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Abstract: This paper discusses the research and analysis of the dynamics of high-voltage generating
systems. The test subject is an ignition system modelled by a set of two induction coils with an open
ferromagnetic core that constitutes an ignition coil. The essence of the tests involved the application
of magnetic coupling of the fractional order that enabled taking into account the non-idealities of
the coils and the connector that implements the ignition point. The paper contains the results of
a theoretical analysis, supported by digital simulations. The conducted experiments confirm the
purposefulness of the conducted analyses and the possibility of modeling real objects based on
circuits with fractional-order elements.
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1. Introduction

The environmental requirements imposed on modern vehicles led to a gradual with-
drawal from the use of diesel engines in motor vehicles in favor of spark-ignition gasoline
engines. In addition to purely electric propulsion, hybrid propulsion has become the answer
to these requirements. A system composed of a gasoline engine and an electrical motor
that is tasked to support the internal combustion engine at the most difficult times—when
starting and during acceleration [1–3]—brings concrete savings in the operation of the
vehicle. Hybrid cars have become an increasingly popular solution for drivers who value
the environment. The two sources of propulsion work in synergy, complementing each
other and providing better dynamics, greater economy, and much fewer toxic compounds
released into the atmosphere.

The proper functioning of the ignition system in the operation of an internal combus-
tion engine has a significant impact on the operation of a motor vehicle and thus has a
significant impact on the environment. Its task is to provide an electric spark of the right
amount of energy and at the right time, which is necessary for the ignition of the fuel–air
mixture in the cylinder of the internal combustion engine [4–6]. Therefore, an analysis
of the internal combustion engine operation and especially of its ignition system is very
desirable, as it has a significant impact on the combustion process and consequently the
power, torque, fuel consumption, and toxicity of exhaust gases. The ignition systems of
modern vehicles are modeled with electrical circuits, the mathematical description of which
in the general case is represented by a system of nonlinear equations [7–9].

Research on the dynamics of ignition systems is difficult and the results of analysis and
digital simulations differ from experimental results. As the classical (standard) approach
to the analysis of electrical systems and their modeling usually ignores the effects of
non-ideality of the components, it does not always allow for the obtainment of accurate
mathematical models. This is exactly the case with ignition system models.
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The application of fractional order calculus to electrical circuits has opened up a
new area of application that provides the possibility to approximate real elements to a
degree that was not possible with the classical (integer order) approach. There are many
interrelated electrical and magnetic phenomena in ignition systems in which differential
calculus can be applied. These include losses in individual elements, relaxation of dielectric
materials, electrochemical processes, magnetic non-homogeneity, nonlinearity, and simply
operating conditions, such as temperature. For many years, there has been a significant
increase in the number of research on the practical application of fractional order calculus.
A review of the practical applications of this calculus is given, among others, in works on
the study of electrotechnical components and devices, such as supercapacitors, resistors
with memory referred to as “memristors” [10,11], as well as coils with inductance with a
skin effect [12], and fractional mutual inductance coils [13,14]. Fractional order elements
Cα and L described by fractional-order differentials and integral calculus are introduced as
a generalization of classical elements [15–19].

It appears that mathematical models of a fractional order of dynamic systems are
better able to describe the phenomena (processes) occurring in real objects. This is also true
for electrical circuits, such as ignition systems, where hypothetical quasi-capacitive and
quasi-inductive components are assumed to exist and the relationships between currents
and voltages or voltages and currents are defined by a fractional-order derivative [20]:

iC = Cα
dαuC
dtα

; uL = Lα
dαiL
dtα

(1)

The present paper is focused on the problem of the analysis of the operation in
dynamic states of systems that generate high voltages, namely ignition systems, and their
mathematical description with the use of fractional order calculus [21]. The main objective
is to study two induction coils that constitute an ignition coil and its properties taking into
account fractional order magnetic coupling.

