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Abstract: Expanding the scale of GPU-based deep learning (DL) clusters would bring not only
accelerated AI services but also significant energy consumption costs. In this paper, we propose a
cost efficient deep learning job allocation (CE-DLA) approach minimizing the energy consumption
cost for the DL cluster operation while guaranteeing the performance requirements of user requests.
To do this, we first categorize the DL jobs into two classes: training jobs and inference jobs. Through
the architecture-agnostic modeling, our CE-DLA approach is able to conduct the delicate mapping
of heterogeneous DL jobs to GPU computing nodes. Second, we design the electricity price-aware
DL job allocation so as to minimize the energy consumption cost of the cluster. We show that our
approach efficiently avoids the peak-rate time slots of the GPU computing nodes by using the
sophisticated mixed-integer nonlinear problem (MINLP) formulation. We additionally integrate
the dynamic right-sizing (DRS) method with our CE-DLA approach, so as to minimize the energy
consumption of idle nodes having no running job. In order to investigate the realistic behavior of
our approach, we measure the actual output from the NVIDIA-based GPU devices with well-known
deep neural network (DNN) models. Given the real trace data of the electricity price, we show that
the CE-DLA approach outperforms the competitors in views of both the energy consumption cost
and the performance for DL job processing.

Keywords: GPU-based cluster; deep learning; training; inference; job allocation; energy consumption
cost; electricity price

1. Introduction

Recently, the Artificial Intelligence (AI) services based on deep learning (DL) have
been dramatically expanded over the various area (e.g., image processing, computer vision,
natural language processing, game learning, and self-driving system), while the non-
negligible cost by the AI infrastructures have not been studied in detail yet. Most of the
cost for DL application processing is caused from the energy consumption for GPU-based
cluster operation [1]. For example, the maximum thermal design power (TDP) of state-of-
the-art Ampere-based A100 GPU device (7 nm) is 400 W, which is higher than the older
architecture of Volta-based V100 (12 nm, TDP-300 W) [2]. Generally, the GPU computing
nodes in DL clusters, bring two types of energy consumption: idle energy consumption
and active energy consumption [3]. The idle energy consumption is occurred when the
node is turned on but has no running DL jobs. The active energy consumption is required
when the node executes the assigned DL job. The active energy consumption is determined
based on both the characteristics of the DL jobs (i.e., the number of deep neural network
(DNN) model parameters and the input data size) and the hardware specification of the
deployed GPU devices (i.e., the number of multi-processing units and core/memory clock
rate) in the node [4]. Due to the complex mixture of such factors, the unsophisticated DL job
allocation might bring the undesirable energy consumption cost for the cluster operation.

In order to reduce the energy consumption of the cluster operation, lots of studies
have been presented so far. For reducing the energy consumption and carbon emission
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by clusters, refs. [5–9] have proposed the related approaches. Ghamkhari, M. et al. [5]
propose the energy portfolio optimization for data center management. They present
the linear mixed-integer stochastic programming approach with considering both the
Internet workload data and the electricity market. They utilize the comprehensive energy
options to maximize the energy efficiency of the cluster operation. Kwon, S. [6] proposes
the renewable energy utilization based approach in order to achieve the energy efficient
data center operations. The author designs the two-stage stochastic program with chance
constraints to solve the energy usage optimization of clusters. Han, Z. et al. [7] propose
the dynamic virtual machine (VM) management approach for energy efficient data centers.
They formulate the large-scale Markov decision process (MDP) based problem to derive
the energy-optimal decision making of VM allocation. They exploit the real trace data
of user requests from the Google Cluster and PlanetLab to evaluate the practicality of
their proposed approach. Hu, Q. et al. [8] propose the historical data based scheduling
for DL workloads so as to improve the processing performance and achieve the sufficient
energy saving. They design a Quasi-Shortest-Service-First scheduling approach in order to
reduce the entire job completion time. Wang, Y. et al. [9] present sBEET that is the real-time
energy efficient GPU scheduler, to maximize the performance of multitasking and achieve
the energy optimization. They show the performance improvement by their proposed
approach on the modern embedded GPU devices (e.g., NVIDIA Jetson Xavier AGX).

For energy efficient GPU-based cluster operation, refs. [10–14] have proposed the dy-
namic voltage and frequency scaling (DVFS)-based optimization techniques. Mei, X. et al. [10]
propose the energy efficient online job scheduling on GPU-based clusters. They exploit the
DVFS method so as to tune the energy efficient setting for GPU core/memory frequency
values, according to the characteristics of the batch jobs. Guan, H. et al. [11] propose the
virtual machine (VM) control architecture to achieve the energy-efficient SLA guarantees for
cloud gaming in GPU-based clusters. They design the proportional-integral (PI) controller
to adjust the GPU frequency for energy reduction. Zou, P. et al. [12] propose the quality
of service (QoS) aware dynamic power management for GPU-based clusters by using the
DVFS method. They present the online dynamic power-performance management (ODPP)
system to maximize the energy efficiency given machine learning (ML) workloads. Bharad-
waj, S. et al. [13] propose the DVFS-based technique, dynamic underclocking and bypassing
(DUB) to enable the performance tuning for heterogeneous GPU workloads (bandwidth-
intensive and latency-intensive), and achieve the power saving. Kandiah, V. et al. [14]
design the power models for modern GPU device architectures based on various data in-
cluding DVFS. They propose an AccelWattch, the configurable power modeling framework
which is suitable for cluster environments consist of heterogeneous GPU devices.

Recently, modern DL based approaches have been proposed to maximize the energy
efficiency of clusters. Ran, Y. et al. [15] propose the deep reinforcement learning (DRL)
approach to achieve the joint optimization of job allocation and the data center cooling
control. Instead of the conventional optimization methods, they present the parameterized
deep Q-network (PADQN) to solve the control complexity of cluster operation. Gao, J. [16]
proposes the neural network framework that leverages the multiple sensor data so as
to estimate the data center performance and improve the associated energy efficiency.
The proposed framework achieves the power usage effectiveness (PUE) of almost 1.1,
for modern data centers. Wang, B. et al. [17] propose the DRL model-based QoS feature
learning approach in order to decrease the energy consumption of cloud data centers
while guaranteeing the low service-level-agreement (SLA) violation rate. Chi, C. et al. [18]
present the model-free DRL based joint optimization method instead of using conventional
optimization techniques, so as to achieve the data center energy optimization with the
acceptable computation complexity.

