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Abstract: The high penetration of renewable energy sources, coupled with decommissioning of con-
ventional power plants, leads to the reduction of power system inertia. This has negative repercussions
on the transient stability of power systems. The purpose of this paper is to review the state-of-the-art
regarding the application of artificial intelligence to the power system transient stability assessment,
with a focus on different machine, deep, and reinforcement learning techniques. The review covers
data generation processes (from measurements and simulations), data processing pipelines (features
engineering, splitting strategy, dimensionality reduction), model building and training (including
ensembles and hyperparameter optimization techniques), deployment, and management (with mon-
itoring for detecting bias and drift). The review focuses, in particular, on different deep learning
models that show promising results on standard benchmark test cases. The final aim of the review is
to point out the advantages and disadvantages of different approaches, present current challenges
with existing models, and offer a view of the possible future research opportunities.

Keywords: power system stability; transient stability assessment; transient stability index; artificial
intelligence; machine learning; deep learning

1. Introduction

Modern power systems are experiencing fundamental changes that are driven by
global warming policies, market forces, and the advancement of technology. They are, at
the same time, facing multiple challenges on different fronts. This paper examines one of
these important challenges, associated with a transient stability assessment (TSA) of power
systems. Namely, power systems of today face a two-pronged challenge, emanating from an
increased penetration of renewable energy sources (i.e., wind and photovoltaic power plants,
RESs), coupled with a simultaneous decommissioning of the conventional carbon-fired
power plants. This shift of balance between RESs and conventional power plants exposes
a major downside of the renewables today, which is a reduced system inertia (when less
generators with rotating mass are in operation). This reduction of the available rotating
mass will have important ramifications on the future security and stability of power system
operation [1–3]. With the increased proportion of RESs in the generation mix, the problem of
reduced system inertia will only increase. Transient stability disruptions can be the leading
causes behind major outages, which are often accompanied by severe economic losses.
Hence, these concerns are increasingly drawing the attention of the various stakeholders
partaking in the power system operation [4,5].

The dynamic performance of the power system depends on its ability to maintain
a desired level of stability and security under various disturbances (e.g., short-circuits,
sudden loss of large generation units, etc.). The focus of this paper is on the transient (or
large signal rotor angle) stability, which can be considered one of the most important types
of power stability phenomena [6]. Figure 1 graphically presents a taxonomy of power
system transient stability methods [7]. This taxonomy includes both traditional methods
and machine-learning-based methods. However, this review will deal only with different
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machine learning (ML) methods, as applied to the TSA, which constitute an important part
of a broader set of artificial intelligence (AI) applications in modern power systems. The
complexity of solving the transient stability of power systems is continually increasing
with the availability of various power electronic components, RESs, and AC/DC devices.
This makes it increasingly intractable to perform, in a real-time setting, transient energy
function or time domain simulations. Hence, it is becoming increasingly common to
deal with the transient stability of power systems through the data-oriented paradigm of
machine learning.

Transient stability analysis
methods

Time
domain
simulation

Direct
methods

Hybrid
methods

TDS + Direct
methods

Decision trees

Neural networks

Deep learning

Gradient boosting

Support vector machine

Reinforcement learning
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Genetic algorithms
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Figure 1. A taxonomy of power system transient stability analysis methods.

This review covers several different ML techniques, which can be considered tradi-
tional, and then focuses on deep learning (and reinforcement learning) as increasingly
important subsets of the wider ML domain. Deep learning, in particular, has recently found
a strong foothold in dealing with power system TSA problems. Research for this review
was supported by the use of the IEEE Xplore (https://ieeexplore.ieee.org, accessed on 18
November 2021 ) and Scopus (https://www.scopus.com, accessed on 18 November 2021)
databases, with the addition of Google Scholar and Microsoft Academic search. Further-
more, the review covers only peer-reviewed research published mostly within the last five
years. A search query is designed according to the main criteria that are graphically de-
picted in Figure 2. It was successively applied on each of the databases, and the results were
pooled together and screened for duplicates. Next, a further selection was undertaken from
this pool, by examining the abstracts in more detail. The final selection was hand-picked,
using the quality of the research output as the only criterion, to cover the subject area
under scrutiny.
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Figure 2. A search query design outlining the main criteria.
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The paper is organized in the following manner. Section 2 introduces a data gen-
eration process and describes an overall outline of the data processing pipeline. Both
measurement and simulation datasets are covered. Section 3 depicts a typical AI model
life-cycle with all its constituent component parts, from data processing, model building,
and training, to model deployment and monitoring. Hyperparameter optimization and
estimator performance metrics are also dealt with in this section. Different techniques for
building ensembles are briefly described here as well. Next are introduced, also under
this section, different machine learning, deep learning, and reinforcement learning models.
Section 4 introduces some of the challenges with existing datasets and models and points
to possible future research opportunities. The conclusion is given in Section 5.

2. Datasets

The introduction of AI in power system transient stability assessment presupposes
the existence of the “big data” paradigm, which, generally speaking, emanates from two
independent and mutually supportive sources: (a) actual measurements and (b) numerical
simulations. Both of these sources of data deal with the power system and have certain
advantages and disadvantages. Data coming from measurements have the advantage of
representing an actual power system with all the intricacies and possible inconsistencies
associated with its contingencies (e.g., generator’s automatic voltage regulator response,
characteristic of the turbine governor control, power system stabilizer response, relay
protection settings, load shedding schemes, etc.). Measurement data, at the same time,
come with the downside of depriving us of the ability of controlling the data generating
process itself. On the other side, simulations data offer full control of the data generating
process, where we can choose the exact location and types of short-circuit events and other
contingencies, and we can experiment with various scenarios. Hence, with simulation data,
many aspects of the dataset can be controlled, such as: the diversity of the operational
scenarios, N − 1 and N − 2 network conditions, the diversity of contingencies, the level of
the class imbalance, the level of the data corruption, and others. However, simulation data
do not (after all) represent an actual power system, no matter how closely one may model
its constituent component parts. Hence, both sources of data bring value to and deserve a
proper place in power system TSA and will continue to be used in the future as well.