This paper comprises an introduction, four sections, a conclusion, and a list of ref-
erences. The introduction discusses the problem in question. Section 2 gives a synthetic
presentation of the mathematical apparatus used in the analysis. The definitions of selected
fractional-order derivatives are presented. The chapter discusses the basic methods used
to determine the Laplace transform and its inverse for fractional-order systems, as well
as the methods allowing for an approximation of the sα, a factor with a quotient of poly-
nomials containing integral powers of s. The next section presents a mathematical model
of a distributorless ignition system with elements of the fractional order under analysis.
The main part of the paper is Section 4, which shows an analysis of an ignition system
model with fractional-order elements. The section contains the results of the theoretical
analysis supported by digital simulation results. The results warrant the conclusion that
with the developed model, it is possible to model the operation of a real ignition system
more realistically. Experimental studies on a real object confirming the advisability of the
analyses performed are presented in Section 5. The paper ends with a summary including
a presentation of the objectives of further research and with references.

2. Selected Elements of Fractional Order Calculus

This section presents the definitions of fractional-order derivatives in Caputo’s sense
and the corresponding Laplace transform. It shows the approximation methods for deter-
mining the inverse Laplace transform of fractional-order systems, including the continued
fraction expansion (CFE) method and the Oustaloup method.

The definition of a derivative is obtained from the definition of the Riemann-Liouville
fractional integral, which is a generalization of the formula of an nth-order integral:

Iny(x) =
∫ x

0

∫ xn−1

0
· · ·

∫ x1

0
y(x0)dx0 . . . dxn−2dxn−1 =

1
(n− 1)!

∫ x

0

1

(x− t)1−n y(t)dt (2)
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and from another well-known formula used in classical differential calculus:

dn

dxn f (x) = Ik−n dk

dxk f (x) (3)

where the f (x) function is differentiable n times in the [a, b] interval, k, n ∈ N, and k > n.

Definition 1. A derivative of the α (α ∈ R+) order, in Caputo’s sense, is the operator:

C
a Dα

t f (t) = I(k−α) dk

dtk f (t) =
1

Γ(k− α)

∫ t

a

f (k)(τ)

(t− τ)α+1−k dτ, (4)

where k− 1 ≤ α ≤ k.

An important feature of Caputo’s derivative is that the initial conditions include
integer-order derivatives. These derivatives have a more complete physical meaning than
fractional-order derivatives; therefore, Definition (1) is of practical importance.

The Laplace transform method is a very commonly used tool for solving differential
equations. The relationships on the basis of which the Laplace transform of fractional-order
derivatives is determined can be calculated using the relationship for the transform of the
classical nth-order derivative:

L{ f n(t); s} = snF(s)−∑n−1
k=0 sn−k−1 f (k)(0) = snF(s)−∑n−1

k=0 sk f (n+k+1)(0), (5)

and the convolution transform of the function:

L{ f (t) ∗ g(t); s} = F(s)G(s), (6)

Thus, for fractional-order derivatives in the Riemann-Liouville sense:

L
{

RL
0 Dα

x f (t); s
}
= sαF(s)−∑n−1

k=0 sk
[

RL
0 Dα−k−1

x f (t)
]

t=0
, n− 1 ≤ α < n. (7)

The practical application of this transform is limited due to the lack of physical
interpretation of the initial values of the fractional derivatives for the lower bound t = 0. By
analogy, one can obtain a formula for the fractional derivative in the Caputo sense:

L
{

C
0 Dα

x f (t); s
}
= sαF(s)−∑n−1

k=0 sα−k−1 f k(0), n− 1 ≤ α < n. (8)

whose application in practice is much broader, since the initial conditions occurring here
for t = 0 concern integer-order derivatives that have known physical interpretations.