However, even though existing works show the impressive results, the studies of the
explicit energy efficient GPU-based cluster operation for DL job processing are still at an
early stage. They have following several drawbacks.
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First, they do not consider the heterogeneity of DL jobs. Without loss of generality,
we can categorize the usual DL jobs into two classes: training jobs and inference jobs [19].
The DL training jobs require both of the feed-forward and back-propagation computations
for DNN model parameter updating. The back-propagation computation needs longer
duration than the feed-forward computation because of the diffusion of the chained gradi-
ent calculation. Usually, the DL training jobs require hours or days to get the acceptable
estimation accuracy from the constructed DNN model. The DL training job is kind of
batch workload, so we should pre-define the deadline for each DL training job. As long
as satisfying the deadline, we are able to freely halt and restart the DL training jobs. The
DL inference jobs require only the feed-forward computation for DNN model estimation.
Contrast to the DL training jobs, the inference jobs require only few milliseconds or sec-
onds to be completed. The DL inference job is kind of transactional workload, and the
involved performance metric is the response latency which is commonly used for service
quality evaluation. Consequently, the clusters handling DL training and inference jobs
should do double duty like as the high performance computing (HPC) cluster for scientific
applications and the data center (DC) for Internet workloads.

Second, the previous studies do not consider the heterogeneity of GPU device architec-
tures. Generally, the deployed multiple GPU devices in clusters have different architectures
due to the continuous upgrade [20]. The different GPU devices have the different com-
puting capacity and derive the different power usage. In this case, it is not easy to design
the common bottom-up model that is applicable for various GPU device architectures in
general. Therefore, we need to design the generalized statistical models to estimate the
GPU device power usage and the DL job performance, instead of using the certain model
dedicated to the specific GPU architecture. Finally, the previous studies for GPU-based
cluster operation do not consider the dynamic electricity price of the grid market. They
commonly focus on only the training acceleration and the estimation accuracy, but not the
electricity price-aware DL job allocation. Even with the same amount of energy consump-
tion, the actual energy consumption cost for DL job processing may differ according to
the variation of the electricity price [21]. For example, the energy consumption cost of the
DL training job during the day-time may be higher than the one during the early hours of
the morning.

In this paper, we propose a novel approach of cost efficient deep learning job allocation
(CE-DLA), that minimizes the energy consumption cost of GPU-based cluster operation
with DL job processing while guaranteeing the performance requirements of user requests.
To do this, we categorize all the DL jobs into two classes of training and inference jobs, and
formulate the deadline and the response latency as performance metrics. Our proposed
CE-DLA approach is able to cover the allocation for heterogeneous DL jobs on the cluster.
Furthermore, we exploit the statistical modeling approach to accommodate the heteroge-
neous GPU computing nodes in the cluster. Regardless of the GPU architecture diversity,
our approach can be applied to common GPU-based clusters with DL job processing.
Furthermore, we consider the dynamic electricity price of the grid market to reduce the
energy consumption cost for cluster operation in practice. We conduct the DL job allocation
with fine-granularity (i.e., time slot based delicate allocation) in the light of the electricity
price variation, so as to enable the additional cost reduction even for the same energy
consumption. The contributions of this work are as follows:

• To the best of our knowledge, this paper is the first work that conducts electricity
price-aware allocation for both the DL training and inference jobs on the GPU-based
cluster. Corresponding to the variation of the grid market price, our proposed ap-
proach automatically derives the cost optimal DL job allocation given workloads of
user requests.

• The statistical power and performance models used in our formulation can be applied
to general GPU-based clusters consist of heterogeneous GPU devices. At the cost of
negligible estimation error, our approach efficiently estimates the GPU device power
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usage and the running DL job performance without the entire profiling of various
GPU architectures.

• In order to reduce the energy consumption of idle GPU computing nodes, we exploit
the dynamic right-sizing (DRS) method that temporarily turns the nodes having no DL
jobs off. When the workloads of user requests are low, we can achieve the maximum
cost efficiency via the DRS method.

• Through the sophisticated mixed integer nonlinear problem (MINLP) formulation, our
approach easily finds the optimal solution considering all the aspects presented above.

• We exploit real trace data of GPU computing nodes and the grid market price, so as to
establish the practical simulation experimental environments.

In order to evaluate the performance of our work practically, we first extract the real
output data from the actual GPU computing nodes and the well-known DNN models. We
deployed four types of GPU devices: GTX1060 (3 GB), GTX1060 (6 GB), 1080 (8 GB), and
RTX2060 (6 GB) [2]. For DNN models, we exploit ResNet152 [22], VGG19Net [23], and
InceptionV3 [24]. For input raw data, we exploit the ImageNet as the large-scale dataset [25].
Based on the framework of MS Computation Network Toolkit (CNTK) [26], we develop
the Windows Powershell-based scripts to parse the output from the DL job processing.
Second, we exploit the real trace data of dynamic electricity price from the Federal Energy
Regulatory Commission (FERC) [27]. By using all the retrieved real data, we establish the
practical simulation environment and conduct the various experiments. We demonstrate
that our proposed CE-DLA approach outperforms other competitors for GPU-based cluster
operation in views of energy consumption cost and the performance for DL job processing.

2. Main
2.1. Proposed System Structure

Figure 1 shows the system structure with our proposed cost efficient deep learning
allocation (CE-DLA) approach. The public service users and vendors continuously send
the requests of DL training (B) and inference jobs (L) to our system. The requests of the DL
training jobs contain the specification of the target DNN model, the dataset, the number of
epochs to be trained, and the deadline. The requests of the DL inference jobs contain the
specification of the target DNN model, the (single) input data, and the bound of acceptable
response latency. At the same time, our system retrieves the trajectories of electricity price
W from the grid market. In the work, we consider only the real-time electricity price, not
the day-ahead one. Based on B, L, andW , the system conducts both the DL job allocation
and the GPU-based cluster operation. We present the the allocation procedures as follows.

• Step 1: The system begins to calculate the allocation decisions x and (y, l) for the DL
training and inference jobs, respectively.

• Step 2: For DL training jobs, the system maps the partial epochs of the jobs to the
multiple time slots of GPU computing nodes. Each DL training job requires the feed-
forward and back-propagation computations. In the feed-forward computation, user
input data is sequentially passed over the DNN model weight parameters, and the
output is derived from the last layer in the DNN model. After that, in the back-
propagation computation, the model gradients are derived layer by layer based on
the loss function value. After the calculation of all the gradients is done based on the
chain-rule, the DNN model parameters are updated. The system iteratively conducts
these procedures for all the pre-defined epochs.

• Step 3: For DL inference jobs, the system carries out the load-balancing for the input
workloads on the available GPU computing nodes. In contrast to DL training jobs,
each DL inference job requires only the feed-forward computation. Therefore, the DL
inference jobs can be handled immediately. The system takes the DL inference jobs as
the base workloads, and allocates them into the time slots right after they arrived.

• Step 4: If DL training jobs are deferrable, the system tries to halt-and-resume the
assigned training jobs with considering the variation of the electricity price, as long as
the deadline is not violated.