Datasets are built around the tacit premise that the TSA can be represented, essentially,
as a binary classification problem, where the distinction between stable and unstable cases
needs to be clearly established. This is done by introducing a so-called transient stability
index (TSI) [8]. Since the loss of stability in a power system is a low-probability event, the
ensuing datasets will be class imbalanced, which will have important repercussions on the
supervised training of machine learning models. Finally, due to possible communication
problems between dispersed measurement units in the network, aggregated measured
data will inevitably be corrupted with noise and missing values [9].

2.1. WAMS/PMU Measurement Data

Wide area measurement systems (WAMSs) form an integral part of the modern power
system on the high-voltage network levels. With its geographically distributed nature and
GPS-time-synchronized measurements, WAMSs can cover wide areas and have certain
advantages over traditional measurement systems. The usage of the WAMS is seen as crucial
in areas of power system online stability, situational awareness, and security analysis [10,11].
WAMS applications include power system condition monitoring, system disturbance man-
agement, oscillatory stability monitoring, sub-synchronous oscillation monitoring, power
angle stability, and others. Hence, the WAMS provides the foremost solution for monitoring
the dynamics of the power system.

The phasor measurement unit (PMU), as an integral WAMS component, provides
measurement data for the power system transient stability assessment [6]. PMU data, at
each measurement location in the network, come in the form of time series data (continuous
stream of equidistant floating points), sampled multiple times per second, for each of the



Energies 2022, 15, 507 4 of 21

measured quantities. These can include voltages and currents, active and reactive powers
(magnitude and angle for each of the three phases), frequency, and others. Mechanical
quantities can also be measured, such as the rotor speeds and angles of generators. All
these data are centrally collected, collated, and GPS-time-synchronized. This creates a huge
data pool for AI applications.

Papers that utilize actual measurement data are rather scarce, with a few notable
exceptions. For example, Zhu et al. in [12] and Zhu et al. in [13] both used measurement
data from Guangdong Power Grid in South China. Furthermore, measurement data from
China Southern Power Grid were used by Tian et al. in [14] and by several other authors.

2.2. Simulation-Generated Data

Simulation-generated data, as the name implies, are the output of numerical electrome-
chanical transient simulations of the test case power systems. The underlying models of
the power system involve complex and very sophisticated representations of its constituent
components, where special emphasis is placed on generators with their regulator controls
and governor systems. In addition, due to the complexity of individual components, the ne-
cessity for a small simulation time step, the large extent of the power system, and the sheer
number of constituent components, numerical simulations are very time consuming even
on powerful parallel and multiprocessing hardware architectures. MATLAB/Simulink™ is
often employed for producing these datasets.

The most thoroughly established power system test case for transient stability assess-
ment is the so-called IEEE New England 39-bus system, which serves as a benchmark and
has been employed in numerous papers; see [6] and the references cited therein for more
information. It depicts a part of the power system in the region of New England (USA),
apparently as it existed back in the 1970s. This is a rather small power system that features
ten synchronous machines, in addition to transmission lines, three-phase transformers, and
loads [15]. One of the generators serves as a surrogate of the external power system (i.e.,
represents an aggregation of a larger number of generators). Each machine includes an
excitation system control, automatic voltage regulator (AVR), power system stabilizer (PSS),
and turbine governor control. A single-mass tandem compound steam prime mover, with
a speed regulator, steam turbine, and shaft, is used for the steam turbine and governor.
A hydraulic turbine with a PID governor system is used for hydro power plants. Each
generator can be equipped with multiple PSSs of different types, as well as different types of
AVRs and exciters. Loads are represented as simple RLC branches. Transmission lines (TLs)
are modeled as three-phase Π-section blocks. A high level of familiarity with MATLAB/
Simulink is a prerequisite for composing and working with these power system models [16].

Furthermore, the IEEE 68-bus system (16 machines) and IEEE 145-bus system (50 ma-
chines) ought to be mentioned here, as these are somewhat larger test case power systems
that also serve as benchmarks [17]. However, these are far less popular among researchers,
with certain notable exceptions, e.g., [18–22]. Finally, it can be stated that there are several
other test case power systems that have been used for TSA and related analyses, but these
are often not fully disclosed and almost always lack certain information.

Even with a small benchmark test case, such as the mentioned New England system,
carrying out electromechanical transient simulations with MATLAB/Simulink is very time
consuming (seen from the standpoint of CPU time). The sheer number of these time-domain
simulations necessary for creating a dataset of even a relatively modest size makes tackling
this problem very difficult. Hence, using parallel and multiprocessing capabilities has been
explored to reduce the run times needed for creating these datasets. A number of papers have
proposed different parallel execution models for reducing the simulation run times [16,23].
Furthermore, the authors in [24] proposed a synthetic synchrophasor generated data as a
replacement for real-time PMU measurements. This is still an active area of research.

It is necessary for the datasets coming from actual measurements, as well as simula-
tions, to be openly available to the research community. Furthermore, there is a necessity
for more standardized benchmark power system test cases. These should cover a variety
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of power system sizes and, preferably, should include varying degrees of penetration of
renewable energy sources. Most importantly, they should also be openly available to the
research community. This is in the interest of the reproducibility of research stemming
from the use of these benchmark test cases.

2.3. Features Engineering

Time-domain signals of electrical and mechanical quantities (either measured or sim-
ulated) are often post-processed for the extraction of features that are used for the actual
training of machine learning models. Broadly speaking, TSA schemes can be divided into
pre-fault preventive and post-fault corrective assessments, and the features that will be
available from the time-domain signals may depend on the type of assessment. Features can
be extracted from many different signals, for example rotor speed, angle and angle deviation,
stator voltage, stator d-component and q-component currents, power load angle, generator
active and reactive power, bus voltages, etc. Furthermore, features can be engineered from
the time-domain and frequency-domain analysis of signals, as well as by combining existing
features in different ways [25]. Namely, many traditional ML models cannot work with raw
time series data. Hence, pre-fault and post-fault point values of the time-domain signals are
most often used as features for the TSA. This reduces each time series to only two points per
signal. Still, even with this reduction of signals to two scalar values, the resulting number of
features can be very large for a typical power system. This also means that one often deals
with much redundant information and that a large number of features may explode the
dimensionality of the features space. This creates difficulty (i.e., the curse of dimensionality)
for training ML models.

