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Abstract: There is an increased interest in the district-scale energy transition within interdisciplinary
research community. Agent-based modelling presents a suitable approach to address variety of
questions related to policies, technologies, processes, and the different stakeholder roles that can
foster such transition. However, it is a largely complex and versatile methodology which hinders
its broader uptake by researchers as well as improved results. This state-of-the-art review focuses
on the application of agent-based modelling for exploring policy interventions that facilitate the
decarbonisation (i.e., energy transition) of districts and neighbourhoods while considering stake-
holders’ social characteristics and interactions. We systematically select and analyse peer-reviewed
literature and discuss the key modelling aspects, such as model purpose, agents and decision-making
logic, spatial and temporal aspects, and empirical grounding. The analysis reveals that the most
established agent-based models’ focus on innovation diffusion (e.g., adoption of solar panels) and
dissemination of energy-saving behaviour among a group of buildings in urban areas. We see a con-
siderable gap in exploring the decisions and interactions of agents other than residential households,
such as commercial and even industrial energy consumers (and prosumers). Moreover, measures
such as building retrofits and conversion to district energy systems involve many stakeholders and
complex interactions between them that up to now have hardly been represented in the agent-based
modelling environment. Hence, this work contributes to better understanding and further improving
the research on transition towards decarbonised society.

Keywords: agent-based modelling; agent-based simulation; urban energy system; district energy
system; systematic literature review; net-zero energy district; positive energy district

1. Introduction

Deep decarbonisation of the building sector in the EU is one of the key prerequi-
sites for becoming climate neutral by 2050, as buildings account for around 40% of final
energy consumption [1]. In this regard, “zero energy” building concepts, which largely
rely on reduced energy demand and on-site renewable generation, have recently gained
considerable interest in both scientific literature [2–7] and in practice [8]. However, some
researchers argue that dense and compact buildings on small plots have a small potential
for an on-site renewable generation [2,9] and can hardly achieve zero energy balance. Thus,
the expansion of building-level “zero energy” concept to the scale of neighbourhoods,
districts and communities is a potential alternative solution. With this motivation, several
concepts that aim to achieve zero or positive energy balance, such as Net-Zero Energy
Neighbourhoods (or Districts) [2,4,10], Plus-Energy Quarters [11,12], and Positive Energy
Districts [13–15] are being implemented currently.

Increased interest in such neighbourhood or district-level concepts as a solution for
energy and climate issues, raise a multitude of new questions, the most generic of them
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being: “what socio-techno-economic conditions support the transition of urban districts
towards zero and positive energy districts?”. More concretely, what policies, technologies
and processes can foster this transition? In this context, it is becoming even more critical to
understand the perspectives and roles of various stakeholders, including households, firms
and public institutions, as their participation (e.g., via energy conservation, prosumption
and energy trading, infrastructure development) in transitioning to a decarbonised society
can be supported by well-designed and inclusive policies and programs [16,17].

Within a broad selection of models used in energy system analysis [18], Agent-based
Modelling (ABM) approach is distinguished by its ability to represent individual decision-
making of heterogeneous actors, as well as interactions between them [19,20]. Moreover, it
is a simulation-type model that allows defining micro-level action and interaction rules,
leading to macro-level emergent insights [21]. Hence, it is deemed suitable for exploring
policy-related “what-if” questions and incorporating actors’ perspectives in the energy
system [16,17,22].

This article aims to obtain an overview of how ABM has been used to model policy
interventions that facilitate the decarbonisation (i.e., energy transition) of building-related
urban district energy systems and consider stakeholders’ social characteristics and interac-
tions. We use systematic literature review (SLR) to select the studies and discuss critically
the important aspects of ABMs, such as modelling choices and agent characterisation.
Hence, this SLR serves as a starting point for those who want to understand how ABM can
simulate urban district-level energy transition and contributes with:

• A detailed insight on how ABM has been used in modelling urban district’s (building-
related) energy systems while considering stakeholders and policies;

• A discussion of modelling choices and methodologies;
• Identification of research gaps and potential application streams.

This paper is structured as follows. Section 2 provides the context to this research
topic by defining urban district energy systems and summarising the previous research on
applying ABM to model energy systems. It is followed by the description of our approach
for the systematic selection and review of the articles in Section 3. The main results of the
review are presented in Section 4 and organised in different thematic subsections related
to essential aspects of ABMs of urban district energy systems, namely: model purpose
and outputs, agents, their decision-making and interaction rules, technologies and policies
covered, spatial and temporal aspects, as well as experimental setup of simulations, use of
empirical data, and implementation platform used. The paper is finalised with synthesised
observations and future research suggestions in Section 5.

2. Background and Definitions

In this section, we lay down the foundations for the topic of our focus. Namely, we
want to refer to the existing literature and define the urban district energy system. Secondly,
we discuss the state-of-the-art of ABM’s application in the energy systems research.