Energies 2022, 15, 474 5 of 20

• Step 5: The system derives the DRS decision s for the GPU computing nodes in the
cluster. The system turns idle nodes that have no running jobs off until it needs to
deploy more available time slots for workload increasing. The system circumspectly
conducts the turning-on/turning-off for nodes because the power state transition
requires the non-negligible overheads [28].

Figure 1. The system structure with the proposed cost efficient deep learning allocation (CE-
DLA) approach.

The system formulates the optimization problems in order to make sophisticated allo-
cation and operation decisions. By using the data (i.e., power usage and DL job processing
time) measured by the GPU node parser, the system constructs two optimization problems:
hard-constrained and soft-constrained problems. In the hard-constrained problem, the
system tightly tries to satisfy the requirements of deadline and response latency bound
for DL training and inference jobs. In this case, if the available time slots of nodes are not
enough to accommodate all the jobs, then the system simply rejects some of the requests.
In the soft-constrained problem, the system just penalizes the violation of the deadline
and the response latency bound. In this case, the system tries to find the optimal trade-off
between the service quality of user requests and the financial benefit of the cluster owner.
After the problem formulation, the MINLP solver finds the optimal solution x∗, y∗, l∗, s∗

given workloads and electricity prices. The system applies the derived optimal solution
to the cluster. We assume that our system accurately predicts the requests of the DL jobs
and the grid market electricity prices during the control horizon. The detailed forecasting
methods and the associated prediction error are not presented in this paper, and we will
study such issues in the future work.

2.2. Proposed System Model

The goal of our work is to derive the optimal decision for DL training job scheduling,
DL inference job balancing and computing node right-sizing in order to achieve the cost-
efficient GPU-based cluster. To formulate the optimization problems, we consider K GPU
computing nodes, and M DNN models. Let h and H denote the index of the certain time
slot and the length of control horizon, respectively. We assume that the duration for a single
time slot is 15 min. The notations used in the work are summerized in Table 1.
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Table 1. Notations used in Formulation.

Notation Description

B = {B1,1, · · · ,BM,nM} set of DL training jobs
Bi,j = {Ai,j, Ei,j,QT

i,j} individual j-th DL training job of i-th DNN model
Ai,j arrived time slot index of Bi,j
Ei,j total count of epochs required to be trained in Bi,j
QT

i,j deadline index for Bi,j

L = {L1(0), · · · ,LM(H − 1)} set of DL inference jobs
Li(h) number of DL inference jobs of i-th DNN model arrived

at time slot h
QI

i response latency bound for i-th DNN model
δ duration for a single time slot
µT

i,j,k training completion time per an epoch
µI

i,k response latency
λi,k arrival rate of partial workloads
pT

i,j,k power consumption for DL training jobs
pI

i,k power consumption for DL inference jobs
α,F statistical model coefficients
ek energy consumption of k-th GPU computing node
W(h) electricity price by grid market at time slot h
Ohr

i,j,k,Odrs
k switching cost

OT,O I additional penalty cost for soft-constrained problem
xi,j,k(h) decision variable for DL training job allocation
yi,k(h) decision variable for DL inference job distribution
li,k(h) decision variable for partial workloads in Li(h)

distributed to k-th GPU computing node
sk(h) decision variable for DRS method

2.2.1. Training and Inference Job Model

The characteristics of DL training and inference jobs are totally different. Generally,
the number of invoked training jobs (e.g., tens to hundreds) is much less than the number
of inference jobs during the day (e.g., ≈millions) [29]. The required processing time for DL
training jobs is relatively long (i.e., hours to days) while the response latency of each DL
inference job is very short (i.e., about milliseconds). Therefore the DL training jobs generally
occupy multiple time slots to be completed while the DL inference jobs should be done
within the allocated single time slot.

Let Bi,j denote the j-th training job for the i-th DNN model. Each job Bi,j involves the
request specification {Ai,j, Ei,j,QT

i,j}. The element Ai,j denotes the arrived time slot index
of Bi,j. The element Ei,j denotes the total number of epochs required to be trained in Bi,j.
The element QT

i,j denotes the time slot index of deadline for Bi,j. Therefore, the number

of remaining available time slots for Bi,j is QT
i,j −Ai,j. Let Li(h) denote the number of DL

inference jobs of i-th DNN model arrived at the time slot h, while the DL training job that
is kind of a batch job considering the deadline, the DL inference job is in the category of
transaction workload considering the response latency [30]. The upper-bound of acceptable
response latency for DL inference jobs of i-th DNN model is defined as QI

i . In the work, we
assume that the response latency bound for DL inference jobs depends on the target DNN
model type (i.e., the DL service type). That is, all the DL inference jobs of i-th DNN model
have the same value QI

i .
We define the request sets of DL training and inference jobs as follows:

B = {B1,1,B1,2, · · · ,B1,n1 ,B2,1,B2,2, · · · ,B2,n2 , · · · ,BM,nM}, (1)

L = {L1(0),L2(0), · · · ,LM(0),L1(1),L2(1), · · · ,LM(1), · · · ,LM(H − 1)}. (2)
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Here, ni represents the number of invoked DL training jobs of i-th DNN model. From
the viewpoint of the performance, for DL training jobs, the only thing we need to consider is
the deadline compliance. This indicates that we are able to conduct the flexible scheduling
for DL training jobs as long as the deadline is not violated. We freely postpone the partial
epochs of the DL training jobs within the deadline. Meanwhile, for DL inference jobs, we
should consider the short-term response latency, not the long-term deadline. Obviously,
we cannot conduct the flexible scheduling approach for DL inference jobs due to the
requirement of prompt execution. All the DL inference jobs should be done within their
arrived time slots. In this case, we may regard DL inference jobs as the base workloads in
each time slot.

2.2.2. Performance Model

The processing performance of DL training and inference jobs is affected by two factors:
the characteristics of the assigned GPU device and the size of DNN model. The compute
capability of processing units, core and memory clock rates, and the memory bandwidth of
GPU device may affect the processing time of DL jobs [4]. Note that the GPU architectures
deployed in modern clusters are commonly heterogeneous [20], and the processing time of
DL jobs might be different according to the allocated GPU device types. Generally, it is not
easy to establish the general bottom-up performance model for various commercial GPU
devices. Instead, we exploit the statistical model to estimate the processing time of DL jobs
allocated to heterogeneous GPU devices [31].

