spurious PDs.

The second difference is that a new step of separation of multiple N-ANGPD dis-
charges (Section 3.3) was added following the removal of non-dominant ANGPDs. The
two filtering paths produced two partially denoised patterns M1 and M2 (Figure 6).
The third and last difference is that, in this study, those patterns were combined to
form two sub-PRPDs: one containing only N-ANGPDs, and the other formed only by
ANGPD discharges (Section 3.4). In [18], a single PRPD containing only one dominant
PD source was generated.

3.3. Separation of Superposed N-ANGPDs

In this stage, illustrated by the namesake block in the blue of Figure 6 and detailed in
Figure 7, the separation between partially superposed horizontal N-ANGPD (potential gap
discharges) and ANGPD clouds in the PRPD image was performed, a common situation in
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3.2. Modifications to the Denoising Method of Our Previous Work

The denoising algorithm used in this study was based on the description of [18] but
with some adaptations to better suit PRPDs with multiple simultaneous types of discharges.
The denoising algorithm is shown in Figure 6, highlighting which steps were modified or
added relative to the description of [18].

The noisy PRPD was subjected to two independent filtering paths, one tailored for low-
density N-ANGPD clouds (pixel submatrix filtering) and the other for ANGPD discharges
(four steps in this study). The steps of ANGPD phase delimiting and removal of non-
dominant ANGPD s rely on rough contours (CR), which are functions of phase that estimate
the amplitude of the boundary between ANGPD and N-ANGPD discharges at each phase
angle. The ANGPD phase delimiting stage operates on smooth contours (CS), which are
equal to the filtering of rough contours with exponential moving averages (EMA(CR)),
followed by a linear transformation to change its values from row coordinates to absolute
amplitudes [18].

Rough contours are functions of a free parameter g. Smaller g produces rough contours
passing at lower amplitudes. The first modification is that, in this study, rough contours
were calculated with g = 0.0117A in ANGPD phase delimiting and with g = 0.0195A
in the removal of non-dominant ANGPD s, whereas, in [18], g = 0.0273A was used for
both of those stages. The values of g in both steps are smaller so that rough contours do
not encompass low-amplitude N-ANGPD clouds, a common situation in this database.
Different values of g were used also because of the different goals of the steps: in the
ANGPD phase delimiting step, the rough contour needs to follow the high-density dis-
charges of ANGPD clouds to obtain accurate phase bounds, and, in the next step, the noise
of low- and medium-amplitudes must be removed to better isolate the ANGPD clouds
from spurious PDs.

The second difference is that a new step of separation of multiple N-ANGPD dis-
charges (Section 3.3) was added following the removal of non-dominant ANGPD s. The
two filtering paths produced two partially denoised patterns M1 and M2 (Figure 6). The
third and last difference is that, in this study, those patterns were combined to form two
sub-PRPDs: one containing only N-ANGPDs, and the other formed only by ANGPD
discharges (Section 3.4). In [18], a single PRPD containing only one dominant PD source
was generated.

3.3. Separation of Superposed N-ANGPDs

In this stage, illustrated by the namesake block in the blue of Figure 6 and detailed in
Figure 7, the separation between partially superposed horizontal N-ANGPD (potential gap
discharges) and ANGPD clouds in the PRPD image was performed, a common situation in
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the database. The separation was based on the fact that N-ANGPD clouds usually have PD
counts higher than the ANGPD clouds at the intersection region.
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After the removal of non-dominant ANGPDs (Figure 6), PDs were grouped by means
of nearest-neighbor clustering [24] using a 0.05A × 0.05A pixel submatrix. Figure 8b shows
the results of clustering applied to the pattern of Figure 8a, which in turn is the PRPD of
Figure 3d after the removal of non-dominant ANGPDs. Each cluster is indicated with its
PDs in a different color.

The following algorithm was applied to each ANGPD cluster separately. From the
PRPD, a matrix containing only the PDs of the cluster being analyzed was formed. This
matrix was divided into a grid of A/2× A/2 cells. One calculates matrix M, whose elements
are equal to the sum of PD counts within each cell of the grid. Matrix D was then obtained
by normalizing M by its maximum non-zero element excluding outliers. Figure 8c, for
example, shows the matrix D relative to the positive ANGPD cluster of Figure 8b.

In order to remove as much superposition as possible, it is necessary to estimate the
actual dimensions of the superposed N-ANGPD clouds (if any). For that, we exploited
the fact that PD clouds are usually formed by higher-count discharges in the central
region, surrounded by smaller-count discharges. If only the high-count PDs are considered,
one obtains smaller versions of the superposed N-ANGPD clouds whose boundaries
(formed by the furthermost discharges from the cloud’s center) are farther from one another,
facilitating their identification as separate groups. From the identified higher-count portion
of the superposed N-ANGPD clouds, it is easier to estimate their actual dimensions. The
separation algorithm developed in this study follows such reasoning.

It is convenient to introduce the A/2× A/2 matrix DL, given by

DL(i, j) =

{
D(i, j) if D(i, j) ≥ L
0 otherwise

, 1 ≤ i, j ≤ A/2 , (1)

where L is a real-valued number from 0 to 1 that sets the threshold of the minimum
normalized PD count considered. For a given value of L, the matrix DL is formed, and its
non-zero pixels of DL are grouped with nearest-neighbor clustering [24] using a 0.0195A
× 0.0195A submatrix. One determines the bounding box (BB) of each cluster, which is
the smallest imaginary rectangle (height is H and width is W pixels) containing all the
cluster’s discharges. In Figure 8d, for example, the BB of the cluster in red is shown.
DL’s N-ANGPD clusters are scanned, and those meeting H ≥ 0.0195A and W/H ≥ 3 are
considered horizontal. This is repeated iteratively varying L in the sequence {0.70, 0.50,
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After the removal of non-dominant ANGPDs (Figure 6), PDs were grouped by means
of nearest-neighbor clustering [24] using a 0.05A × 0.05A pixel submatrix. Figure 8b shows
the results of clustering applied to the pattern of Figure 8a, which in turn is the PRPD of
Figure 3d after the removal of non-dominant ANGPDs. Each cluster is indicated with its
PDs in a different color.

The following algorithm was applied to each ANGPD cluster separately. From the
PRPD, a matrix containing only the PDs of the cluster being analyzed was formed. This
matrix was divided into a grid of A

2 × A
2 cells. One calculates matrix M, whose elements

are equal to the sum of PD counts within each cell of the grid. Matrix D was then obtained
by normalizing M by its maximum non-zero element excluding outliers. Figure 8c, for
example, shows the matrix D relative to the positive ANGPD cluster of Figure 8b.

In order to remove as much superposition as possible, it is necessary to estimate the
actual dimensions of the superposed N-ANGPD clouds (if any). For that, we exploited
the fact that PD clouds are usually formed by higher-count discharges in the central
region, surrounded by smaller-count discharges. If only the high-count PDs are considered,
one obtains smaller versions of the superposed N-ANGPD clouds whose boundaries
(formed by the furthermost discharges from the cloud’s center) are farther from one another,
facilitating their identification as separate groups. From the identified higher-count portion
of the superposed N-ANGPD clouds, it is easier to estimate their actual dimensions. The
separation algorithm developed in this study follows such reasoning.