Choosing the time instants for features extraction depends on the relay protection
settings of both generators and transmission lines, where following protection functions will
feature prominently: generator under-impedance protection, pole slip protection, frequency
protections, distance protection of TLs, and load shedding schemes. There is often a close
coordination between the under-impedance protection of the generator and the distance
protection of incident TLs, which should be taken into account. At the same time, pole slip
protection is specially designed to deal with TSA, but from the point of view of individual
generator’s protection. It ought to be emphasized, however, that these different relay
protection functions are rarely (if ever) incorporated into the previously mentioned test case
power systems.

Dimensionality reduction, features selection, and embedding all provide an effective
means of tackling the curse of dimensionality problem [26]. An embedding is a relatively
low-dimensional space into which high-dimensional vectors can be efficiently translated.
Dimensionality reduction can be approached in a supervised or unsupervised manner,
using different algorithms, such as: principal components analysis [27] and its variants,
linear discriminant analysis, and truncated singular-value decomposition. It can also be
tackled with different types of autoencoders and by other means. Hang et al. employed
principal component analysis [28]. Several papers proposed different kinds of autoencoders
(stacked, denoising, variational), e.g., [8,16,29,30]. Mi et al. in [22] proposed a special
bootstrap method and the random selection of variables in the training process for tackling
the curse of dimensionality. This is still an active area of research, with autoencoders
leading the way forward.

3. AI Model Life-Cycle

The artificial intelligence landscape is wast and incorporates that of machine learning.
Deep learning, in turn, represents only a small, but increasingly important, part of the wider
machine learning domain. Finally, reinforcement learning (RL) is a special subset of deep
learning, having a unique approach to training models. The situation can be graphically
represented by Figure 3. This review is mainly concerned with machine learning and deep
learning subsets, as integral parts of the wider AI landscape, when applied to the power
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system TSA. Models for TSA are binary classifiers, which learn from data using an offline
training, online application paradigm.

Machine learning

Ar�ficial inteligence

Deep learning

RL

Figure 3. Artificial intelligence landscape.

Generally speaking, all AI models share a typical life-cycle that usually consists of the
following five components: (1) data preparation, (2) model building, (3) model training, (4)
model deployment, and (5) model management. Figure 4 graphically presents the typical
AI model life-cycle.

Model deployment

Model management

Hyperparameters
optimization and model
calibration.

Model deployment in a
production environment.

AI

Data preparation

01

Model building

02

Model training & tuning

03

04

05

Building models using the
appropriate frameworks.

model

life-cycle

Data cleaning, features
engineering, transformations,
splitting.

Detecting problems with
model performance.Design by freepik

Figure 4. Typical AI model life-cycle, which consists of data preparation, model building, training,
deployment, and management.

The first phase consists of data preparation, which in general may include several steps,
such as data cleaning (e.g., dealing with missing values, noise, outliers, etc.), labeling, statis-
tical processing (e.g., normalization, scaling, etc.), transformations (e.g., power, log, etc.),
features engineering, encoding, and dimensionality reduction. The features engineering
step is mostly related to traditional ML techniques and it represents a creative component
where the majority of the development time is spent. Manual labeling of cases by experts
can be costly and time consuming. This first phase also includes splitting data into training,
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validation, and test sets. Different types of datasets demand specific and appropriate splitting
strategies to ensure, for example, properly balanced representations of different classes
or satisfying other specific demands. This phase can also incorporate features selection
or dimensionality reduction processes. All these steps form the so-called data processing
pipeline, which can, sometimes, be more complex than the actual ML model itself.

Next comes the model building phase, closely followed by the model training, where
different models can be tried and evaluated for their merits and demerits. A crucial part of
the model training phase is the hyperparameter optimization process, which can be partic-
ularly time consuming (even on GPUs). Different strategies for tuning hyperparameters
can be applied (e.g., grid search, pure random search, Bayesian optimization, bandit-based
optimization, genetic algorithms, etc.), with consequential outcomes regarding both model
quality and training times. The model building and training phases are mutually intertwined
and unfold in an iterative manner, often guided by intuition and experience. The training
of deep learning models in particular is still more of a “black art” than a science. Once
the models have been trained and fine-tuned (using the training and validation datasets
for that purpose), the model building and training phase often yields several prospective
candidates. The best model is then selected from this pool of candidate models, based on
the performances measured on the test dataset. It is important to ensure that performance
measures taken from the test set reflect real-world scenarios and costs associated with the
use of the model in the production setting.

This final model, which can be an ensemble, is then deployed. This is the next phase of
its life-cycle, which is closely related to the model management phase. Model deployment
is concerned with, among other things, its hosting and serving of predictions, while model
management deals with the monitoring of the model’s performance and detecting possible
problems associated with latency, throughput, and drift. Namely, once the model is actually
deployed, it kicks-off a new cycle that begins with the model management. Monitoring,
as part of the model management process, provides feedback information for further
model fine-tuning and possible retraining with newly acquired data. This corrects for
eventual statistical bias and data drift. Inferences derived from monitoring the model
after deployment inform the second pass of the model life-cycle. This feedback loop drives
model enhancements, and the cycle continues.

Data processing pipeline example: Power system transient assessment datasets, which
have been generated through simulations of benchmark test cases, usually consist of many
thousands of time-domain signals of measured (both electrical and mechanical) quantities
for the network elements and machines. These data need to be processed by means of a
previously discussed pipeline. Figure 5 graphically presents an example of a data process-
ing pipeline for power system transient assessment data coming from simulations of a
benchmark test case [16]. It features statistical processing of systematic simulations data,
followed by the train/test dataset split and data scaling process, and concluded with a
dimensionality reduction. This particular pipeline assumes that data already consist of
features (vectors/tensors of floating point instances), whatever they may be, which will be
fed to an ML model. In other words, features engineering is not part of this pipeline and, if
undertaken as an independent step, ought to precede it.

Raw data Processed data

Process

Sta�s�cal
Processing 

Split

Stra�fied
Shuffle

Split

Scale

Standard
Scaler

Reduce

Stacked
autoencoder

Figure 5. Data processing pipeline for power system transient stability assessment.

Simulations of benchmark test cases are produced in a systematical manner, by chang-
ing the system generation and load levels in certain increments and by systematically
distributing the position of short-circuits across the network [31,32]. This procedure gives
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rise to a systematic dataset, which often does not possess appropriate statistical features.
In order to remedy this situation, the pipeline starts by creating a random set from the
population of systematically generated cases. This is accomplished by random selection,
without replacement, from the population, which yields a statistical distribution with the
following properties [16]: 10% three-phase, 20% double-phase, and 70% single-phase faults.
Hence, starting from the population of systematic simulations, this procedure creates a
stochastic dataset that better approximates the power system reality.