Let µT
i,j,k denote the training completion time per an epoch for j-th DL training jobs

of i-th DNN model allocated to k-th GPU computing node. Then, the number of train-
completed epochs per a time unit (i.e., a minute) is the reciprocal of µT

i,j,k. Let δ denote the
duration for a single time slot (i.e., 15 min). Then, the number of train-completed epochs
during a time slot is calculated as follows:

δ

µT
i,j,k

, ∀i, j, k. (3)

Let µI
i,k denote the service rate for DL inference jobs of i-th DNN model allocated to

k-th computing GPU node. We assume that the probability that the GPU computing node
is busy, is always 1 [32]. Then, we can derive the average response latency as follows:

1
µI

i,k − λi,k
+

1
µI

i,k
, ∀i, k. (4)

where λi,k represents the arrival rate of partial workloads in Li, distributed to k-th GPU
computing node. Let li,k denote the amount of partial workloads in Li, distributed to k-th
GPU computing node by the load-balancing decision of our CE-DLA approach. Then, the
arrival rate λi,k can be derived as follows:

λi,k =
li,k
δ

, ∀i, k. (5)

Obviously, we can exploit Equations (3) and (4) to construct the DL job performance
constraints. We present the details in Section 2.2.6.

2.2.3. Power Consumption Model

If the GPU computing node is powered-on state and it is active, then its power
consumption is proportional to the load of the running DL jobs. Let pT

i,j,k denote the power
consumption for j-th DL training job of i-th DNN model allocated to k-th GPU computing
node. The constants αT

i,j,k,1 and αT
i,j,k,2 represent the power model coefficients to derive pT

i,j,k,
respectively. They can be estimated the statistical modeling approach such as recursive



Energies 2022, 15, 474 8 of 20

least square (RLS) method [33]. Then we can derive the power consumption pT
i,j,k at time

step h as follows:

pT
i,j,k(h) =

{
αT

i,j,k,1Fk + αT
i,j,k,2, if xi,j,k(h) = 1

0, if xi,j,k(h) = 0
(6)

where Fk is the performance factor of k-th GPU computing node. We set this value by
including the compute capability and the clock rate of the GPU device. Here, xi,j,k(h) is the
decision variable indicates whether the partial epochs of the DL training job Bi,j is allocated
to k-th GPU computing node at time slot h or not (i.e., allocated = 1, not allocated = 0).

For DL inference jobs, we design the power consumption model based on the utiliza-
tion of processing units [34]. Let pI

i,k denote the power consumption for DL inference jobs
of i-th DNN model distributed to k-th GPU computing node. Similar to Equation (6) above,
αI

i,k,1, αI
i,k,2, αI

i,k,3, and αI
i,k,4 are associated power model coefficients to estimate pI

i,k. Let ui,k
denote the average utilization of k-th GPU computing node with the partial workloads of
Li. Then we define the power consumption pI

i,k at time step h as follows:

pI
i,k(h) =

{
αI

i,k,1Fkui,k(h) + αI
i,k,2Fk + αI

i,k,3ui,k(h) + αI
i,k,4, if li,k(h) > 0,

0, if li,k(h) = 0,
(7)

where li,k(h) is the amount of partial workloads inLi(h), distributed to k-th GPU computing
node at time step h.

We can reformulate the average utilization of the node ui,k(h) as follows:

ui,k(h) =
λi,k(h)
Fk

, ∀i, k. (8)

Then, by integrating Equations (7) and (8), we can derive the reformulated power
consumption model, in term of λi,k as follows:

pI
i,k(h) =

{
αI

i,k,1λi,k(h) + αI
i,k,2Fk + αI

i,k,3
λi,k(h)
Fk

+ αI
i,k,4, if li,k(h) > 0,

0, if li,k(h) = 0.
(9)

Let yi,k(h) denote the indicator represents whether the DL inference jobs distributed
to the GPU computing node or not. That is, yi,k(h) is defined as follows:

yi,k(h) =

{
1, if li,k(h) > 0,
0, if li,k(h) = 0.

(10)

Based on Equations (5)–(10), we define the total power consumption of the k-th GPU
computing node at time slot h as follows:

pk(h) = ∑
∀i

∑
∀j

xi,j,k(h) · (αT
i,j,k,1Fk + αT

i,j,k,2)

+ ∑
∀i

yi,k(h) · (αI
i,k,1

li,k(h)
δ

+ αI
i,k,2Fk + αI

i,k,3
li,k(h)
δ · Fk

+ αI
i,k,4)

+ pidle
k , ∀k, h. (11)

where pidle
k is the static power consumption when the k-th GPU computing node has

no DL jobs. Consequently, our proposed CE-DLA approach can tune the power con-
sumption for GPU computing nodes by adjusting decision variables x, y, and l, based on
Equation (11) above.
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2.2.4. Energy Consumption Model

Now, we are able to derive the energy consumption model based on both the perfor-
mance and the power model defined above. Let ek(h) denote the energy consumption of the
k-th GPU computing node at time slot h. The power state variable sk(h) indicates whether
the k-th node is powered-on or powered-off state at time slot h. The energy consumption
ek(h) is formulated as follows:

ek(h) = sk(h) · pk(h) · δ, ∀k, h. (12)

If the GPU computing node goes into the powered-off state at time slot h (sk(h) = 0),
then the involved static power consumption is 0 W. In this paper, we exploit the linear
electricity pricing model for implementation simplicity. Let W(h) denote the electricity
price presented by the grid market at time slot h. Then the energy consumption cost for the
entire cluster at time slot h is defined as follows:

ck(h) = ek(h) · W(h), ∀k, h. (13)

Finally, the total energy consumption cost for the entire cluster during all the time
slots h = 1, · · · , H is formulated as follows:

c = ∑
∀k

∑
∀h

ck(h) (14)

In order to reduce the energy consumption cost of the cluster, the CE-DLA approach
prefers to assign the partial epochs of DL training jobs to the time slots at which the elec-
tricity price is low. Owing to the fine-grained structure (i.e., consists of multiple short-term
iterations), we freely halt and restart running DL training jobs on the nodes. Furthermore,
for time slots at which the electricity price is high, we can temporarily turn some of idle
GPU computing nodes off by using the DRS method, so as to avoid the unnecessary static
power consumption.

Note that there are non-negligible overheads for conducting halting-and-restarting
the DL training jobs and the turning the nodes on again. In next section, we present the
undesirable state transition cost occurred by those controls.

2.2.5. State Transition Cost Model

The first state transition cost is occurred by the halting-and-restarting process for DL
training jobs. When the stopped DL training jobs resume, the node re-activates the library
of the GPU device, re-uploads the trained DNN model parameters to the GPU global
memory and reads the input dataset from the disk again. The associated cost is simply
defined as follows:

∑
∀i

∑
∀j

∑
∀k

∑
∀h
Ohr

i,j,k ·max (xi,j,k(h)− xi,j,k(h− 1), 0). (15)

Here, the constant Ohr
ijk represents the pre-measured overhead price for restarting the

halted DL training job. For implementation simplicity, we do not consider the DL training
job migration between different GPU computing nodes. Nevertheless, it is easy to modify
or extend the equation above if we want to allow the DL training job migration.