It is convenient to introduce the A/2× A/2 matrix DL, given by

DL(i, j) =
{

D(i, j) if D(i, j) ≥ L
0 otherwise

, 1 ≤ i, j ≤ A/2, (1)

where L is a real-valued number from 0 to 1 that sets the threshold of the minimum normal-
ized PD count considered. For a given value of L, the matrix DL is formed, and its non-zero
pixels of DL are grouped with nearest-neighbor clustering [24] using a 0.0195A × 0.0195A
submatrix. One determines the bounding box (BB) of each cluster, which is the smallest
imaginary rectangle (height is H and width is W pixels) containing all the cluster’s dis-
charges. In Figure 8d, for example, the BB of the cluster in red is shown. DL’s N-ANGPD
clusters are scanned, and those meeting H ≥ 0.0195A and W/H ≥ 3 are considered
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horizontal. This is repeated iteratively varying L in the sequence {0.70, 0.50, 0.40, 0.30,
0.20, 0.15, 0.10, 0.08, 0.05, 0.02, 0.00}, in a process called the loop of thresholds. On the
course of this loop, DL gradually rebuilds matrix D, from the highest-count pixels to those
of smallest-count, as seen in Figure 8d–f. In the initial iterations (high L), there are only
the innermost high-count PDs of each cloud, and thus those groups tend to be separated
(Figure 8d). As L decreases (Figure 8e–f), the groups’ boundaries progressively approach
each other, eventually forming a single cluster again. For each horizontal N-ANGPD
cloud detected during the loop, let Csep be the corresponding cluster in matrix DL for the
smallest L at which the N-ANGPD and ANGPD clusters are still separated. Based on the
Csep clusters, one separates N-ANGPD clouds from the ANGPD cloud with the procedure
explained below, illustrated in Figures 9–11. If no horizontal cloud is found at any of the L
thresholds, it is assumed that there are no superpositions, and no separation is performed
for the current ANGPD cloud. The loop of thresholds is then repeated for the other ANGPD
clusters of the PRPD, one at a time.
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The horizontal clusters Csep detected in the loop of thresholds underestimate the
dimensions of superposed N-ANGPD clouds. For a more accurate estimation, the bounding
box of each Csep cluster was “expanded” using the following procedure, illustrated in
Figure 9 for the pattern of Figure 8. Such expansion occurs iteratively in matrix D, in the
vertical and horizontal directions, while the PDs within the expanded BB are distributed
similarly to the PDs bounded by Csep’s original BB. For each column of Csep’s original BB,
one calculates the proportion of the non-zero elements (pc) relative to the total number
of pixels in the column and the average of the row coordinates of the non-zero elements
weighted by its values in matrix D (yc), as shown in Figure 9b. The averages of those
metrics over all the columns of the original BB are pc and yc. In the horizontal direction,
the BB’s left bound is shifted to the left, one column at a time, while the relative differences
between the pc and yc values in the new column and pc and yc are less than 75% and 40%,
respectively. The same is performed to the BB’s right bound. An analogous procedure was

Figure 8. (a) PRPD after removal of non-dominant ANGPDs and (b) pixel clustering on its pixels.
(c) Matrix D relative to the positive ANGPD cluster; superposed horizontal clouds are indicated by
arrows. Pixel clustering on DL matrices reconstructing D (loop of thresholds L) for (d) L = 0.70,
(e) L = 0.30 and (f) L = 0.20.

The horizontal clusters Csep detected in the loop of thresholds underestimate the
dimensions of superposed N-ANGPD clouds. For a more accurate estimation, the bounding
box of each Csep cluster was “expanded” using the following procedure, illustrated in
Figure 9 for the pattern of Figure 8. Such expansion occurs iteratively in matrix D, in the
vertical and horizontal directions, while the PDs within the expanded BB are distributed
similarly to the PDs bounded by Csep’s original BB. For each column of Csep’s original BB,
one calculates the proportion of the non-zero elements (pc) relative to the total number
of pixels in the column and the average of the row coordinates of the non-zero elements
weighted by its values in matrix D (yc), as shown in Figure 9b. The averages of those
metrics over all the columns of the original BB are pc and yc. In the horizontal direction,
the BB’s left bound is shifted to the left, one column at a time, while the relative differences
between the pc and yc values in the new column and pc and yc are less than 75% and 40%,
respectively. The same is performed to the BB’s right bound. An analogous procedure was
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then applied in the vertical direction. The pixels within the expanded BB were estimated to
form the actual N-ANGPD cluster (pixels in green in Figure 9a).
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The proposed separation algorithm deals with two types of superposition. Case 1,
common in the database and illustrated in Figure 10a (original PRPD shown in Figure 3e),
consists of a wide horizontal group above the ANGPD cloud, both connected by noisy
pixels of low/intermediate density. In case 2 (Figure 8a), there is an actual superposition
between the horizontal N-ANGPD and ANGPD clouds.

Each case is treated differently. Thus, it is necessary to identify to which category the
superposition between ANGPD and N-ANGPD clouds belongs to. In the region bounded
by the superposed cluster’s BB, 0.08A equally spaced columns of elements of matrix D
(vertical profiles) were sampled along the phase axis, as shown in Figure 10b. The point-
wise average of those 0.08A curves resulted in the average vertical profile, illustrated
in Figure 10c. The average vertical profile can be seen as a function ν describing the
average distribution of PD counts across amplitudes. For case 1, this function should
have, in the direction from the ANGPD cloud to N-ANGPD discharges, a sequence of a
local maximum, minimum, and maximum, respectively, associated to the ANGPD clouds,
noise, and horizontal PDs (Figure 10c). In this study, the local minima and maxima were
found by iteratively sliding a 0.02A-element-wide window along the average vertical
profile. The central point is a local maximum if it is the largest element inside the window,
or it is a local minimum if it is the smallest. Moreover, since horizontal PDs span a
phase interval comparable to the ANGPD cloud’s width in case 1, little variation between
the individual vertical profiles was expected. This variation was quantified inversely
by the similarity Svp, calculated as the average of the cross-correlations between all the
pairwise combinations of vertical profiles. Based on this information, the superposition
was considered to belong to case 1 if all the following criteria were met: (i) N-ANGPD
cloud is horizontal; (ii) Svp ≥ 0.85; and (iii) the average vertical profile presents exactly
three local extrema, one minimum between two maxima, and that the minimum has a
value less than 1% of the first maximum’s. Otherwise, superposition was considered to be
of case 2.

The following explanations were described based on the x and y axes (Figures 10
and 11). The x-axis is horizontal, oriented left-to-right in the PRPD. The y-axis is vertical,
oriented from the bottom to the top of the superposed cluster.

In the case-1 superposition, let yNU and yND be the y coordinates of the upper and
lower bounds of the intermediate noisy region, respectively (Figure 10b). Due to the
small number of discharges in this zone, the average vertical profile function ν(y) assumes
lower images in this region (rows [yND, yNU]) than in the other two regions, which are
associated with the ANGPD and horizontal clouds (Figure 10c). It is considered that yNU
matches the lower bound of the horizontal cloud’s expanded BB. Moving in the direction
of decreasing y, the first row at which ν(y) ≥ ν(yNU) was estimated as the coordinate yND.
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The proposed separation algorithm deals with two types of superposition. Case 1,
common in the database and illustrated in Figure 10a (original PRPD shown in Figure 3e),
consists of a wide horizontal group above the ANGPD cloud, both connected by noisy
pixels of low/intermediate density. In case 2 (Figure 8a), there is an actual superposition
between the horizontal N-ANGPD and ANGPD clouds.