In addition, this random selection process preserves the natural imbalance between the
stable and unstable cases, which is an important aspect of the power system TSA problem.
An imbalanced dataset (which is heavily skewed in favor of the stable class) necessitates a
special splitting strategy that will preserve the class imbalance between the training and
test sets. Otherwise, the performance of the machine learning models will be influenced
detrimentally by the presence of class imbalance [21]. Consequently, the next step in the
pipeline is a so-called stratified shuffle split. According to this splitting strategy, first, a total
population of training cases is divided into homogeneous subgroups (strata). Then, an
appropriate number of instances is randomly sampled (without replacement) from each
stratum in such a way so as to obtain a test set that is representative of the overall population.
If three separate sets are utilized (training, validation, and test), then the stratified shuffle
split strategy needs to be repeated twice; the first pass divides the data into training and
validation sets, while the second pass creates a test set from the validation data. The level of
class imbalance between all three sets should be preserved after splitting.

The standardization of the dataset, as a next step in the pipeline, is a common re-
quirement for many ML models. Hence, this step standardizes features in the training and
test sets. This is accomplished by removing the mean and scaling data to unit variance.
Centering and scaling are carried out independently for each feature, by computing the
statistics only from the training set samples.

Power system datasets may contain many thousands of features. This high dimen-
sionality of the feature space creates a problem for many traditional ML techniques. Hence,
a dimensionality reduction is an important step in the data processing pipeline. A stacked
autoencoder can be seen as a very powerful dimensionality reduction technique, which
outperforms principal component analysis, and can be made arbitrarily complex. Moreover,
it is trained in an unsupervised manner, which means that it can harness huge amounts
of unlabeled data. The pipeline can be extended with additional steps, if needed, but the
order of the steps is important.

AI cloud infrastructures: The above-described five steps of the AI model life-cycle
are often implemented on a purposefully developed cloud infrastructure, which includes
purpose-built tools for every step of the ML development, including labeling, data prepa-
ration, feature engineering, statistical bias detection, auto-ML, training, tuning, hosting,
explainability, monitoring, and workflows. The user can choose between different cloud
AI infrastructure providers, such as: Microsoft Azure (https://azure.microsoft.com/en-
us/services/machine-learning/, accessed on 18 November 2021) Machine learning, Ama-
zon AWS SageMaker (https://aws.amazon.com/sagemaker/, accessed on 18 November
2021), Google Vertex AI (https://cloud.google.com/vertex-ai, accessed on 18 November
2021), Huawei MindSpore (https://www.mindspore.cn/en, accessed on 18 November
2021), NVIDIA AI Enterprise (https://www.nvidia.com/en-us/data-center/products/
ai-enterprise-suite/, accessed on 18 November 2021) with VMware vSphere, Paperspace
(https://www.paperspace.com, accessed on 18 November 2021), and others. All these
well-known providers offer fully integrated end-to-end cloud solutions for AI develop-
ment and hosting. They automate many manual tasks and can even completely eliminate
software development from the model building (i.e., auto-ML).

3.1. Machine Learning

Power system TSA, as a binary classification problem, has been tackled by means
of several different traditional ML models. A few prominent ones can be singled out

https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai
https://www.mindspore.cn/en
https://www.nvidia.com/en-us/data-center/products/ai-enterprise-suite/
https://www.nvidia.com/en-us/data-center/products/ai-enterprise-suite/
https://www.paperspace.com
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here, such as: support vector machine (SVM), random forest (RF), gradient boosting, and
multi-layer perceptron. Figure 6 graphically presents part of the ML landscape. It can be
stated that SVM, including several of its variants, has been very popular among researchers
and has shown great promise on benchmark power system test cases. For example, SVM,
with or without improvements, was used in [33–37]. Several adaptations of the traditional
SVM have been proposed as well: core vector machine [38] and ball vector machine [39].
Furthermore, a neuro-fuzzy SVM approach was proposed in [40]. SVM has a small number
of hyperparameters, can employ different kernel types, and is fast to train.

Machine learning landscape

ANN SVM

Gradient
Boos�ng

Bagging Boos�ng

Ensembles

StackingRandom
Forest

Decision
Trees Naive Bayes Linear Models

Figure 6. A part of the machine learning landscape.

The random forest classifier is a meta-learner built from many decision trees, where
each tree makes predictions by learning simple decision rules inferred directly from data
features. Random forest pools a diverse set of trees and aggregates their predictions by
averaging. A twofold source of randomness is introduced to create RF, by growing each
tree from a sample drawn with replacement from the training dataset and by splitting each
node during the construction of a tree in such a way that the best split is found either from
all input features or from its random subset. RF uses two different sources of randomness
in order to control overfitting and improve predictive accuracy. Training RF involves a
significant number of hyperparameters. Many approaches to power system TSA, involving
decision trees or random forests, have been proposed, e.g., [22,41–45].

Several other ML techniques have been applied to the TSA problem as well. For
example, Li et al. used extreme gradient boosting machine [46]. Liu et al. employed kernel
regression [47], while Pannell et al. proposed using the naive Bayes approach [35].

3.1.1. Hyperparameter Optimization

Hyperparameter (HYP) optimization is a crucial step of the model training process.
It can be tackled by using k-fold cross-validation on the training dataset or by utilizing
a separate validation set. In either case, the validation split needs to be carried out in a
way that preserves the class imbalance. Furthermore, there are many different approaches
for HYP optimization, some of which are well suited for situations where there is a large
number of parameters of different types, while others are focused on a smaller number of
HYPs of a single type. Two well-known general approaches are grid and random search,
which are both time consuming and slow to converge. The bandit-based optimization
approach (i.e., the Hyperband algorithm) provides a far better alternative and is well
suited for tackling a large number of HYPs of different types. When the number of HYPs is
relatively small, Bayesian optimization is a good choice [16]. Genetic algorithms [6] and
evolutionary programming [48] are still other alternatives appropriate for general use. This
is still an active area of research.