The second state transition cost is occurred by the switching of DRS process. Obviously,
we may see the additional overheads when the GPU computing node transits to the
powered-off state from the powered-on state. According to [28], the cost generally contains
the additional power consumption cost, reboot time consuming cost, and the wear-and-tear
cost. Similar to Equation (15), the associated cost is defined as follows:

∑
∀k

∑
∀h
Odrs

k ·max (sk(h)− sk(h− 1), 0), (16)
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where the constant Odrs
k represents the cost for turning the GPU computing node on. This

value only depends on the characteristics of the node.

2.2.6. Constraints

This section introduces the involved constraints for our problem formulation. The
defined decision variables are x, y, l and s. Note that x, y and s are binary variables. The
constraints for binary decision variables are defined as follows:

xi,j,k(h) ∈ {0, 1}, ∀i, j, k, h. (17)

yi,k(h) ∈ {0, 1}, ∀i, k, h. (18)

sk(h) ∈ {0, 1}, ∀k, h. (19)

We present the additional constraints for allowable job allocation as follows:

Ai,j ≤ xi,j,k(h) ≤ sk(h), ∀i, j, k, h. (20)

∑
∀i

∑
∀j

∑
∀k

xi,j,k(h) = 1, ∀h. (21)

xi,j,k(h) · li,k(h) = 0, ∀i, j, k, h. (22)

0 ≤ li,k(h) ≤ Li(h), ∀i, k, h. (23)

∑
∀k

li,k(h) = Li(h), ∀i, h. (24)

li,k(h) ≤ sk(h) · Li(h), ∀i, k, h. (25)

yi,k(h) ≤ li,k(h), ∀i, k, h. (26)

The constraints (20) imply two conditions. The arbitrary DL training job cannot be al-
located to the node before it arrives at the node. Furthermore, the DL training and inference
jobs cannot be allocated to the nodes that are powered-off state. The constraints (21) imply
that the arbitrary DL training job should be allocated to the single GPU computing node.
The DL training job cannot be executed without the assigned node and it cannot be executed
on more than two nodes in parallel. The constraints (22) imply that the common single
node cannot accommodate both of the DL training and inference jobs simultaneously. The
constraints (23) imply that the partial workloads li,k(h) cannot exceed the entire workloads
li(h). The constraints (24) imply that the total sum of partial workloads of the DL inference
jobs should be matched to the amount of entire requests. The constraints (25) imply that the
DL inference jobs cannot be distributed to the GPU computing nodes that are powered-off
state. The constraints (26) imply that yi,k(h) = 1 only when Li,k(h) > 0.

We present the constraints for acceptable performance for DL job processing as follows:

∑
∀h

∑
∀k

xi,j,k(h) ·
δ

µT
i,j,k
≥ Ei,j, ∀i, j. (27)

h · xi,j,k(h) ≤ QT
i,j, ∀i, j, k, h. (28)

µI
i,k − λI

i,k(h) ≥
µI

i,k

QI
i · µI

i,k − 1
, ∀i, k, h. (29)

The constraints (27) imply that all the epochs of the DL training jobs should be able to
be trained within the allocated time slots. The constraints (28) imply that the DL training
jobs cannot be allocated to the time slots that are after the deadline. The constraints (29)
imply that the response latency for the distributed DL inference jobs should be below than
the upper bound QI . Contrast to DL training jobs, the DL inference jobs are not allowed
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to be postponed to later time slots. By reformulating Equations (4), we can derive the
constraints (29).

If there is no feasible solution that satisfies the constraints (27)–(29) due to lack of GPU
computing nodes, then the hard-constrained problem formulated in next Section 2.2.7 is
infeasible. In this case, we should reject some of requests. In order to mitigate this risk, we
additionally formulate the soft-constraint problem in Section 2.2.8.

2.2.7. Hard Constrained Problem Formulation

Based on the model and constraints presented above, we formulate the problem with
the hard constraints as follows:

Problem 1. (Hard-constrained Problem)

minimize
x,y,l,s

∑
∀k

∑
∀h

ck(h) + ∑
∀i

∑
∀j

∑
∀k

∑
∀h
Ohr

i,j,k ·max (xi,j,k(h)− xi,j,k(h− 1), 0)

+ ∑
∀k

∑
∀h
Odrs

k ·max(sk(h)− sk(h− 1), 0)

subject to. (17)–(29).

The advantages of the hard-constrained Problem 1 is that we can tightly ensure the
acceptable performance of the DL jobs. However, there are several drawbacks at the same
time. First, we may miss the opportunity to find the trade-off between the cost and the
performance. We are inevitable to reject the some of requests despite the slight violation
of the deadline and the response latency bound. For example, the requested DL training
job should be completed within 10 h and the estimated deadline violation is only 15 min
but nevertheless the system may reject that request. Second, the defined deadline and the
response latency bound are sometimes just recommendations, not critical constraints. In
this case, the strict enforcement of the performance constraints rather cause the degradation
of the service quality due to too frequent request rejection. To solve such issues, we present
the additional soft-constrained problem formulation in next section.

2.2.8. Soft Constrained Problem Formulation

In the soft-constrained problem formulation, we convert the constraints (17)–(29) to the
additional cost terms for the objective function. In this approach, we flexibly accommodate
the violation of the deadline and the response latency bound. By scaling the size of the
attached weight values, we are able to gradually adjust the acceptable level for the DL job
processing performance. Additionally, we can increase the cluster owner’s benefit at the
minor cost of the slight performance degradation, and reduce the undesirable frequent
request rejection. We formulate the problem with the soft constraints as follows:

Problem 2. (Soft-constrained Problem)

minimize
x,y,l,s

∑
∀k

∑
∀h

ck(h) + ∑
∀i

∑
∀j

∑
∀k

∑
∀h
Ohr

i,j,k ·max (xi,j,k(h)− xi,j,k(h− 1), 0)

+ ∑
∀k

∑
∀h
Odrs

k ·max (sk(h)− sk(h− 1), 0)

+ ∑
∀i

∑
∀j

∑
∀k

∑
∀h
OT

i,j,k ·max (h · xi,j,k(h)−QT
i,j, 0)

+ ∑
∀i

∑
∀k

∑
∀h
OI

i,k ·max (
µI

i,k

QI
i · µI

i,k − 1
− (µI

i,k − λI
i,k(h)), 0)

subject to. (17)–(27).
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Here, OT
i,j,k and OI

i,k are the weight values for the violation of the deadline and the
response latency bound, respectively. Note that if they are positive infinite values, then the
soft-constrained Problem 2 is equivalent to the hard-constrained Problem 1. The max terms
in the objective function can be converted to the linear forms. For details, see Appendix
in [28]. In addition, the energy consumption model (i.e., Equation (12)) used in the problem
formulation contains the product terms of decision variables x, y, l and s. We need to
reformulate these terms in order to make the Problems 1 and 2 the convex ones. To do this,
we can apply the exponential-transformation technique to the problem. For details, see [35].