Each case is treated differently. Thus, it is necessary to identify to which category the
superposition between ANGPD and N-ANGPD clouds belongs to. In the region bounded
by the superposed cluster’s BB, 0.08A equally spaced columns of elements of matrix D
(vertical profiles) were sampled along the phase axis, as shown in Figure 10b. The point-
wise average of those 0.08A curves resulted in the average vertical profile, illustrated in
Figure 10c. The average vertical profile can be seen as a function ν describing the average
distribution of PD counts across amplitudes. For case 1, this function should have, in
the direction from the ANGPD cloud to N-ANGPD discharges, a sequence of a local
maximum, minimum, and maximum, respectively, associated to the ANGPD clouds, noise,
and horizontal PDs (Figure 10c). In this study, the local minima and maxima were found
by iteratively sliding a 0.02A-element-wide window along the average vertical profile. The
central point is a local maximum if it is the largest element inside the window, or it is a
local minimum if it is the smallest. Moreover, since horizontal PDs span a phase interval
comparable to the ANGPD cloud’s width in case 1, little variation between the individual
vertical profiles was expected. This variation was quantified inversely by the similarity Svp,
calculated as the average of the cross-correlations between all the pairwise combinations of
vertical profiles. Based on this information, the superposition was considered to belong
to case 1 if all the following criteria were met: (i) N-ANGPD cloud is horizontal; (ii)
Svp ≥ 0.85; and (iii) the average vertical profile presents exactly three local extrema, one
minimum between two maxima, and that the minimum has a value less than 1% of the first
maximum’s. Otherwise, superposition was considered to be of case 2.

The following explanations were described based on the x and y axes (Figures 10
and 11). The x-axis is horizontal, oriented left-to-right in the PRPD. The y-axis is vertical,
oriented from the bottom to the top of the superposed cluster.

In the case-1 superposition, let yNU and yND be the y coordinates of the upper and
lower bounds of the intermediate noisy region, respectively (Figure 10b). Due to the small
number of discharges in this zone, the average vertical profile function ν(y) assumes lower
images in this region (rows [yND, yNU]) than in the other two regions, which are associated
with the ANGPD and horizontal clouds (Figure 10c). It is considered that yNU matches the
lower bound of the horizontal cloud’s expanded BB. Moving in the direction of decreasing y,
the first row at which ν(y) ≥ ν(yNU) was estimated as the coordinate yND. The coordinates
yNU and yND are illustrated in Figure 10b,c. Additionally, let xL and xR be the x coordinates
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of the left and right bounds of the ANGPD cloud, and let yB be the y coordinate of this
cluster’s lower bound (Figure 10b).

Next, one calculates the vectors FL and FR, containing the x coordinate of the cluster’s
leftmost and rightmost non-zero pixel in each row, respectively, (red and green curves in
Figure 10b). The left and right contours of the ANGPD cloud were estimated by fitting
parabolas to certain points of the curves FL and FR using the least squares method. Such
parabolas must be convergent—that is, they must intersect at a point whose x coordinate is
within [xL, xR]—and the intersection point determines the ANGPD cloud’s upper bound. It
is estimated that the ANGPD cloud’s peak lies next to the central point (xM, yM) of the noisy
region, where xM = (xL + xR)/2 and yM = (yNU + yND)/2. Parabolas were fitted to the
points of FL and FR corresponding to the set of rows [yB, yT ], where yT was initially equal
to yM. If parabolas are not convergent, new fitting attempts are performed by iteratively
decreasing yT , one row at a time, until the convergence of parabolas is achieved. If there is
no yB < yT ≤ yM such that the parabolas intersect at a point above the expanded horizontal
cloud’s lower bound, the fitting was not adequate, because it violates the hypothesis of
no superposition between the clouds. In this case, new parabolas are fitted to the points
of FL and FR corresponding to the set of rows [yB, yND], and also to the point (xM, yM).
The addition of this point tends to induce the expected convergence of parabolas. In the
example of Figure 10d, the parabolas were obtained in the first fitting attempt to the points
of FL and FR of the rows [yB, yM]. Separation was performed by assigning to the ANGPD
cloud the PDs below the fitted parabolas, and the horizontal cloud was composed of the
PDs within its expanded bounding box (Figure 10e).
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the FL and FR curves. (c) Identification of divergent points. (d) Separated ANGPD (green pixels) and
N-ANGPD clouds (purple).

For case-2 superpositions, the FL and FR curves of the cluster were also calculated in
matrix D (Figure 11a). In the absence of disturbances, FL and FR tend to vary monotonically
along the x-axis. When there are superposed horizontal clouds, however, those curves
experience sharp variations along x in the opposite direction to what is expected (“diver-
gences”), as shown in Figure 11b. Disregarding the points of FL and FR associated with the
divergences caused by superposed horizontal clouds (diverging points), it is possible to
estimate the ANGPD cloud’s left and right contours without superpositions.

Figure 11 illustrates the separation of case-2 superpositions for the positive ANGPD
cluster of the pattern of Figure 8a. One obtains the local maxima (tops) and minima (bot-
toms) of FL and FR curves (Figure 11b). In the FL and FR curves, one finds the local maxima
(tops) and minima (bottoms) within the 2-point distance. For more robustness against noise,
one considers only the pairs of consecutive local minimum and local maximum whose x
values differ by at least nine pixels. Each sequence of three local extrema (top-bottom-top
for FL, or bottom-top-bottom for FR) was assumed to be related to the superposition with a
horizontal cloud. The superposed horizontal clouds may have counts different or similar to
the ANGPD cloud’s in the region of intersection. In Figure 11a, for example, the superposed
horizontal PDs to the right (purple arrow) and to the left (yellow arrow) were of the first
and the second type, respectively. The diverging points of FL and FR were determined for
each triplet of local extrema.

For each horizontal cloud of distinctive count (expanded cluster Cexp), detected during
the loop of thresholds, one verifies to which sides it causes divergence in the ANGPD
cloud. Let yAU and yAD be the y coordinates of the upper and lower bounds of Cexp’s
BB (Figure 11a). In FL and FR, it was verified if there is a triplet whose first and third
local extrema have y coordinates less than yAD and greater than yAU, respectively. In
Figure 11c, for example, this applies to the triplet in FR. If such a triplet exists in FR, and if
the element Pblw(yAD − 1, xblw) of FR immediately below the horizontal cloud has x value
(xblw) between the left and right bounds of Cexp, the points of FR corresponding to the rows
[yAD, yAU] are divergent (Figure 11c). Analogous logic applies to FL.

The other triplets of local extrema may be related to superpositions of horizontal
clouds not detected during the loop of thresholds. The following procedure was performed
for each of those triplets. Let F be the curve FL or FR to which the triplet in question belongs,

Figure 11. Separation of case-2 superposition between N-ANGPD and ANGPD clouds. (a) Region of
matrix D relative to the positive cluster. (b) Identification of local maxima (T) and local minima (B) in
the FL and FR curves. (c) Identification of divergent points. (d) Separated ANGPD (green pixels) and
N-ANGPD clouds (purple).

For case-2 superpositions, the FL and FR curves of the cluster were also calculated in
matrix D (Figure 11a). In the absence of disturbances, FL and FR tend to vary monotonically
along the x-axis. When there are superposed horizontal clouds, however, those curves
experience sharp variations along x in the opposite direction to what is expected (“diver-
gences”), as shown in Figure 11b. Disregarding the points of FL and FR associated with the
divergences caused by superposed horizontal clouds (diverging points), it is possible to
estimate the ANGPD cloud’s left and right contours without superpositions.