Dealing with a class imbalance problem: Datasets on which the ML model is being
trained, as was already mentioned, have a class imbalance problem, due to the low probabil-
ity of power system loss from stability events. This imbalance will influence the classifier in
favor of the dominant class. In order to remedy this situation, classifiers use class weighting,
which puts more weight on samples from the under-represented class. Weights are adjusted
inversely proportionally to the class frequencies in the training data. For that, it is important
to preserve the level of class imbalance between the training and test datasets, which is why
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the stratified shuffle split strategy is needed. It should be mentioned that this is different
from sample weighting, which can be used in addition to class weighting.

3.1.2. Ensembles

Ensemble learning is a machine learning paradigm in which multiple models (of-
ten called base models) are trained to tackle the same (classification) problem and then
combined (by aggregating predictions or with a meta-model) to yield better performance.
Models can be combined in different ways, leading to different techniques for creating
ensembles (Figure 6), such as: bagging, boosting, and stacking. Bagging and boosting
ensembles use the aggregation of predictions, while stacking ensemble uses a meta-model
(i.e., second-level model, which is trained on the outputs from the base models). Because
of the two levels, where base models feed data to the meta-model, tracking of the data flow
is more complicated for a stacking ensemble. In bagging methods, several instances of the
same type of base model are trained independently, often on different bootstrap samples,
and then aggregated by “averaging” (e.g., using soft or hard voting). Random forest is
a bagging ensemble of decision trees. In boosting methods, several instance of the same
base model are trained sequentially such that, at each iteration, the current weak learner
adapts to the weaknesses of the previous models in the sequence. In other words, each
new base model added to this ensemble boosts the performance of the group taken as a
whole. AdaBoost is the most popular boosting ensemble algorithm.

Ensemble learning has been a very popular approach to power system TSA, e.g.,
see [17,28,40,46,49–52]. Furthermore, several authors have used different tree-based en-
sembles [22,41,43], or special bagging ensembles [16,32,53]. This is still an active area of
research.

3.1.3. Estimator Performance Metrics

Binary classifier performance metrics—when there is a class imbalance present—need
careful scrutiny of different error types and their relationship with the associated costs. In
power system TSA, a higher cost is generally associated with a missed detection. This is
where the confusion matrix gives invaluable support, along with the metrics derived from
it (e.g., precision and recall). Notable metrics also include the Matthews coefficient, Jaccard
index, and Brier score. Valuable as well is the so-called receiver operating curve (ROC),
along with an ROC-AUC score as the area under that curve. Balancing of (unequal) decision
costs between false alarms and missed detections can be achieved by using a detection error
trade-off (DET) curve plotted in the normal deviation scale. DET curves allow comparing
binary classifiers in terms of the false positive rate (i.e., false alarm probability) and false
negative rate (i.e., missed detection probability), [16].

Classifier calibration, as part of the model development process, can be mentioned at
this point, which sets the optimal probability threshold level of the classifier. Calibration
needs to find a balance point between the precision and recall or between the false alarms
and missed detection costs of the classifier. The threshold level that gives this balance, how-
ever, depends on the importance of different classifier errors on subsequent decisions and
their actual costs. Hence, the calibration process ties together the classifier’s performance
with the costs of errors that it makes in production. In other words, the calibration process
is concerned with minimizing costs associated with classifier prediction errors.

Machine learning framework example: The Python (https://www.python.org, ac-
cessed on 18 November 2021) programming language is fast becoming a dominant language
for data science and artificial intelligence applications. ScikitLearn (https://www.scikit-
learn.org, accessed on 18 November 2021), as an open-source Python library, is proba-
bly one of the most prominent frameworks for developing traditional machine learning
applications. It features a beautifully designed application programming interface (API),
which enables building powerful pipelines, diverse ML models, and complex ensembles. It
also streamlines many ML-related tasks, such as: data processing, transforming, scaling,

https://www.python.org
https://www.scikit-learn.org
https://www.scikit-learn.org
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splitting, cross-validating estimators, interchanging different metrics and losses, calibrating
and evaluating estimators, model performance visualization, and others.

3.2. Deep Learning

Deep learning (DL) is a popular approach for tackling the power system TSA problem,
which still holds great promise and opens future research opportunities [6,54]. Deep learn-
ing is concerned with the development and training of artificial neural networks (ANNs)
with many stacked layers (of different types). However, the training of complex deep neu-
ral network (DNN) architectures comes with special problems of proper layer initialization,
activation function selection, learning rate scheduling, convergence, vanishing gradients,
forgetfulness, dead neurons, and others.

Deep learning’s application to the power system TSA problem does not necessitate
a features engineering step, as is necessary with traditional ML models. Namely, these
DNNs use feature learning, which allows a model to both learn the features and use them to
perform a classification task. Hence, DNN models can ingest raw time series data, often
with only minimal processing, which may include data standardization, using sliding
windows, and creating batches. This removes domain knowledge from the model building
process, which was needed for engineering features, and lowers the barrier for non-experts’
entry into the field of power system analysis. Having said that, it also needs to be stated
that there are situations where significant data pre-processing has been undertaken in order
to prepare the raw TSA signals for deep learning [12,55]. This is particularly true with
DNNs that have been designed for image classification, where time-domain TSA signals
need to be converted into 2D images (e.g., by means of frequency histograms, feature space
mapping, constructing bitmap representations of spatial–temporal signal correlations, etc.).

The power system TSA problem has been tackled by means of different deep learning
architectures, to name here only a few prominent ones: convolutional neural networks
(CNN) [56–58], recurrent neural networks (RNNs) [59], networks employing long short-
term memory (LSTM) layers [17,49,60–64] or gated recurrent unit (GRU) layers [65–67],
generative adversarial networks (GANs) [9,68,69], transfer learning [70], and autoencoders.
These basic architectures can internally vary widely in the number of layers and their
stacking order, which allows experimenting with different deep network topologies. CNNs
are basically feed-forward ANNs with convolution instead of multiplication as a central
operation for updating the layer weights. These networks can also make use of several
different layer types (e.g., filters, pooling, dropout, etc.), which are stacked on top of each
other for creating deep structures. RNNs, on the other hand, have feedback loops and
introduce “memory,” which enables them to learn long time series data patterns. The RNN
was a base for developing more advanced layer structures that better learn from long time
series data. The GAN approach uses two deep networks that compete in a zero sum game.
GANs are very difficult to train. Generally speaking, since TSA data come in the form
of multivariate time series, those DNN architectures specially built for long time series
analysis have been applied with the most success.