2.2.9. Job Allocation Algorithm

The DL job allocation algorithm of the CE-DLA approach is presented in the Algorithm 1.
The system receives the specifications of arrived DL training and inference job requests,
and checks the involved parameters. According to the cluster operation policy, the system
properly constructs the problem P (lines 01–05). If we want to ensure the acceptable
performance of the DL job processing, then the system sets P as the hard-constrained
problem (line 02). Otherwise, the system sets P as the soft-constrained problem (line 03).
After then, the system checks the status of deployed CPU computing nodes in the cluster,
and extracts the available time slots (line 06). If the feasible solution exists, then the system
solve the problem P by using the MINLP solver (line 07). We exploit the well-known
GUROBI optimizer to do this [36]. If the feasible solution does not exist, then the system
rejects some of requests according to each priority value attached to the DL jobs (line 09).
In this work, we do not present the details for establishing the priority policy. After the
rejection, the system checks the feasibility of the problem P again (line 10). Finally, the
system actuates the control for the cluster by using derived optimal solution x∗, y∗, l∗,
and s∗.

Algorithm 1 DL Job Allocation based on the CE-DLA approach

INPUT: parameters α, µT , µI ,W , H
request set of DL training jobs B = {B1,1, · · · ,BM,nM}
request set of DL inference jobs L = {L1(0), · · · ,LM(H − 1)}
weight values Ohr, Odrs, OT, OI

OUTPUT: optimal solution (x∗, y∗, l∗, s∗)

01: if Ensure acceptable performance then
02: P ←− Hard-constrained Problem (1);
03: else if Find optimal trade-off then
04: P ←− Soft-constrained Problem (2);
05: end if
06: if feasible solution exists in P then
07: x∗, y∗, l∗, s∗ = solve P by using the MINLP solver [36];
08: else
09: reject some of requests from B and L according to priorities;
10: goto 06;
11: end if
12: actuate the cluster control by (x∗, y∗, l∗, s∗)

3. Experiments

For the experiments, we measure the actual data from our GPU devices, and the
real trace data of the grid market electricity price. After then, we establish the simulation
environment, so as to investigate the practical performance of our proposed CE-DLA
approach compared to other competitors.
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3.1. Experimental Setup
3.1.1. Deep Learning Job Setup

In order to establish the experimental testbed, we develop the Windows Powershell-based
script codes by using the DL framework, MS Computation Network Toolkit (CNTK) [26]. For
generating the DL training and inference jobs, we exploit three well-known DNN models:
ResNet152 [22], VGG19Net [23], and InceptionV3 [24]. In this paper, for experimental
simplicity, we only focus on the DL jobs for image processing. In order to construct the
requests of the DL jobs, we exploit the open large-scale dataset [25]. We set the data batch
size as 32 for each DL training job. For the DL inference job requests, we generate each
request that contains the raw data of the single image. We develop the console-based
output parser to collect the training time and the inference response latency from each DL
job. All the codes are executed based on the Anaconda framework [37] that is the virtual
environment with various python packages.

3.1.2. GPU Computing Node Setup

We measure the actual power and performance output from the real GPU computing
nodes. We consider four types of the NVIDIA GPU devices: GTX1060 (3 GB), GTX1060
(6 GB), RTX2060 (6 GB), and the GTX1080 (8 GB) [2]. In order to measure the power
consumption for each DL job, we use the utility, NVIDIA-SMI [38] that provides the
monitoring data of the NVIDIA-based GPU device architectures. By using our implemented
parser, we collect the power usage and the DL job processing time for each pair of GPU
devices-DNN models. We exploit these actual data to establish our simulation environment.
We assume that the average CPU utilization is always full (that is, almost 100%), and the
involved power consumption of the CPU device is maximum during DL job processing.

3.1.3. Simulation Testbed Setup

Based on derived actual data from the GPU devices with three DNN models, we estab-
lish the practical simulation environment. We consider the cluster that contains 160 GPU
computing nodes (i.e., GTX1060 (3 GB)-40 EA, GTX1060 (6 GB)-40EA, RTX2060 (6 GB)-
40 EA, and GTX1080 (8 GB)-40 EA). For simplicity, we assume that the number of deployed
GPU device within each node is only 1. The length of the entire horizon H is set as 7 days
(i.e., = 168 (h) = 10, 080 (min) = 672 (time slots)). Similar to the experimental setup of [4],
the amount of DL training and inference jobs, and the involved deadline and the response
latency, are generated by using the real job-trace and Gaussian distribution (avg = 50%, and
std = 7.5% of possible shortest completion time/response latency).

We exploit the real trace data of the Federal Energy Regulatory Commission (FERC) [27]
in order to draw the trajectory of the grid market electricity price. Especially, we use the
locational based marginal price (LBMP) data ($/Wh) from the Syracuse power generator in
New York Independent System Operator (NYISO) from 1 to 7 June 2018. Figure 2 shows
the associated curve. We see that the regular pattern that the electricity price is high during
the daytime (10 a.m.–6 p.m.) while it is low during the night.

3.1.4. Evaluation Metric

In order to evaluate our proposed CE-DCM system, we measure four metrics as follows:
(1) Deadline violation: For the DL training job Bi,j, this performance metric is defined

as max (h
T
i,j −QT

i,j, 0) where h
T
i,j is the index of last allocated time slot to Bi,j. The average

deadline violation for all DL training jobs is defined as
∑∀i ∑

ni
j=0 max (h

T
i,j−QT

i,j ,0)

∑∀i ni
. If we want to

differentiate the priority of each DL training job, then we attach the weight parameters to
the metric. Obviously, the ideal value of the deadline violation is 0.

(2) Latency bound violation: For the partial workloads of the DL inference job li,k(h),

this performance metric is defined as li,k(h) ·max (µI
i,k − λI

i,k(h)−
µI

i,k
QI

i ·µ
I
i,k−1

, 0). The average

latency bound violation for all DL inference jobs is defined as
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∑∀i ∑∀k ∑∀h li,k(h)·max (µI
i,k−λI

i,k(h)−
µI

i,k
QI

i ·µ
I
i,k−1

,0)

∑∀i ∑∀h Li(h)
. If we want to differentiate the priority of each

DL inference job, then we attach the weight parameters to the metric. Similar to the deadline
violation, the ideal value of the latency bound violation is also 0.

(3) Energy consumption: For the entire cluster, the total energy consumption is derived
as ∑∀k ∑∀h ek(h).

(4) Energy consumption cost: For the entire cluster, the total energy consumption cost is
derived as c = ∑∀k ∑∀h ek(h) · W(h). Note that the energy consumption cost is determined
by both of the amount of energy consumption and the electricity price. Therefore the
curve of energy consumption cost is not always same to the one of energy consumption.
Obviously, the lower this value, the better the cost efficiency.