Figure 11 illustrates the separation of case-2 superpositions for the positive ANGPD
cluster of the pattern of Figure 8a. One obtains the local maxima (tops) and minima (bot-
toms) of FL and FR curves (Figure 11b). In the FL and FR curves, one finds the local maxima
(tops) and minima (bottoms) within the 2-point distance. For more robustness against noise,
one considers only the pairs of consecutive local minimum and local maximum whose x
values differ by at least nine pixels. Each sequence of three local extrema (top-bottom-top
for FL, or bottom-top-bottom for FR) was assumed to be related to the superposition with a
horizontal cloud. The superposed horizontal clouds may have counts different or similar to
the ANGPD cloud’s in the region of intersection. In Figure 11a, for example, the superposed
horizontal PDs to the right (purple arrow) and to the left (yellow arrow) were of the first
and the second type, respectively. The diverging points of FL and FR were determined for
each triplet of local extrema.

For each horizontal cloud of distinctive count (expanded cluster Cexp), detected during
the loop of thresholds, one verifies to which sides it causes divergence in the ANGPD
cloud. Let yAU and yAD be the y coordinates of the upper and lower bounds of Cexp’s
BB (Figure 11a). In FL and FR, it was verified if there is a triplet whose first and third
local extrema have y coordinates less than yAD and greater than yAU, respectively. In
Figure 11c, for example, this applies to the triplet in FR. If such a triplet exists in FR, and if
the element Pblw(yAD − 1, xblw) of FR immediately below the horizontal cloud has x value
(xblw) between the left and right bounds of Cexp, the points of FR corresponding to the rows
[yAD, yAU] are divergent (Figure 11c). Analogous logic applies to FL.
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The other triplets of local extrema may be related to superpositions of horizontal
clouds not detected during the loop of thresholds. The following procedure was performed
for each of those triplets. Let F be the curve FL or FR to which the triplet in question belongs,
and let (yE1, xE1) be the coordinates of the first local extremum in F (Figure 11c). Starting
from this extremum and moving in the direction of increasing y, one looks for the first point
(y′, x′) of F such that x′ > xE1 if F = FL, or x′ < xE1 if F = FR. The point (y′, x′) is shown
in Figure 11c. The determination of this point follows the assumption that, in the direction
of increasing y, once one gets past the divergence, FL’s x values are again greater than (or
less than if F = FR) xE1, an indication that the ANGPD cloud resumed its natural trend of
narrowing in the phase axis. In order to reduce the influence of noise, the points of F in
the rows ]yE1, y′[ were considered divergent only if all the following criteria were met: (i)
there are at least two points of F between the first and third local extrema of the triplet; and
(ii) the magnitude of the difference between xE1 and the median of the x values of F in the
interval ]yE1, y′[ is greater than or equal to 12. In Figure 11c, the triplet of local extrema of
FL meets these conditions.

Using least squares, parabolas were fitted to the FL and FR curves disregarding the
divergent points, as shown in Figure 11c. For each group of divergent points of the curve
F (FL or FR), the PDs of y coordinates equal to the divergent points and not contained by
the parabola fitted to F (to the left of the parabola if F = FL, or to the right if F = FR) were
removed from the ANGPD cluster and assigned to a new N-ANGPD cluster. The hatched
areas in Figure 11c indicate the regions in which PDs were separated from the ANGPD
cloud. Figure 11d shows the separation of superposed horizontal and ANGPD clouds.

At this moment, the N-ANGPD clouds superposed onto a single ANGPD cluster were
separated. The entire separation process (the calculation of matrix D, the loop of thresholds,
and so on) was repeated for the PRPD’s other ANGPD clusters, one at a time. Finally, the
pixel coordinates of all the separated clusters were mapped back to the PRPD’s original
dimensions A× A. The values of thresholds described in this subsection were defined
empirically, in order to separate most of the superposed patterns in the database.

Superposed tracking PDs could be separated in a way analogous to the case-2 super-
position. Instead of FL and FR, the procedure would be based on curves containing the
y coordinates of the cluster’s uppermost and lowermost non-zero pixel at each column.
However, due to the low occurrence of this type of superposition in the database, the
separation of tracking clouds was not implemented in this study.

3.4. PRPD Decomposition

The separation of multiple sources was the last of a sequence of four steps focused on
removing as much noise as possible from ANGPD clouds, producing a partially denoised
pattern M1 (Figure 6). There was a second filtering path tailored for preserving low-
density N-ANGPD discharges (pattern M2). In the current step of PRPD decomposition,
illustrated by the namesake block in blue of Figure 6, M1 and M2 were combined to form
two sub-PRPDs.

Nearest-neighbor clustering [24] was applied separately to M1 and M2, using a subma-
trix of 0.05A×0.05A pixels, the same dimensions adopted in [18]. Figure 12a,b illustrates
the results of clustering on the partially denoised versions M1 and M2 of the PRPD of
Figure 3d. Discharges of each cluster are shown in a different color.

PDs of M1 and M2 were combined to produce two sub-PRPDs: one containing only
ANGPD and the other only N-ANGPD discharges (Figure 12c,d). The ANGPD sub-PRPD
was composed of M1’s ANGPD clusters. The N-ANGPD sub-PRPD was formed of the
union of PDs belonging to M1’s and M2’s N-ANGPD clusters.
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Figure 12. Pixel clustering on a PRPD treated with (a) grid filtering and removal of non-dominant
ANGPDs (pattern M1) and (b) pixel submatrix filtering (M2). From M1 and M2, the pattern was
decomposed into the (c) ANGPD and (d) N-ANGPD sub-PRPDs.

Applying the described denoising algorithms on the patterns of Figure 3a,b,f produced
the results shown in Figure 13. It can be observed that most of noise was eliminated, and
simultaneous PD sources were separated.
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Figure 13. Filtering results of the proposed image denoising algorithm applied to PRPDs of the
classes (a) corona, (b) slot, and (c) unidentified.

3.5. Classification of N-ANGPD PD Sources

Given the characteristic format of gap and surface tracking sources [15], in this study,
those types of PD were identified by directly comparing the dimensions and relative
positions of the sub-PRPD’s N-ANGPD clouds against predetermined thresholds, without
using artificial intelligence (AI).

The BB of each cluster of N-ANGPD sub-PRPD was determined; its width and height
were W and H pixels, respectively (Figure 12c). One considers the presence of tracking
activity in a pattern if there is any cluster whose BB meets H ≥ 0.0742A, W ≥ 0.0078A,
H/W ≥ 2.7 and the proportion of non-zero pixels within the BB (a measure of density)
is greater than 12.6%. The gap discharge source is detected if there is a pair of horizontal
clouds, one in each polarity, of approximately the same magnitude amplitude (maximum
16% relative difference between the clouds’ centers amplitudes) and approximately 180◦

apart from each other in the phase axis (phase distance between clouds’ centers within
180◦ ± 23%). A cluster is deemed horizontal if its BB meets H ≥ 0.0391A and W/H ≥ 1.56.
The informed values of thresholds were optimized to maximize the system’s classification
rates of surface tracking and gap PD sources, as discussed in Section 4.
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ANGPDs (pattern M1) and (b) pixel submatrix filtering (M2). From M1 and M2, the pattern was
decomposed into the (c) ANGPD and (d) N-ANGPD sub-PRPDs.