For fractional-order derivatives, the Laplace transform, assuming zero initial condi-
tions, is equal to:

L
{

RL
0 Dα

t f (t)
}
= L

{
C
0 Dα

t f (t)
}
= L

{
GL
0 Dα

t f (t)
}
= sαF(s) (9)

where F(s) is the Laplace transform of the f (t) function.
More characteristics are given in publications [22,23].
Determination of the inverse Laplace transform is done by decomposing the function

into simple fractions. Therefore, the discretization of the continuous Laplace operator
opens up possibilities to analyze fractional-order systems. Consequently, to achieve this,
appropriate approximation techniques are required. There are a number of approximation
methods used in the analysis of fractional-order systems. Examples include the following
methods used for continuous time: the continued fraction expansion (CFE) method [24],
Carson’s method [25], the Oustalou method [26], and the Matsuda method.

The most common methods used to determine the inverse Laplace transform of
fractional-order systems are the ones that enable approximation of the sα factor with the
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quotient of polynomials containing integral powers of s. One such method is the continued
fraction expansion (CFE) method, which derives from an expansion into an infinite fraction
of the expression (1 + x)α, 0 ≤ α ≤ 1. By substituting x = s − 1 and taking successive
expressions for consideration, one obtains approximations sα of the corresponding orders
and hence of accuracy.

According to this method, the sα factor can be represented as a quotient of polynomials
of the s variable and the order of the α derivative—these variables appear here in integer
powers [27,28].

sα ∼=
N(s, α)

D(s, α)
=

∑A
k=0 PAk(α)sA−k

∑A
k=0 QAk(α)sA−k

(10)

where A is the order of approximation; PAk(α), QAk(α) — α are polynomials of the A order.
As shown in publication [29], the approximation order A = 5 turns out to be the most

optimal. Assuming the approximation order A = 5, these polynomials express the following
form:

sα =
P50s5 + P51s4 + P52s3 + P53s2 + P54s + P55

Q50s5 + Q51s4 + Q52s3 + Q53s2 + Q54s + Q55
(11)

where:
P50 = Q55 = −a5 − 15a4 − 85a3 − 225a2 − 274a− 120
P55 = Q50 = a5 − 15a4 + 85a3 − 225a2 + 274a− 120

P51 = Q54 = 5a5 + 45a4 + 5a3 − 1005a2 − 3250a− 3000
P54 = Q51 = −5a5 + 45a4 − 5a3 − 1005a2 + 3250a− 3000

P52 = Q53 = −10a5 − 30a4 + 410a3 + 1230a2 − 4000a− 12000
P52 = Q53 = 10a5 − 30a4 − 410a3 + 1230a2 + 4000a− 12000

It is worth noting that the polynomials present in the above approximations contain
integer powers of s, so the inverse transform can be determined using the well-known
methods [30–33].

3. Distributorless Ignition System Model and Numerical Simulation Results

For the purpose of the analysis of the operation of an ignition system, a model of the
ignition coil was adopted for which a fractional-order magnetic coupling was introduced
between its two windings. When constructing the mathematical model of the ignition
system, the following simplifying assumptions were made:

a. the inductance, capacitance, and resistance of wires on the low-voltage side was
omitted;

b. the initial discharge voltage was assumed to be equal to the spark plug voltage; and
c. the spark plug, at this stage of the analysis, was assumed to be a break in the circuit.

Considering the above assumptions, an equivalent diagram of the ignition system
(Figure 1a) and an equivalent diagram of the fractional-order magnetic coupling ignition
system of the ignition coil M, shown in (Figure 1b), were developed.
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Figure 1. (a) Model of the ignition system for the simulation studies. Ub—battery voltage, R1—
resistance of the ignition coil primary winding, L1—inductance of the ignition coil primary winding,
L2—inductance of the ignition coil secondary winding, R2—resistance of the ignition coil secondary
winding, R4—resistance representing the losses in the coil core, R3—radioelectrical interference
resistance, R34—flow resistance of the spark plug, Rls—discharge resistance, C2—self-capacity of the
coil, C34—self-capacity of the spark plug, M—coupling. (b) Substitute diagram of a distributorless
ignition system.