(5) Cost-to-performance ratio: For the entire cluster, the cost-to-performance ratio is
defined as (1−violation ratio)∗# of requests

c . This metric presents the number of DL (training and
inference) jobs that we can ensure the involved performance requirements (deadline and
latency bound), given the unit energy consumption cost (i.e., per 1 USD).

Figure 2. Locational Based Marginal Price of the generator, Syracuse Power on 1–7 June 2018.

3.2. Competitors

We implement the existing approaches below, in order to compare them with our
proposed CE-DLA approach.

(1) Baseline: This naive approach uses the first-input-first-output (FIFO) based job
allocation for both the DL training and inference jobs. This approach does not consider the
detailed job specification that contains the deadline and the response latency bound. For the
implementation simplicity, we sometimes prefer to deploy this approach to the small-scale
clusters. We exploit this approach to draw the worst bound of the derived performance
and the cost to evaluate other approaches.

(2) EPRONS [39]: This approach proposes the job allocation for energy proportional
network and server (EPRONS) in the cluster (e.g., data centers) by using the linear program-
ming model. The authors focus on minimizing the energy consumption of latency-sensitive
applications, i.e., DL inference jobs. This approach tries to find the optimal DRS decision
while guaranteeing the response latency bound of the DL inference jobs. However, this
approach does not consider the deadline-sensitive long-term applications, i.e., DL training
jobs. In addition, the authors does not explicitly reflect the dynamic electricity price to the
job allocation. In the EPRONS approach, we optimize min N ∗ Pserver s.t. K = K∗, where N
is the number of active (powered-on) servers, Pserver is the amount of power consumption,
and K is the scale factor (K∗ = optimal scale factor) for the latency-aware packet allocation.
In this paper, we exploit li,k as K to implement the EPRONS approach. In addition, we do
not consider the cost for network links and switches defined in [39] in our model.

(3) PA-MBT [30]: The authors in this work present the performance aware allocation
of mixed batch and transactional (PA-MBT) jobs, i.e., DL training and inference jobs. They
propose the performance metric, relative performance functions (RPFs) to find the trade-
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offs between heterogeneous job requests. Their proposed method successfully achieves
the acceptable deadline and response latency, however it does not consider the amount of
energy consumption by each job and the associated electricity payment. Moreover, their
approach cannot avoid the unnecessary energy consumption caused by the idle GPU
computing nodes because of the absence of the DRS method. In the PA-MBT approach,
we optimize max minm um(wm) where m is the index of job, u is the RPF that measures the
relative distance of the actual job processing time w from its requirement. The RPF value
and the involved parameters can be determined based on the workload characteristics
(i.e., training-batch or inference-transactional). In this paper, we exploit µ as w to implement
the PA-MBT approach.

3.3. Evaluation

Figure 3 shows the DL job training time and inference latency according to our de-
ployed GPU device types. Figure 3a shows the average completion time for training 10 iter-
ations in an epoch of each pair of GPU devices-DNN models. Obviously, the GPU device,
RTX2060 (6 GB) has the best performance (≈15 s in average) compared to other devices, due
to its state-of-the-art architecture for parallel processing. Owing to the bigger memory size,
the GTX1060 (6 GB) derives the better performance (≈36 s in average) than the GTX1060
(3 GB) (≈42 s in average) in spite of the same core architecture. Figure 3b shows the average
response latency of DL inference jobs of each pair of GPU devices-DNN models. Similar
to Figure 3a, the RTX2060 (6 GB) has the best performance for the latency (≈0.025 s in
average) while the GTX1060 (3 GB) has the worst one (≈0.062 s in average). In view of
the response latency, there is not a huge difference between the GTX1080 and RTX2060
because the feed-forward computation of the DL inference job is not heavy compared to
the back-propagation computation. We exploit the data shown in Figure 3 to construct our
simulation experiments.

(a) (b)

Figure 3. Deep learning (DL) (a) training time and (b) inference latency according to types of
GPU devices.

Figure 4 compares the proposed CE-DLA approach with others in views of the viola-
tion of deadline and response latency bound. Figure 4a shows the average DL training job
deadline violation (%) of the CE-DLA approach and others when the average DL inference
job workload is (=105 (reqs/min) (moderate)). The baseline approach has the worst result
(≈7% at # of training jobs = 280) because it naively assigns the DL training jobs to time
slots of the GPU computing nodes without consideration to the job specification. Except
the baseline approach, the others derive the deadline violation about 2%, in average. This is
because the total workload of the DL inference jobs is low, and the available time slots of the
GPU computing nodes are enough to accommodate all the requests. Figure 4b shows the av-
erage DL training job deadline violation (%) when the average DL inference job workload is
(=17.55 (reqs/min) (high)). Due to the high workload of the DL inference job, the deadline
violation of all the approaches is relatively large compared to Figure 4a. Especially, the
EPRONS approach derives the deadline violation about (12% at # of training jobs = 280),
and that result is worse than the PA-MBT and the CE-DLA approaches. This is because the
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EPRONS approach prefers to assign the DL jobs to the certain nodes that require the low
energy consumption regardless of the compute capability. Similar to the CE-DLA approach,
the PA-MBT approach shows the low deadline violation even at the high workload, be-
cause it finds the available earliest time slots of the nodes without considering the energy
consumption. Figure 4c shows the average DL inference job latency violation (%) according
to the workloads (at # of training jobs = 175 (moderate)). Obviously, when the workload
of the DL inference jobs is low (=105 (reqs/min)), then the associated latency violation is
not serious (≈2% in average) in all the approaches. Figure 4d shows the latency violation
(at # of training jobs = 280 (high)). Similar to Figure 4b, the baseline and the EPRONS ap-
proaches derive the worse latency compared to the PA-MBT and the CE-DLA approaches,
because they do not explicitly consider the performance of DL job processing. For all the
cases, the PA-MBT approach shows the good performance compared to our proposed
CE-DLA approach. Note that these results by the PA-MBT approach can be achieved at the
non-negligble cost of the energy consumption.

(a) (b)

(c) (d)

Figure 4. Deep learning (DL) training job deadline violation and inference job response latency bound
violation. Inference workload of (a) = 1× 105 and (b) = 1.75× 105 (reqs/min). Training jobs of
(c) = 175 and (d) = 280.