Applying the described denoising algorithms on the patterns of Figure 3a,b,f produced
the results shown in Figure 13. It can be observed that most of noise was eliminated, and
simultaneous PD sources were separated.
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positions of the sub-PRPD’s N-ANGPD clouds against predetermined thresholds, without
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were W and H pixels, respectively (Figure 12c). One considers the presence of tracking
activity in a pattern if there is any cluster whose BB meets H ≥ 0.0742A, W ≥ 0.0078A,
H/W ≥ 2.7 and the proportion of non-zero pixels within the BB (a measure of density)
is greater than 12.6%. The gap discharge source is detected if there is a pair of horizontal
clouds, one in each polarity, of approximately the same magnitude amplitude (maximum
16% relative difference between the clouds’ centers amplitudes) and approximately 180◦

apart from each other in the phase axis (phase distance between clouds’ centers within
180◦ ± 23%). A cluster is deemed horizontal if its BB meets H ≥ 0.0391A and W/H ≥ 1.56.
The informed values of thresholds were optimized to maximize the system’s classification
rates of surface tracking and gap PD sources, as discussed in Section 4.
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classes (a) corona, (b) slot, and (c) unidentified.

3.5. Classification of N-ANGPD PD Sources

Given the characteristic format of gap and surface tracking sources [15], in this study,
those types of PD were identified by directly comparing the dimensions and relative
positions of the sub-PRPD’s N-ANGPD clouds against predetermined thresholds, without
using artificial intelligence (AI).

The BB of each cluster of N-ANGPD sub-PRPD was determined; its width and height
were W and H pixels, respectively (Figure 12c). One considers the presence of tracking
activity in a pattern if there is any cluster whose BB meets H ≥ 0.0742A, W ≥ 0.078A,
H/W ≥ 2.7 and the proportion of non-zero pixels within the BB (a measure of density)
is greater than 12.6%. The gap discharge source is detected if there is a pair of horizontal
clouds, one in each polarity, of approximately the same magnitude amplitude (maximum
16% relative difference between the clouds’ centers amplitudes) and approximately 180◦

apart from each other in the phase axis (phase distance between clouds’ centers within
180◦ ± 23%). A cluster is deemed horizontal if its BB meets H ≥ 0.0391A and W/H ≥ 1.56.
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The informed values of thresholds were optimized to maximize the system’s classification
rates of surface tracking and gap PD sources, as discussed in Section 4.

3.6. Extraction of Contour Features

As already mentioned, the PD-recognition task was divided into smaller problems
using two input features: amplitude histograms [18] and the novel contour attribute, which
quantify the PD symmetry and cloud contours, respectively. Those characteristics, besides
being mentioned in the literature to describe typical PRPDs of different sources [15,20], are
also considered robust to variations in measurement conditions [25].

The contour attribute is a novel contribution of this work. This feature quantifies the
shape of PD clouds, which is the main difference between InV and InD classes and between
slot and corona [15,20]. It is considered the contour of only the positive ANGPD cloud. The
negative cloud is ignored because it is redundant for InV, InD, slot, and corona sources.

Figure 14 shows ideal triangular and rounded ANGPD clouds, alongside the first
derivative of the mathematical function describing the cloud’s contour. The distinctive
variations of the first derivatives demonstrate that these curves may be used to efficiently
quantify the shape of PD clouds. PRPDs obtained from online measurements have clouds
with irregular and noisy contours, whose derivatives differ to a certain degree from those
shown in Figure 14. In this study, neural networks learn from real data the differences
between the first derivatives of both types of curves.
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Figure 14. First derivative of contour of ideal (a) triangular and (b) rounded positive ANGPD clouds.
The functions f (·) and g(·) describing contour shape are shown as triangular and parabolic functions
for illustrative purposes.

In order to obtain the contour feature, one first calculates the preliminary contour (CP)
of the positive ANGPD cloud. For each phase angle between this cloud’s phase bounds,
CP is equal to the average of the row coordinates of the six highest non-zero PDs in that
column. CP was subjected to a low-pass Butterworth filter [26] of order 5 and normalized
cutoff frequency 0.1. The first derivative of the filtered CP was calculated, which was
then smoothed by a second Butterworth filter of order 2 and normalized cutoff frequency
0.04. After sampling 32 equally spaced points from the smoothed derivative and applying
min-max scaling to the [−1, 1] range, one obtains the feature vector. The chosen length of
the feature vector provides a balanced compromise between contour resolution and neural
network complexity.

Figure 15 shows the contour feature calculated for one InV and one InD sample of
the database. Despite the irregular ANGPD clouds, representative contours (in purple)
were extracted. It is important to note that features also resemble the derivatives of the
corresponding ideal contours (Figure 14). The informed values of parameters used to
calculate CP, its derivative, and smoothing filters were determined by parametric tuning.

Figure 14. First derivative of contour of ideal (a) triangular and (b) rounded positive ANGPD clouds.
The functions f (·) and g(·) describing contour shape are shown as triangular and parabolic functions
for illustrative purposes.

In order to obtain the contour feature, one first calculates the preliminary contour (CP)
of the positive ANGPD cloud. For each phase angle between this cloud’s phase bounds,
CP is equal to the average of the row coordinates of the six highest non-zero PDs in that
column. CP was subjected to a low-pass Butterworth filter [26] of order 5 and normalized
cutoff frequency 0.1. The first derivative of the filtered CP was calculated, which was
then smoothed by a second Butterworth filter of order 2 and normalized cutoff frequency
0.04. After sampling 32 equally spaced points from the smoothed derivative and applying
min-max scaling to the [−1, 1] range, one obtains the feature vector. The chosen length of
the feature vector provides a balanced compromise between contour resolution and neural
network complexity.

Figure 15 shows the contour feature calculated for one InV and one InD sample of
the database. Despite the irregular ANGPD clouds, representative contours (in purple)
were extracted. It is important to note that features also resemble the derivatives of the
corresponding ideal contours (Figure 14). The informed values of parameters used to
calculate CP, its derivative, and smoothing filters were determined by parametric tuning.
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3.7. Identification of Noisy ANGPD Clouds

This step aimed to identify patterns whose two dominant ANGPD clouds were noisy, a
common situation in the database (Figure 2). Such a stage adds to the system the important
capability of identifying patterns not having a valid PD source, increasing its applicability
in practical situations due to the reduction in false positives. Without this functionality,
patterns with noisy ANGPD clouds would always be assigned to one of the ANGPD PD
sources by neural networks.

Figure 16 shows typical cases of patterns with no valid ANGPD clouds. The most
common situations are clouds of low density and/or low height. The other cases are clouds
whose height and/or density are very similar to those of PDs in other phases (it is expected
that such characteristics of valid ANGPD clouds are higher than in other phases, which are
presumably occupied by noise only).
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(b) low density, (c) low density compared to PDs in other phase angles, (d) low height compared to
PDs in other phase angles. Arrows point to relevant ANGPD clouds.

These situations are identified by capturing the following attributes of a pattern’s
ANGPD clouds: height (H), density (Dty), the height–width ratio (H/W), contour variance
(var), signal–noise ratios of height (SNRH), and density (SNRDty).