The following designations and values of ignition system parameters used for calcula-
tions were adopted in the analysis:

• U1 = 13 V—battery voltage;
• R1 = 0.9 Ω—coil primary winding resistance;
• L1 = 0.0025 H—coil primary winding inductance;
• L2 = 40 H—coil secondary winding inductance;
• R2 = 6400 Ω—ignition coil secondary winding resistance;
• R4= 1

G4
= 50 MΩ—resistance representing losses in the coil core;

• R3 = 5 kΩ—radio interference reduction;
• C2 = 170 pF—coil self-capacitance.

In reality, the operation of the ignition system can be divided into three stages: charg-
ing, discharging, and spark discharge represented by voltage U2 (whose time waveform
u2(t) presents the waveform of the spark discharge voltage on the spark plug).

Currents are generally switched on or off in the primary circuit of the ignition system
by mechanical–electrical or electronic switches. The electrical circuit switching is accompa-
nied by a transient state of voltage and current, which is associated with the presence of
inductance and capacitance in the circuit. Therefore, the following physical phenomena
can be observed during the operation of an ignition system:

- a current break in the ignition coil;
- a transformation of the impulse from the primary to the secondary side (magnetic

coupling);
- conduction of a high-voltage impulse through high-voltage wires—treated as a long

line;
- an arc discharge on the spark plug.

The ignition of the fuel–air mixture in the cylinder at the right time as a result of
spark discharge on the spark plug is very important from the point of view of operation
of an internal combustion engine. A discharge occurs when the voltage applied to the
electrodes of the spark plug ionizes the gas to the extent that an electric current can flow in
the inter-electrode space and the value of the stored energy enables the initiation of this
process.

A spark discharge consists of two phases:

- a capacitive phase—a very short high-current impulse;
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- an inductive phase—a long arc discharge time (compared to the capacitive phase)
with low current value.

Testing of the ignition system was carried out in two stages:

1. Charging of the system—applying battery voltage to the ignition system with zero
initial conditions—Figure 2a—for time 0 < t < t0;

2. Discharging the system—interruption of the power supply and opening of the primary
side of the ignition coil—Figure 2b—for time t > t0.
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Figure 2. Block diagrams of the operating stages of the distributorless ignition system (IS); (a)
charging the system; (b) discharging the system.

The analysis of the ignition system operation at the charging stage was carried out
using the operator method based on the diagram shown in Figure 3.
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Figure 3. Operator diagram of the ignition system after the voltage is switched on at zero initial
conditions.

For the diagram shown in Figure 3, based on Kirchhoff’s laws, it is possible (after the
Laplace transform with zero initial conditions) to write a system of equations:

U1(s) = I1(s)(R1 + sL1)− sα Mα I2(s)
I2(s)(R2 + sL2)− sα Mα I1(s) + U2(s)

I2(s) = U2(s)(G4 + sC2)
(12)

By determining U2(s), I1(s), and I2(s) from that system of equations, the following
equations were obtained:



U2(s) =
sα MαU1(s)

(R1 + sL1)(R2 + sL2)(G4 + sC2) + (R1 + sL1)− s2α M2
∝(G4 + sC2)

I1(s) = U1(s)
(R2 + sL2)(G4 + sC2) + 1

(R1 + sL1)(R2 + sL2)(G4 + sC2) + (R1 + sL1)− s2α M2
∝(G4 + sC2)

I2(s) =
sα Mα(G4 + sC2)U1(s)

(R1 + sL1)(R2 + sL2)(G4 + sC2) + (R1 + sL1)− s2α M2
∝(G4 + sC2)

(13)
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By replacing U1(s) with U/s (where: U—fixed battery voltage) and replacing sα and
s2α with the respective quotients of polynomials (determined from Equation (10)), the
following equations were obtained:

U2(s) =
N(s, ∝)D(s, 2 ∝ −1)MαU

Denom 1
I1(s) =

UD(s, 2 ∝ −1)[(R2 + sL2)(G4 + sC2) + 1]
Denom 2

I2(s) =
UN(s, ∝)D(s, 2 ∝ −1)M∝(G4 + sC2)

Denom 3

(14)

in which:

Denom1 = D(s, α)·{D(s, 2α− 1)·[(R1 + sL1)·(R2 + sL2)·(G4 + sC2) + (R1 + sL1)]
−sN(s, 2α− 1)·M2

α(G4 + sC2
}

Denom2 = D(s, 2α− 1)·[(R1 + sL1)·(R2 + sL2)·(G4 + sC2) + (R1 + sL1)]
−sN(s, 2α− 1)·M2

α(G4 + sC2
}

Denom3 = D(s, α)·{D(s, 2α− 1)·[(R1 + sL1)·(R2 + sL2)·(G4 + sC2) + (R1 + sL1)]
−sN(s, 2α− 1)·M2

α(G4 + sC2
}

By calculating the inverse transform for time t > t0, the voltage waveforms u2(t) at the
output of the ignition system and the current waveform i2(t) were obtained for different
values of fractional α-orders of the magnetic coupling between two coils.

The voltage waveforms u2(t) for the order α = 0.9, 0.8, 0.7, and 0.6, and the current
waveforms i2(t) for the order α = 0.9 are shown in Figures 4 and 5, respectively.
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The next stage of the analysis of the ignition system operation is the system discharge
stage—a break in the power supply and a short circuit in the primary side of the ignition
coil. At this stage, after opening of the W switch (Figure 2) after time t0 for initial conditions
i1(t0), i2(t0), and u20(t0), the following equations describing the system were obtained:

I1(s) = 0 i1(0) = i1(t0)
I2(s)(R2 + sL2) + U20(s) + sα−1i1(t0) = 0

I2(s) = U20(s)(G4 + sC2)
(15)

By determining U2(s) and I2(s) from that system of equations, the following was
obtained:

U20(s) =
−N(s, α)i1(t0)

sD(s, α)[(G4 + sC2)(R2 + sL2) + 1]

I2(s) =
−N(s, α)i1(t0)(G4 + sC2)

sD(s, α)[(G4 + sC2)(R2 + sL2) + 1]

(16)

The voltage waveforms u2(t)and the current waveforms i2(t) for the order α = 0.9 are
shown in Figures 6 and 7, respectively.
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By combining the two stages considered, it is possible to present the complete opera-
tion cycle of the ignition system.

The results of numerical simulations that model the actual ignition system operation
cycle and show the voltage waveforms u2(t) at the output of the ignition system and
the current waveforms i2(t) for different values of the fractional orders α of the magnetic
coupling between the two windings of the ignition coil are shown in Figures 8 and 9.
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4. Experimental Studies of Spark Discharge

Experimental studies to confirm the advisability of the analyses carried out were
carried out using a test stand equipped with a single-cylinder internal combustion engine
working with a typical ignition system, as shown in Figure 10. A block diagram of the stand
along with the measurement system are shown in Figure 11. The aim of the experiment
was to record current oscillograms in the secondary circuit and the voltage generated by
the ignition system during the spark discharge.
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Figure 11. Block diagram of the test stand.

The experimental verification of the results of digital simulations was carried out with
the use of an ignition coil used to generate high voltages in typical ignition systems of
spark-ignition internal combustion engines. The tested ignition coil was a system of two
induction coils with an open ferromagnetic core of compatible magnetization, the electrical
diagram of which is shown in Figure 1. The recorded voltage waveforms u2(t) and current
waveforms i2(t) are shown in Figures 12 and 13.
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As can be seen, the current waveforms i2(t) and the voltage waveforms u2(t) obtained
from the experiments differ slightly from the results of the numerical experiments shown
in Figures 8 and 9.