Furthermore, different autoencoder architectures have been proposed for TSA: stacked,
denoising, and variational, where the depth and composition of the layer stack of the
autoencoder can vary widely [16,18,29,30,71]. Autoencoders are prominently applied
for dimensionality reduction. They also use unsupervised training, unlike all other deep
learning models (except GANs), which use supervised training. This is advantageous,
as WAMS data are generally unlabeled. Figure 7 graphically presents the relationships
between RNNs, LSTM, and GRU networks, as well as between different autoencoders.

The application of a feed-forward ANN to the TSA problem, which employs only a stack
of dense layers, was given, for example, in [72,73]. Yan et al. proposed using a cascaded CNN
architecture for fast transient stability assessment [74]. Architectures featuring hierarchical
CNNs [12] and recurrent graph CNNs [19] have been proposed. Huang et al. proposed
multi-graph attention network in [20]. Mahato et al. in [61] introduced a particular Bi-LSTM
attention mechanism to the TSA problem, which featured LSTM layers. Wu et al. proposed
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a deep belief network in [75]. Xia et al. used an embedding algorithm in combination with
deep learning for the transient stability assessment [76]. Zhou et al. treated the transient
stability of a large-scale hybrid AC/DC power grid with the use of deep belief networks [77].
Ren and Xu in [9] used GANs, as an unsupervised deep learning technique, to address the
missing data problem associated with the PMU observability. As can be seen, some of these
neural network architectures make use of graph theory, an attention mechanism, transfer
learning, belief networks, as well as several other advanced deep learning features.

Recurrent Neural Networks
(deep learning)

Autoencoders
(stacked)

LSTM DenoisingGRU Varia�onalSparse

Figure 7. A part of the deep learning landscape.

Although the application of deep learning to the power system TSA looks very promis-
ing, it is also plagued by several unresolved issues. One such issue is the problem of the
transferability of DL models across different power systems; see [12] for more information.
There is also the associated issue of the adaptability of trained DL models to constant
changes within the power system (development of new RESs, decommissioning of existing
power plants, the addition of new transmission lines, network reconfiguration, etc.). Fur-
thermore, the training of deep network architectures with millions of parameters is very
time consuming, expensive, and difficult. Clearly, there are still open questions and ample
research opportunities in this area.

Deep learning framework example: One of the most prominent open-source deep
learning frameworks is TensorFlow 2 (https://www.tensorflow.org, accessed on 18 Novem-
ber 2021) (TF2), developed and maintained by Google. It features a comprehensive and
flexible ecosystem of tools and libraries, including a first-class Python API. TF2 offers
multiple levels of abstraction, from the high-level Keras API, down to low-level tensor ma-
nipulations and gradient computations. It also features efficient data processing structures
(designed to handle extremely large datasets) and can be extended with powerful add-on
libraries and models, such as TF Probability. Furthermore, TF Extended enables building
full production ML pipelines. A model built with TF2 can be trained on CPUs, GPUs, and
even TPUs, without any changes. TF2 is also available inside the previously mentioned AI
cloud infrastructures.

3.3. Reinforcement Learning

Reinforcement learning (RL) is the latest addition to the growing pool of different AI
methods for tackling the power system TSA problem. RL is one of three basic machine
learning paradigms, alongside supervised learning and unsupervised learning. The typical
framing of an RL scenario is one in which the agent takes actions in a certain environment,
which is interpreted as a reward and a representation of the state (i.e., observation), which
are then fed back to the agent. The purpose of reinforcement learning is for the software
agent to learn an optimal, or nearly-optimal, policy that maximizes a certain reward function.
The policy is usually a deep neural network, taking observations as inputs and outputting
the action, in such a way that balances exploration with exploitation. There are different
ways in which this can be achieved. Figure 8 graphically presents a part of the reinforcement
learning landscape, with the emphasis on deep Q-learning (i.e., deep Q-network algorithms
(DQNs)).

https://www.tensorflow.org
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Reinforcement Learning

Priorirized Experience Replay

Double DQN
Dueling DQN
Rainbow, etc.

Fixed Q-Value Targets

Deep Q-Learning Variants

Figure 8. A part of the reinforcement learning landscape.

Reinforcement learning also needs a simulated environment of the power system in
which to train the agents. In other words, the two main components of RL are the envi-
ronment, which represents the problem to be solved, and the agent, which represents the
learning algorithm. It needs to be stated that RL is notoriously difficult, largely because of
the training instabilities (oscillations, divergences, freezing) and the huge sensitivity to the
choice of hyperparameter values and random seeds. This is a major reason why RL is not
as widely adopted as more general deep learning. Reinforcement learning is still a nascent
and very active area of research, which has only recently been applied to the power system
TSA problem, e.g., see [78–81]. Q-learning has been mainly used for this purpose. Clearly,
there are ample research opportunities in this area as well.

Reinforcement learning framework example: One of the most advanced and user-
friendly RL environments is the Agents (https://www.tensorflow.org/agents, accessed
on 18 November 2021) framework, which is based on the TF2 deep learning ecosystem.
The TF-Agents library facilitates designing, implementing, and testing new RL algorithms,
by providing well-tested modular components that can be easily modified and extended.
This framework may be used to create a simulated environment of the power system for
TSA. It already contains many different kinds of agents (including deep Q-learning ones)
and provides intuitive ways of designing policies and coding reward functions. Finally, it
inherits many of the excellent features of the TF2, on which it stands.

4. Challenges and Future Research Opportunities

The novel paradigm of employing machine and deep learning in power system TSA
has proven popular among researchers and has shown great promise on benchmark test
cases. However, building the next generation of TSA tools, using data mining and artificial
intelligence, is still a work in progress. Namely, stepping from benchmarks into the real-
world power systems is often plagued with difficulties emanating from system complexity
and unforeseen circumstances. Considering the importance of power systems, there is still
ample need for research that corroborates the quality and robustness of this data-driven AI
approach to solving the TSA problem. Hence, Appendix A provides another brief overview
of selected research concerning different state-of-the-art AI approaches to power system TSA.
This overview presents a snapshot of the current state of affairs, hints at open challenges,
and at the same time, points toward future research opportunities.