The characteristics were extracted from rough contour CR (Section 3.2) [18], which
was calculated with specific values of g and on different versions of the pattern. CR was
calculated with g = 0.0117A for H, H/W, and SNRH, and with g = 0.0391A for the other
attributes. Using the corresponding g, the rough contour was calculated on PRPD after
grid filtering for SNRH and SNRDty. For the other attributes, CR was calculated on the
ANGPD sub-PRPD.

Before explaining how attributes are calculated, it is convenient to present some
definitions. Let P∗L and P∗R be the columns of ANGPD cloud’s left and right phase bounds
(e.g., vertical dashed lines in Figure 15), respectively. The height of PDs over a given phase
interval is the 80th percentile of the values of smooth contour CS (Section 3.2) within this
interval. The PD density is the proportion of non-zero PDs within a given phase interval
and below the EMA-filtered rough contour (EMA(CR)–Section 3.2).
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Figure 16. Examples of patterns with invalid ANGPD clouds. Such clouds present (a) low height,
(b) low density, (c) low density compared to PDs in other phase angles, (d) low height compared to
PDs in other phase angles. Arrows point to relevant ANGPD clouds.

These situations are identified by capturing the following attributes of a pattern’s
ANGPD clouds: height (H), density (Dty), the height–width ratio (H/W), contour variance
(var), signal–noise ratios of height (SNRH), and density (SNRDty).

The characteristics were extracted from rough contour CR (Section 3.2) [18], which
was calculated with specific values of g and on different versions of the pattern. CR was
calculated with g = 0.0117A for H, H/W, and SNRH, and with g = 0.0391A for the other
attributes. Using the corresponding g, the rough contour was calculated on PRPD after grid
filtering for SNRH and SNRDty. For the other attributes, CR was calculated on the ANGPD
sub-PRPD.

Before explaining how attributes are calculated, it is convenient to present some
definitions. Let P∗L and P∗R be the columns of ANGPD cloud’s left and right phase bounds
(e.g., vertical dashed lines in Figure 15), respectively. The height of PDs over a given phase
interval is the 80th percentile of the values of smooth contour CS (Section 3.2) within this
interval. The PD density is the proportion of non-zero PDs within a given phase interval
and below the EMA-filtered rough contour (EMA(CR)–Section 3.2).



Energies 2022, 15, 326 19 of 26

H and Dty are the height and density of PDs within the phase interval [P∗L , P∗R], respec-
tively. H/W is the cloud’s height divided by its width, which is equal to the smallest phase
distance between P∗L and P∗R. SNRH is the subtraction between the cloud height and the
height of PDs in the other phases (/∈ [P∗L , P∗R]). SNRDty is the cloud density divided by the
density of PDs in the other phases. var is the variance of CS values within phases [P∗L , P∗R]
and min-max normalized to the range [0, 1].

From the ANGPD sub-PRPD, a pair of values was calculated for each attribute: one
from the positive cloud and one from the negative cloud. The feature vector, which is
presented to ANNs-0, is formed by the maximum of each of those pairs.

3.8. Data Partitioning

ANGPD sub-PRPDs of patterns with labeled ANGPD source (Figure 4) were randomly
divided into mutually exclusive subsets with five-fold cross-validation (CV) [27]. CV
generates several data partitions, each of which is a selection of three folds for training: one
for validation and the others for testing. All the 20 possible partitions were considered.

CV partitions used by ANNs-1 were obtained by merging the subsets of InV with InD
of each fold into a single class. The same was done for slot and corona patterns. Partitions
for ANNs-2 consisted only of the InV and InD subsets of the corresponding ANNs-1’s
partitions, whereas ANNs-3 used only the slot and corona subsets. Figure 17 presents the
data-partitioning schemes for the three types of neural networks.
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3.9. Training and Validation of Neural Networks

The four types of neural networks (ANN-0, ANN-1, ANN-2, and ANN-3) were
trained separately, using the procedure described in [22], which are briefly reviewed here.
Different subsets of ANGPD sub-PRPDs were extracted from the database to train the
neural networks. For ANNs-0, all the ANGPD sub-PRPDs were categorized in two groups
(labeled ANGPD source or not) and divided with five-fold cross-validation [27]. For
ANNs-1 to ANNs-3, the ANGPD sub-PRPDs of patterns with labeled ANGPD source were
divided according to Section 3.8. For each type of ANN, several networks were trained on
the training fold samples, while using the validation fold as an early stopping criterion to
reduce overfitting [27]. The training algorithm Scaled Conjugate Gradient [28] was used.
Once trained, networks’ generalization was evaluated by the performance on the test fold.

Several ANNs were trained by varying the hyperparameters’ initial random weights
and topology (numbers of hidden layers and hidden neurons). The best combinations of
hyperparameters were those with the highest recognition rates on the test fold.

The computational complexity of the proposed methodology is of interest. The stages
of PRPD image denoising and multiple-source separation, classification of N-ANGPD
sources, and extraction of one type of input feature (histogram or contour) combined took
98 milliseconds (ms), on average, for a typical PRPD. A single ANN of any of the four types
takes, on average, 140 ms to be trained and 10 ms to classify 100 PRPDs from their feature
vectors. Those metrics were measured on a low-end laptop (Intel® Core™ i5-4200U), and
they are reasonable for most PD-recognition applications.
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3.9. Training and Validation of Neural Networks

The four types of neural networks (ANN-0, ANN-1, ANN-2, and ANN-3) were
trained separately, using the procedure described in [22], which are briefly reviewed here.
Different subsets of ANGPD sub-PRPDs were extracted from the database to train the
neural networks. For ANNs-0, all the ANGPD sub-PRPDs were categorized in two groups
(labeled ANGPD source or not) and divided with five-fold cross-validation [27]. For ANNs-
1 to ANNs-3, the ANGPD sub-PRPDs of patterns with labeled ANGPD source were divided
according to Section 3.8. For each type of ANN, several networks were trained on the
training fold samples, while using the validation fold as an early stopping criterion to
reduce overfitting [27]. The training algorithm Scaled Conjugate Gradient [28] was used.
Once trained, networks’ generalization was evaluated by the performance on the test fold.

Several ANNs were trained by varying the hyperparameters’ initial random weights
and topology (numbers of hidden layers and hidden neurons). The best combinations of
hyperparameters were those with the highest recognition rates on the test fold.

The computational complexity of the proposed methodology is of interest. The stages
of PRPD image denoising and multiple-source separation, classification of N-ANGPD
sources, and extraction of one type of input feature (histogram or contour) combined took
98 milliseconds (ms), on average, for a typical PRPD. A single ANN of any of the four types
takes, on average, 140 ms to be trained and 10 ms to classify 100 PRPDs from their feature
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vectors. Those metrics were measured on a low-end laptop (Intel® Core™ i5-4200U), and
they are reasonable for most PD-recognition applications.

4. Results and Discussion

The trained neural networks were evaluated with the metric δ, proposed by the authors
in [22]. A neural network classifies a given set of patterns, and the resulting confusion
matrix [27] was built. From the confusion matrix, one calculates the recalls, which are equal
to the proportion of samples of each class that were correctly classified. We calculated the
average µTs and standard deviation σTs of recalls, which were then used to calculate δ by

δ = µTs +
1

1 + σTs
(2)

δ is a pattern-recognition metric that ranks best (the higher the better) those classifiers
with recalls that are high (large µTs) and with low variation (small σTs). The definition
based on recalls makes δ unbiased against the database’s class distribution.

In this section, the performance statistics of the proposed multiple-source PD recog-
nition system are shown and discussed. In the proposed system, four types of neural
networks were used to decompose the classification task into smaller problems, acting like
blocks of a larger identification system.