When comparing the obtained waveforms with the results of the numerical simula-
tions, it should be concluded that the waveforms have similar shapes. The differences
between the actual and simulated waveforms are due to the existence of micro capacitances
(e.g., between the coil windings) and the absence of a spark plug model in the tested circuit.
Completing the circuit model from Figure 1 with capacitive and resistive components and
then selecting α and treating the high-voltage wires as a line with distributed parameters in
order to reproduce the experimental waveforms as closely as possible will be the subject of
the next research [34–36]. This will enable obtaining an accurate mathematical description
of the circuit under analysis.

5. Conclusions

The path to a mathematical description of reality is led through models based on
certain simplifying assumptions. The research indicates that models of electric circuit
components in the form of fractional-order models seem to be appropriate. It is often
the choice of the correct assumptions (i.e., simplifications) that determines the success of
an approach. Therefore, the attempt to eliminate simplifications makes fractional-order
calculus particularly applicable in circuit theory as well and can be an excellent tool in
the analysis of real systems. In conclusion, it can be stated that the use of fractional-order
magnetic coupling between two coils makes it possible to avoid the Dirac impulse that
is present in the classical approach. In the case of magnetic coupling of the first order
(a classical example), the voltage is assumed to appear immediately and disappear just
as immediately (Figure 3)—practically no mechanical or even electronic switch is able to
achieve such a state. The use of fractional-order magnetic coupling in this case makes
it possible to account for the non-ideality of the coils and the switch. Thus, it provides
the possibility to approximate the results of those obtained experimentally in a practical
setup. As can be seen, the actual waveforms presented in Figures 12 and 13 are slightly
different from the results of the numerical experiments—Figures 8 and 9. The differences
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between the actual and simulated waveforms are due to the existence of micro capacitances
(e.g., between the coil windings) in the tested circuit. An additional conclusion from this
research is that the current waveform at the input of the system is the same as for classical
coupling and the value of the degree of coupling α greatly influences the value of the
voltage induced in the second coil. This means that the larger the value of α, the “stronger”
the coupling.
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Elektrotechniczny 2009, 85, 120–122. (In Polish)

20. Podlubny, I. Fractional Calculus: Methods for Applications; XXXVII Summer School on Mathematical Physics: Ravello, Italy, 2012.

http://doi.org/10.28991/esj-2018-01138
http://doi.org/10.28991/cej-0309154
http://doi.org/10.4271/2016-01-1011
http://doi.org/10.4271/2007-01-1589
http://doi.org/10.1115/DETC2009-86861
http://doi.org/10.1007/s00034-014-9886-2
http://doi.org/10.1002/cta.2064
http://doi.org/10.3390/en13071539
http://doi.org/10.1155/2012/248175
http://doi.org/10.1109/CarpathianCC.2012.6228706


Energies 2022, 15, 337 14 of 14

21. Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and applications of differentiation and integration to arbitrary order. In
Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1974.

22. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
23. Caputo, M. Linear Models of Dissipation Whose Q Is Almost Frequency Independent-II. Geophys. J. R. Astron. Soc. 1967, 13,

529–539. [CrossRef]
24. Carlson, G.; Halijak, C. Approximation of fractional capacitors (1/s)ˆ(1/n) by a regular newton process. IEEE Trans. Circuit Theory

1964, 11, 210–213. [CrossRef]
25. Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M. Frequency-band complex noninteger differentiator: Characterization and

synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 25–39. [CrossRef]
26. Krishna, B.T. Studies on fractional order differentiators and integrators: A survey. Signal Processing 2011, 91, 386–426. [CrossRef]
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32. Różowicz, S.; Zawadzki, A. Experimental verification of signal propagation in automotive ignition cables modelled with
distributed parameter circuit. Arch. Electr. Eng. 2019, 68, 667–675.

33. Różowicz, S. Voltage modelling in ignition coil using magnetic coupling of fractional order. Arch. Electr. Eng. 2019, 68, 227–235.
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