In the domain of dataset building, several open challenges facing the research commu-
nity can be identified: (1) open sourcing datasets from power system WAMS measurements,
(2) addressing potential security concerns associated with WAMS data [11], (3) open sourc-
ing existing benchmark test cases, (4) providing a unified and consistent set of benchmark
test cases featuring power systems of varying sizes and levels of RES penetration, (5)
providing benchmark test cases featuring hybrid AC/DC power grids, and (6) providing
standardized simulated environments of power systems for the reinforcement learning.
These points deal with standardization of benchmark test cases and bringing them closer
to the expected future levels of RES penetration, as well as introducing the hybrid AC/DC
power grids [82,83]. It also deals with bringing standard simulated environments for RL
(i.e., something such as OpenAI Gym (https://gym.openai.com, accessed on 18 November
2021) for power systems). The hard work of building some of these components is already

https://www.tensorflow.org/agents
https://gym.openai.com
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under way, with the support of the LF Energy (https://www.lfenergy.org, accessed on
18 November 2021) umbrella organization of open-source power system projects. In the
domain of data processing pipelines, challenges include: (1) automatic data labeling, (2) cre-
ative features engineering for real-time performance, (3) dealing with the class imbalance
problem, (4) dealing with missing data, (5) dealing with data drift, (6) using embedding
as a features space reduction, and (7) using autoencoders with unsupervised learning for
dimensionality reduction.

In the domain of model building, several issues have been identified with some
of the DL-based image classifiers when applied to the power system TSA. In addition,
training of deep learning models, in general, is associated with its own challenges: proper
layer initialization, learning rate scheduling, convergence, overfitting, vanishing gradients,
forgetfulness, dead neurons, long training times, and others. Reinforcement learning
models, at the same time, are even far more difficult to train. Furthermore, RL models tend
to be “brittle” and may exhibit unexpected behavior.

Tackling these different challenges, at the same time, presents new research opportuni-
ties. In the domain of synthetic data generation from benchmark test cases, future research
may address the following issues for stress-testing the existing models: (1) introducing
different types of noise and measurement errors into datasets, (2) introducing different
levels of class imbalances into datasets, (3) introducing different levels of RES penetration
into the IEEE New England 39-bus test case, (4) using deep learning for features extrac-
tion from time-domain signals, (5) artificial features engineering, (6) experimenting with
different stacked autoencoder architectures for unsupervised dimensionality reduction,
(7) speeding up numerical simulations of benchmark test cases with parallel processing
or by other means, and (8) introducing hybrid AC/DC power grid test cases for transient
stability analysis.

In the domain of model building, future research opportunities arise from applying
different deep learning models to the power system TSA problem. Employing stacked
autoencoders, transfer learning, attention mechanisms, graph neural networks, and other
state-of-the-art deep learning architectures is seen as a way forward. Particularly important
would be applications of deep learning architectures designed specifically for processing
long time series data, image classification, and analyzing graph structures. This is generally
seen as a major area of deep learning research, where any novel architecture in this area
may be tested on the TSA problem as well. It would also be interesting to see if three-phase
signals can be exploited as RGB channels in convolutional layers, with cross-learning
between channels/phases. There are research opportunities in devising novel and better
ways of converting multivariate TSA signals into images for use with very advanced deep
learning image classifiers [12,55,64].

Another major issue with deep learning is a general lack of model interpretability, cou-
pled with the difficulty of understanding the model’s decision-making process. However,
there is active research in this area as well. For example, Zhou et al. in [84] proposed the
interpretation of the CNN model decisions for TSA by providing class activation mapping,
which visually reveals regions that are important for discrimination. Activation mapping
has been successfully used with deep image classification and can be seen as a way forward
for explaining and understanding CNN classifier decisions in TSA applications.

All major deep learning frameworks allow fast model prototyping and training on
powerful distributed hardware architectures in the cloud. This levels the playing field
for researchers and lowers the barrier for entry. When it comes to model maintenance,
TSA is associated with a data drift phenomenon emanating from steadily increasing RES
penetration. Efficiently dealing with data drift is a point of concern for model serving,
along with issues of model latency and throughput. Namely, model prediction serving
performance (i.e., latency) needs to be in real time for maintaining transient stability of
power systems following a disturbance [55]. This limits the computational time available
for pipeline processing and may impose certain constraints on its design.

https://www.lfenergy.org
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Reinforcement learning has only very recently been applied to the power system TSA
problem. The Q-learning algorithm has mainly been explored for that purpose. This pro-
vides ample research opportunity for experimenting with different reinforcement learning
strategies, with designing efficient policies and reward functions. This area is seen as fruitful
and wide open for future research.

Researcher’s resources: It might be of value to mention here several additional re-
sources at disposal to researchers interested in AI applications to power systems. Datasets
for the power system TSA applications can be found on Zenodo (https://www.zenodo.org,
accessed on 18 November 2021), which is a premier European general-purpose open data de-
pository, e.g., [85]. General AI and ML research papers are freely available on arXiv (https://
arxiv.org/archive/cs, accessed on 18 November 2021), where cs.AI and cs.ML would be the
subcategories of most interest. Apart from GitHub, the source code that accompanies pub-
lished research papers can be found from papers with code (https://paperswithcode.com,
accessed on 18 November 2021), which curates ML and AI papers along with their sup-
porting source code repositories. LF AI & Data (https://lfaidata.foundation/, accessed
on 18 November 2021) is a growing ecosystem of open-source projects in support of AI
development. Hugging Face (https://huggingface.co, accessed on 18 November 2021) can
be mentioned as a resource that offers the reuse of many different large pre-trained models.
Furthermore, some of the popular pre-trained models for transfer learning can be found
directly within the TF2. Finally, a PyTorch (https://pytorch.org, accessed on 18 November
2021) framework, developed by Facebook, can be mentioned here as a capable alternative to
TF2. It also offers the Python API and is available inside the previously mentioned AI cloud
infrastructures.

5. Conclusions

This paper provided a state-of-the-art of peer-reviewed research, published mostly
within the last five years, on the topic of applying machine learning, deep learning, and
reinforcement learning to the power system TSA problem. All aspects of the TSA problem
were addressed, from data generating processes (both measurements and simulations),
data processing pipelines, model building and training, to model deployment and manage-
ment. A trend is noticeable in the TSA research, which points in the direction of moving
from various machine learning techniques to deep learning. Although DL models are far
more difficult to train, they do exhibit certain advantages over the traditional ML models.
Furthermore, they don not necessitate the features engineering step and can ingest raw
time-domain signals (although, sometimes, considerable data processing may be necessary).
This automates the process, but removes the expert knowledge from the model building
phase. Models are built on the principle of offline training on a large corpus of data and
online serving, with a model latency that needs to be in real time. This particular emphasis
on model serving in real time needs to be rigorously enforced, considering the fact that
predictions need to be utilized as soon as possible (often only milliseconds after the trip of
the associated relay protection functions).