4.1. Optimization of Thresholds for the Recognition of N-ANGPD Sources

The first system block is the recognition of surface tracking and gap PD sources. A
simple classification was performed by comparing certain properties of N-ANGPD clouds
against fixed thresholds. The values of those thresholds were fine-tuned with the Particle
Swarm Optimization (PSO) technique [29].

The detection thresholds of surface tracking and gap clouds were optimized together,
in a single PSO simulation. The optimization ran on denoised N-ANGPD sub-PRPDs. The
objective function was calculated the following way for each PSO particle in every iteration.
All clusters of each sub-PRPD were subjected to the comparison rules for vertical clouds of
Section 3.5 but using the threshold values coded by the particle in question. The sub-PRPDs
with at least one vertical cluster were deemed to have surface tracking, while the others
were not. The confusion matrix was calculated (Figure 18a). A second scan was performed
over sub-PRPDs using an analogous procedure searching for pairs of horizontal clouds as
described in Section 3.5, resulting in the gap discharge confusion matrix (Figure 18b). The
objective function was calculated as the geometric mean of the four recalls obtained from
the two confusion matrices.
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recognition. The detection thresholds were optimized via PSO.

4.2. Performance of Each Recognition Block in an Isolated Manner

In this section, we show statistics of the other system blocks, based on neural networks
(ANN-0 to -3). ANN topology is the dash-separated sequence of the numbers of neurons
of each hidden layer. NHL is the topology with no hidden layers, i.e., inputs are directly
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A PSO simulation with 30 particles and 300 iterations was performed. It took ap-
proximately 3 hours on a low-end laptop (Intel® Core™ i5-4200U and 8 GB RAM). The
final optimized detection thresholds, the same ones reported in Section 3.5, produced the
optimal surface tracking and gap-recognition confusion matrices of Figure 18.
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4.2. Performance of Each Recognition Block in an Isolated Manner

In this section, we show statistics of the other system blocks, based on neural networks
(ANN-0 to -3). ANN topology is the dash-separated sequence of the numbers of neurons
of each hidden layer. NHL is the topology with no hidden layers, i.e., inputs are directly
connected to output neurons. Moreover, since initial weights are random parameters not
related to the classification problem [18,22], their influences are minimized by also showing
the results for the 25% best ANNs from each CV partition.

The results are the performances obtained when neural networks classify the samples
of the test fold of the CV partition they were trained on. Since test fold patterns belong
exclusively to the sources considered by the corresponding type of ANN, the results shown
here are isolated performance statistics, relative to that system block only. Having in
perspective that this block works in cooperation with others in the testing stage, results
estimate the performance that would be achieved by the block if all the previous blocks in
cascade—whose outputs determine which samples are passed to the block in question—
worked flawlessly.

Figure 19 shows the average µ(δ) and standard deviation σ(δ) of topology-wise δ
performances for each isolated block of the recognition system. Results consider all trained
ANNs (red curves) as well as the collection of 25% best networks from each CV partition
(black). The subset of the best ANNs was composed of the 13 highest-δ networks from each
CV partition (approximately 25% of the 50 ANNs trained per partition). In all blocks, one
observes larger and less-variable δ for the 25% best ANNs from each CV partition. This
was due to inadequate initial weights, which result in poor convergence during ANNs
training [18,22].
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Figure 19. Topology-wise average (line) and standard deviation (vertical bars) of δ performances for
each isolated system block. Statistics shown for all networks and for the set of 25% best ANNs from
each CV partition. Blocks (a) identification of noisy ANGPD clouds; (b) preliminary separation via
histograms; (c) distinction between InV and InD; (d) distinction between slot and corona. The best
topology of each ANN type is indicated by arrows.
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Figure 20. Element-wise average confusion matrices of the set of best topology’s 25% best ANNs
from each CV partition, for each isolated system block. Matrices obtained from the test sets. Blocks
(a) identification of noisy ANGPD clouds; (b) preliminary separation between InV/InD, DCI, and
Slot/Corona; (c) distinction between InV and InD; (d) distinction between slot and corona.

The average confusion matrix relative to the identification of noisy ANGPD clouds is
shown in Figure 20a. In this matrix, class “Noisy” denotes patterns whose two ANGPD
clouds were considered noisy by the specialist, whereas “Valid” patterns had at least one
valid cloud. Good results were obtained, with recalls greater than 94.8%. The higher recall
for class “Valid” was likely due to lower variability of its patterns in feature space, which
facilitates classification.

The next block is the preliminary separation performed by ANNs-1 using the his-
togram feature. The average confusion matrix (Figure 20b) showed excellent results, with
recognition rates greater than 96% for all classes.

The last blocks are differentiation between InV and InD patterns by ANNs-2 and
separation between slot and corona by ANNs-3. The contour feature was used by both
types of networks. In the testing stage, these blocks resolve the ambiguity between patterns
classified as InV/InD or slot/corona by ANNs-1 (Figure 5). Average confusion matrices
follow in Figure 20c,d, respectively.

Figure 19. Topology-wise average (line) and standard deviation (vertical bars) of δ performances for
each isolated system block. Statistics shown for all networks and for the set of 25% best ANNs from
each CV partition. Blocks (a) identification of noisy ANGPD clouds; (b) preliminary separation via
histograms; (c) distinction between InV and InD; (d) distinction between slot and corona. The best
topology of each ANN type is indicated by arrows.

The different topologies (free parameter of neural networks) were compared with
one another regarding their generalization capabilities. Applying reasoning similar to
that used in the definition of δ, the best topologies are those whose ANNs present high
average (µ(δ)) and low standard deviation (σ(δ)) of δ metrics. Following Occam’s razor
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principle, it is selected the simplest topology (least number of neurons) among those with
good generalization.

Figure 19a shows δ statistics for the block of identification of the noisy ANGPD cloud,
performed by ANNs-0. It can be observed that δs started relatively low for NHL topology,
increasing progressively until topology 100, and it was stagnant for the configurations
with two hidden layers. Therefore, it was inferred that, for a single hidden layer, networks
with more hidden neurons are capable of extracting more useful information about the
underlying relation between inputs and outputs; also, the addition of a second hidden
layer does not increase explanatory power for this application. Topology 35 (1 hidden layer
with 35 neurons) was considered the best on average.

The next block is the preliminary separation of patterns between classes InV/InD, DCI,
and slot/corona, performed by ANNs-1. δs of this block follow in Figure 19b. In the curve
of the 25% best ANNs, performance increased from topology NHL to 5 and saturated after
that. This indicates that, for this specific block, more complex networks are not capable
of extracting more useful information that could improve performance. Topology 5 was
considered the best for this block.

A similar trend was observed in δs of ANNs-2 and ANNs-3, shown in Figure 19c,d,
respectively. The best topology for ANNs-2 was 20, and 5-5 was the best for ANNs-3. For
the ANN-3 block, we considered that the higher performance of topology 5-5 justified the
approximately 15% increase in the number of weights compared to topology 5 (Figure 19d).