Figure 5 compares the proposed CE-DLA approach with others in views of both the
energy consumption and the energy consumption cost. The total energy consumption
(kWh) occurred by the CE-DLA approach and the others when the average DL inference
job workload is (=105 (reqs/min)), is shown in Figure 5a. The baseline approach derives
the worst energy consumption about (3500 kWh at # of training jobs = 280) because it as-
signs the DL training jobs according to the arrival ordering, not the energy consumption.
The EPRONS and our proposed CE-DLA approaches derive almost same the energy con-
sumption (≈600 kWh in average) along all the cases, because both of them try to find the
energy optimal time slots for the DL job allocation. Contrast to results of the performance
in Figure 4, the PA-MBT approach has the worse energy consumption (≈1300 kWh in
average) compared to the EPRONS and the CE-DLA approaches. The PA-MBT approach
tries to properly balance both the batch (training) and transaction (inference) workloads
with considering the heterogeneous performance requirements similar to our CE-DLA
approach, however it does not consider the amount of the involved energy consumption.
Figure 5b shows the energy consumption according to the DL inference job workloads
(at # of training jobs = 175). Similar to Figure 5a, both the baseline and the PA-MBT ap-
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proaches derive relatively the high energy consumption for DL job allocation compared to
the EPRONS and the CE-DCM approaches. Figure 5c shows the energy consumption cost
($) for all the approaches when the average DL inference job workload is (=105 (reqs/min)),
with the real trace data of the FERC. The bar shapes of the energy consumption cost in
Figure 5c are similar to the ones in Figure 5a, however the EPRONS approach has the
worse energy consumption cost compared to our proposed CE-DLA approach. This is
because the EPRONS approach only considers the amount of energy consumption, not the
grid market electricity price. As mentioned earlier, the energy consumption cost can be
different even for the same amount of energy consumption by the variation of the electricity
price. Our proposed CE-DLA approach directly reflects the dynamic electricity price to the
DL job allocation, so as to minimize the energy consumption cost as shown in Figure 5c.
Figure 4d shows the energy consumption cost according to the DL inference job workloads
(at # of training jobs = 175). Concurrent with the results of Figure 5c, our proposed CE-DLA
approach outperforms the competitors in view of the energy consumption cost.

(a) (b)

(c) (d)

Figure 5. Energy consumption and cost. (a,c): for inference= 1×105 (reqs/min). (b,d): for training= 175 (jobs).

Figure 6 compares the cost-to-performance ratio of all the methods. We can find
that our proposed CE-DLA method outperforms other competitors in view of the cost
efficiency. In Figure 6a, the soft-constrained modeling approach of the CE-DLA method
achieves the cost-to-performance ratio (5.26/1 $) about 2.5 times of the ratio (2.09/1 $) of
PA-MBT method. Although the cost-to-performance ratio of the hard-constrained modeling
approach is slightly worse than the soft-constrained modeling approach, it still outperforms
all of other competitors. In Figure 6, we also see the superiority of the CE-DLA method for
DL inference jobs over others, similar to Figure 6a.

Table 2 shows the ratio of DL training job allocation of each method on three pricing
ranges: [USD 0–20], [USD 20–30], and [USD 30–50]. Contrast to others, in the CE-DLA
method, more than half of all the DL training jobs is allocated to the cheapest pricing range
[USD 0–20]. Obviously, our proposed CE-DLA method outperforms other competitors
(including EPRONS) in view of cost-efficiency. These results support the experimental
results shown in Figure 5c,d.
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(a) (b)

Figure 6. Cost-to-Performance of (a) DL training and (b) inference jobs.

Table 2. The ratio of DL training job allocation on 3 pricing ranges [USD 0–20], [USD 20–30], and
[USD 30–50].

CE-DLA EPRONS PA-MBT

USD 0–20 0.59 0.31 0.28

USD 20–30 0.40 0.63 0.59

USD 30–50 0.01 0.09 0.13

Additionally, we try to investigate the rejection ratio of our proposed CE-DLA method
when the workload is extremely high (400 training jobs, 2500 inference requests/min). For
implementation simplicity, we assume that only the training jobs are rejected (the inference
jobs are not). Table 3 shows the results. The hard-constrained modeling approach of the
CE-DLA method derives the high rejection ratio (98 DL training jobs, 24.5%) similar to the
PA-MBT (97 DL training jobs, 24.2%). In contrast, the soft-constrained modeling approach
achieves the reduced rejection ratio (45 DL training jobs, 11.2%) with the slight violation
of the performance requirement of DL jobs. If we set the weight constants OT

i,j,k and OI
i,j

by large values, then the soft-constrained modeling approach may achieve the better cost
efficiency than others, but it may also bring the undesirable performance degradation
(by the violation allowance). Note that both the hard and soft-constrained modeling ap-
proaches derive the high rejection ratio when the workload is extremely high (400 training
jobs/2500 inference reqs/min). If the workload is too high and the available nodes are lack
to accommodate all the requests, then it is inevitable to reject a lot of requests regardless of
the allocation algorithm design. Our proposed method achieves the financial benefit only
when the workload is not too tight to process. We think that almost algorithms targeting
to cost-efficient resource allocation, have the same issue. This problem is not from the
weakness of the algorithm design, but from the lack of available resources. If we want to
solve such issues, we should deploy more servers into the cluster.

Table 3. Number of rejected DL training jobs for workloads of (280 training jobs, 1700 inference
reqs/min) and (400 training jobs, 2500 inference reqs/min).

Soft-Constrained Hard-Constrained PA-MBT

280, 1700 3 jobs (1%) 9 jobs (3.2%) 9 jobs (3.2%)

400, 2500 45 jobs (11.2%) 98 jobs (24.5%) 97 jobs (24.2%)

4. Conclusions

In this paper, we propose the energy consumption cost efficient deep learning job
allocation (CE-DLA) method for GPU-based cluster operation. To the best of our knowledge,
this is the first work conducts the performance- and the cost-driven allocation for both the
DL training and inference jobs given the dynamic electricity price. We design the mixed
integer nonlinear programming (MINLP) formulation based on the statistical modeling
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which is not dedicated for certain GPU device architectures and DL jobs. We present
the deferrable DL training job scheduling and integrate it with the dynamic right-sizing
(DRS) method. Our sophisticated approach enables both the ensurance of the performance
requirements (deadline and latency bound) and the energy consumption cost svaing for DL
job processing. Through the large-scale simulation results based on real data of NVIDIA-
based GPU cards and the execution profiling, we show that our method is practical for
modern GPU-based clusters. The soft-constrained modeling approach of the CE-DLA
method achieves the cost-to-performance ratio about 2 times on average, than previous
performance-driven approach (PA-MBT) and energy-driven approach (EPRONS). In view
of energy consumption cost, our CE-DLA method improves the cost saving of 29% than the
competitors (43% than PA-MBT, and 15% than EPRONS) while guranteeing the acceptable
performance. In future work, we will explore the cost-efficient framework covering the
entire steps of DL jobs, i.e., including data preprocessing, data transmission between nodes
in cluster, DNN model training/inferencing and the response submission to users.
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