The deep learning domain is, generally speaking, still a very active area of research,
with several promising avenues: different RNN network architectures (with LSTM or
GRU layers), stacked autoencoders, transformers, attention mechanism, transfer learning,
and GAN networks, to name a few prominent ones. Deep learning models specifically
designed to learn from multivariate long time series data are particularly interesting for
applications to the power system TSA problem. Excellent DNN architectures developed for
image classification (e.g., Inception, Xception, etc.) offer promising alternatives, provided
that multivariate time-domain signals can be appropriately packed into multi-channel 2D
images. Exploiting the graph-like structure of the power systems with the use of graph
neural networks is another promising research direction. Furthermore, deep learning
models that use unlabeled data (such as stacked autoencoders) are very attractive, since
data labeling can be time-consuming and necessitates applying humans with domain
expert knowledge.

https://www.zenodo.org
https://arxiv.org/archive/cs
https://arxiv.org/archive/cs
https://paperswithcode.com
https://lfaidata.foundation/
https://huggingface.co
https://pytorch.org
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Reinforcement learning, as a special subset of deep learning, is yet another approach
that shows early promising signs. However, the training of deep reinforcement learning
models is notoriously difficult. The landscape of reinforcement learning is rapidly expand-
ing, which offers ample research opportunities for integrating it with transient stability
assessment, particularly in the area of power system control following a disturbance. This
is still a relatively nascent, but very promising area of research.

The importance of the electrical power system to society mandates that further con-
vincing results be provided in order to corroborate the stability and robustness of all these
various AI approaches. Furthermore, additional and extensive models stress-testing, with
different levels of data corruption, is warranted. Potential security issues connected with
the wide dissemination of actual WAMS/PMU data need to be addressed as well. This
creates space for new research outputs that can fill this gap and increase the overall confi-
dence of the entire community in this new technology, for its safe future deployment across
power systems.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ANN Artificial neural network
API Application programming interface
AUC Area under the curve
AVR Automatic voltage regulator
CNN Convolutional neural network
CPU Central processing unit
DET Detection error trade-off
DL Deep learning
DNN Deep neural network
DQN Deep Q-network
GAN Generative adversarial network
GPS Global Positioning System
GPU Graphics processing unit
GRU Gated recurrent unit
HYP Hyperparameter
LSTM Long short-term memory
ML Machine learning
MRMR Maximum–relevance minimum–redundancy
PID Proportional integral derivative
PMU Phasor measurement unit
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PSS Power system stabilizer
RES Renewable energy sources
RF Random forest
RL Reinforcement learning
RNN Recurrent neural network
ROC Receiver operating curve
SVM Support vector machine
TPU Tensor processing unit
TSA Transient stability assessment
TSI Transient stability index
WAMS Wide area measurement system

Appendix A. Selected Research Overview

Table A1 presents a brief outline of selected research concerning the state-of-the-art
AI applications for power system TSA. It concisely reports, for select research papers, the
dataset(s) utilized, the basic data processing pipeline steps, the overall model type, and the
relevant reference. Pipelines are often more complicated than can be briefly stated here.
In addition, models sometimes have certain special features that have not been specified
in detail. Hence, the interested reader is advised to consult the cited reference for more
information on each of the models. Furthermore, it can be mentioned that prediction
accuracy is rather high for all reported models. However, we are not concerned here with
ranking of these models in terms of performance metrics.

Table A1. Selected overview of research concerning the AI applications for power system TSA.

Dataset Pipeline Model Ref.

IEEE 39-bus test case GAN with double generator networks Multi-layer LSTM network [69]

IEEE 39-bus & 68-bus test case Features engineering (500+ features), PCA SVM, DT, RF, AdaBoost [25]

IEEE 39-bus test case Feature vectors construction Autoencoder [8]

Guangdong Power Grid system Spectral quantization, frequency histograms Deep CNN [12]

IEEE 39-bus test case Representation learning Stacked GRUs [65]

21-bus & 1648-bus system Features engineering MRMR ensemble [50]

IEEE 39-bus test case Autoencoder, PCA SVM [30]

IEEE 14-bus test case Features engineering Naive Bayes, SVM [35]

Central China regional system Representation learning Deep belief network [86]

IEEE 39-bus test case Denoising stacked autoencoder Voting ensemble [16]

China regional system Representation learning Deep belief network [75]

IEEE 39-bus & 300-bus system Time-domain signals, Adjacency matrix Recurrent Graph CNN [19]

IEEE 39-bus, 68-bus & 140-bus test case Automatic features construction, features crossing Extreme gradient boosting (XGBoost) [46]

IEEE 39-bus test case LASSO-based features selection Stacked Denoising Autoencoder [29]

IEEE 39-bus test case Generative adversarial network Ensemble [9]

IEEE 118-bus & 300-bus system Gini Index-based feature selection DT-based ensemble [41]

IEEE 39-bus test case Indirect PCA ANN [27]

IEEE 39-bus & 118-bus system Bootstrap random features selection Ensemble of regression trees [22]

IEEE 39-bus system with wind farm Yeo-Johnson power transformation, Z-score LSTM network [49]

IEEE 39-bus test case Features importance analysis with random forest SVM with recursive features elimination [33]

IEEE 39-bus test case Time sequence normalization LSTM network [63]

Simulator based PMU data Time-series data arrangement, feature space mapping Decision trees [24]

IEEE 39-bus test case Features engineering Neuro-fuzzy ensemble of SVMs [40]

Guangdong Power Grid system Transforming multiplex trajectories into 2-D images Two-level CNN [12]

IEEE 39-bus test case (fault-on + 2) trajectories in bitmap forms LeNet-5 based CNN model [55]

China 265-bus AC/DC hybrid power grid Operation mode and disturbance features Deep belief network [77]

IEEE 39-bus test case Transfer learning pre-trained on ImageNet CNN–LSTM hybrid model [64]

IEEE 39-bus test case Artificial features, post-contingency observation window Stacked GRUs [67]
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