In order to have a more general picture of neural networks’ performance, the next
results are shown as confusion matrices. For each isolated block, the element-wise average
of the collection of confusion matrices (obtained on the test fold) of the 25% best ANNs
from each CV partition was calculated. Each element of the resulting matrix was calculated
as a percentage relative to the number of patterns that truly belong to the corresponding
PD source (as labeled by the specialist). The results are shown in Figure 20.
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Figure 19. Topology-wise average (line) and standard deviation (vertical bars) of δ performances for
each isolated system block. Statistics shown for all networks and for the set of 25% best ANNs from
each CV partition. Blocks (a) identification of noisy ANGPD clouds; (b) preliminary separation via
histograms; (c) distinction between InV and InD; (d) distinction between slot and corona. The best
topology of each ANN type is indicated by arrows.
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Figure 20. Element-wise average confusion matrices of the set of best topology’s 25% best ANNs
from each CV partition, for each isolated system block. Matrices obtained from the test sets. Blocks
(a) identification of noisy ANGPD clouds; (b) preliminary separation between InV/InD, DCI, and
Slot/Corona; (c) distinction between InV and InD; (d) distinction between slot and corona.

The average confusion matrix relative to the identification of noisy ANGPD clouds is
shown in Figure 20a. In this matrix, class “Noisy” denotes patterns whose two ANGPD
clouds were considered noisy by the specialist, whereas “Valid” patterns had at least one
valid cloud. Good results were obtained, with recalls greater than 94.8%. The higher recall
for class “Valid” was likely due to lower variability of its patterns in feature space, which
facilitates classification.

The next block is the preliminary separation performed by ANNs-1 using the his-
togram feature. The average confusion matrix (Figure 20b) showed excellent results, with
recognition rates greater than 96% for all classes.

The last blocks are differentiation between InV and InD patterns by ANNs-2 and
separation between slot and corona by ANNs-3. The contour feature was used by both
types of networks. In the testing stage, these blocks resolve the ambiguity between patterns
classified as InV/InD or slot/corona by ANNs-1 (Figure 5). Average confusion matrices
follow in Figure 20c,d, respectively.

Figure 20. Element-wise average confusion matrices of the set of best topology’s 25% best ANNs
from each CV partition, for each isolated system block. Matrices obtained from the test sets. Blocks
(a) identification of noisy ANGPD clouds; (b) preliminary separation between InV/InD, DCI, and
Slot/Corona; (c) distinction between InV and InD; (d) distinction between slot and corona.

The average confusion matrix relative to the identification of noisy ANGPD clouds is
shown in Figure 20a. In this matrix, class “Noisy” denotes patterns whose two ANGPD
clouds were considered noisy by the specialist, whereas “Valid” patterns had at least one
valid cloud. Good results were obtained, with recalls greater than 94.8%. The higher recall
for class “Valid” was likely due to lower variability of its patterns in feature space, which
facilitates classification.

The next block is the preliminary separation performed by ANNs-1 using the his-
togram feature. The average confusion matrix (Figure 20b) showed excellent results, with
recognition rates greater than 96% for all classes.

The last blocks are differentiation between InV and InD patterns by ANNs-2 and
separation between slot and corona by ANNs-3. The contour feature was used by both
types of networks. In the testing stage, these blocks resolve the ambiguity between patterns
classified as InV/InD or slot/corona by ANNs-1 (Figure 5). Average confusion matrices
follow in Figure 20c,d, respectively.
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4.3. Overall Recognition Statistics

The results presented so far are isolated performance figures of system blocks, consid-
ering that all patterns presented to the block were correctly classified by the other preceding
blocks in the cascade.

To calculate the system’s overall recognition rates for each PD source, one multiplies
the isolated hit rates of the blocks that a given sample must pass through to be classified as
that source. For example, for a pattern to be recognized by the system as InV, the following
sequence of events must occur: (i) ANGPD clouds must be considered valid by ANNs-0;
(ii) ANN-1 must identify the pattern as InV/InD; and (iii) ANN-2 must classify the sample
as InV. Thus, the system’s global recognition rate for the source internal void is equal to the
product of hit rates of blocks ANNs-0, ANNs-1, and ANNs-2. After performing analogous
calculations for the other PD sources, the resulting global recognition rates are shown in
Figure 21. This figure also shows the isolated performances of each system block. Global
recognition rates greater than 88% were obtained for all considered PD sources.
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Figure 21. Isolated and calculated global classification rates of the proposed multiple PD-source
recognition system.

The collection of the best network of the best topology from each ANN type was
assembled to form an instance of the overall classification system. The system classified the
hard-to-identify PRPDs of Figure 3 according to the testing stage of Figure 5. The results
are shown in Table 3. All samples were correctly classified, which further validates the
proposed methodology.
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Table 3. System classification results on the patterns of Figure 3.

Pattern
True PD
Source(s)

System’s
Predicted Class(es)

Numerical Outputs of Internal Networks
ANN-0 * ANN-1 † 2ANN-2 ‡ 2ANN-3 §

Figure 3a Corona Corona 0.01|0.99 0.01|0|0.99 — 0.14|0.86
Figure 3b Slot Slot 0.01|0.99 0|0|1 — 0.99|0.01
Figure 3c InD InD 0|1 0.91|0.04|0.05 0.01|0.99 —
Figure 3d InV + Gap InV + Gap 0.01|0.99 0.9|0.05|0.05 1|0 —
Figure 3e DCI + Gap DCI + Gap 0.05|0.95 0.01|0.99|0 — —
Figure 3f Und Und 0.99|0.01 — — —

* Values of output neurons associated to Noisy|Valid classes. † Values of output neurons associated to
(InV/InD)|DCI|(Slot/Corona) classes. ‡ Values of output neurons associated to InV|InD classes. § Values
of output neurons associated to Slot|Corona classes.

5. Final Remarks

In this study, a novel multiple-source PD-recognition methodology in hydro-generator
stator bars was pesented. The functionality of identifying patterns not having valid PD
source (e.g., only noise) was also included, that is, the identification of patterns with no
valid PD sources. The technique is based on AI and statistics, and the data used to train
the algorithms were PRPD patterns obtained from online PD measurements in hydro-
generators operating in real-world conditions.

PRPD samples were treated as images in the methodology. First, they were subjected
to a modified and extended version of the image denoising algorithm proposed by the
authors in a previous study. The main adaptations were the addition of a novel image-based
algorithm that separates partially superposed PD clouds in the PRPD image and that two
denoised sub-PRPDs were generated as outputs, each formed by discharges of a different
nature. The result is a denoising algorithm that, as stated in the authors’ previous study,
eliminates pattern variations introduced by disturbances found in online measurements; in
this work, it was extended and fine-tuned to better cope with samples presenting multiple
simultaneous PD sources.

The recognition task was divided into multiple smaller problems, each solved by
specific AI classifiers and input features. From the denoised sub-PRPDs, three types of
input features were extracted, two of which are novel: variables for identifying the presence
of valid PD source(s) and features that quantify the shape of PD clouds. The extracted
features were provided as inputs to four types of ANNs. Each type of ANN was trained to
solve a part of the problem, acting like blocks of a larger recognition system. Once trained,
ANNs were used cooperatively in a hierarchical fashion to classify new patterns.

The performance of each classifier was assessed individually. The system blocks
presented isolated accuracies higher than 95%. From those statistics, the system’s overall
performances were calculated, and the global accuracy rates ranged from 88% to 94.8% for
all the investigated PD sources.

Despite the good performance, the methodology has some limitations, the main of
which are the separation of superposed PDs in restricted circumstances and not identifying
multiple simultaneous ANGPD PD sources. The authors intend to work on those limitations
in future studies, by means of adding time-domain information to the methodology and
using more-advanced clustering techniques.
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