2.1. Urban District Energy Systems and Models

The energy system is defined by the IPCC [23] as: “all components related to the
production, conversion, delivery, and use of energy”. The energy system is also seen
as a socio-technical system, comprised of more than just technical components, but also
markets, institutions, consumer behaviours and other factors that affect the construction
and operation of technical infrastructures [24].

The differentiation of energy systems into “urban” and “district” is generally about
defining the system’s scope. In Europe, “urban areas” refer to cities (i.e., densely populated
areas), towns and suburbs (i.e., intermediate density areas), as opposed to rural (i.e., sparsely
populated) areas [25]. According to the motivation and purpose of this work, we look at the
studies that address the energy system challenges of densely populated urban areas.

Depending on various national contexts, “districts” and “neighbourhoods” can denote
different administrative and non-administrative areas of cities or countries. Like [6,7,26],
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we do not refer to certain juridical or administrative areas, but as part of an urban area.
Hence, everything from a small to a large group of buildings is considered a “district”
within this work. Due to the inconsistent use of the similar terms in the literature, the
synonyms of “district” such as “neighbourhood”, “quarter”, “block” and “community” are
included in the analysis.

It is important to note though, that the search for “district energy systems” brings to
district-scale energy systems, be that traditional district-level thermal and hybrid energy
systems (e.g., cogeneration) [27–30] or distributed energy systems such as PV, solar ther-
mal, battery storage [31–34]. However, consistent with the above-mentioned definitions
of [23,24], we keep the scope of “district energy system” broader and do not limit it to the
technical components only.

There are various energy system modelling approaches and tools that can be or are
used at the district-scale for different purposes [24,31,34]. As [31] conclude about the
numerous urban district-level energy models and tools: “some tools aim to provide a single
simulation that addresses many issues, while others give detailed results regarding specific
parts of the system”. Although the advantages of ABM in studying complex systems and
enabling the analysis of policies are acknowledged [17,24,35–37], its role in studying district
energy systems, to the authors’ knowledge, has not yet been explored in detail.

2.2. Agent-Based Modelling in Energy Systems Research

ABM is a modelling approach that can be seen as one of the applications of a software
engineering paradigm named “Multi-agent systems” (MAS) [38]. (Some application fields
of MAS are represented in Figure 1). There is an ambiguity between MAS and ABM. However,
the general understanding is that MAS is an overarching architecture or paradigm, which,
when applied for simulating various phenomena by abstracting real-life systems (e.g.,
human, animals, organisations) is usually called ABM or Agent-Based Simulation (ABS).
Whereas MAS-based engineering deals with applying the MAS architecture to create a
software or control system, ABM applies MAS paradigm to draw implications about other
systems (e.g., human settlements, stock markets, etc.). The common point between MAS-
based engineering and ABM is in the desire to understand a complex system by assuming
a distributed or autonomous behaviour instead of centralised or equation-governed be-
haviour of system elements (e.g., like in System Dynamics approach). Hence, the terms
“multi-agent-system”, “multi-agent-based-modelling” and “agent-based modelling” are
sometimes used interchangeably in the literature [39–42]. However, the difference of these two
approaches, namely that ABM sets up agents with characteristics of real-world analogy to see
what happens when they act, while in a multi-agent system, agents are defined with certain
characteristics, connections and choices, such that they achieve specified emergent states [43].

Figure 1. Representative application field of Multi-Agent Systems (based on [44]).
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ABM can, thus, be more specifically understood as a computer simulation of an artifi-
cial world populated by agents—discrete decision-making entities (individual, household,
firm, etc.)—whose behaviours and rules of different complexity can govern interactions.
One of the main reasons for choosing ABM over traditional equation-based modelling
approaches in energy systems analysis (i.e., system dynamics, optimisation models, com-
putable general equilibrium models) is its ability to incorporate heterogeneity and adap-
tivity of energy consumers [45]. In the energy system research, this strength has been
exploited for: (a) analysing the demand side of energy system [17], e.g., incorporating
occupant behaviour in buildings [46,47]; (b) better-informing policy-making and infras-
tructure planning [22,36], e.g., determining target groups for interventions [48,49] or rec-
ommendations specific to the adoption of particular renewable energy or energy-efficient
technologies [3,50,51].

As the number and publication date of review papers indicate (see Table A1 in
Appendix A), the first applications of ABM in energy research were for representing whole-
sale electricity markets to analyse market structures [45]. The possibility of using ABM for
questions related to smart electricity grids and markets, such as the integration of demand
response and distributed generation in local or centralised markets, is explored by [44].
The potential of ABM to improve our understanding of consumer energy demand, by
allowing to account for social, behavioural, economic, technological, and market and policy
factors that influence energy demand is presented by [17]. Questions that interest energy
economists and policymakers are how consumers adopt energy-efficient technology and
how to encourage them. The benefit that ABM can bring to this stream of research, as well
as barriers and incentives for the adoption of energy-efficient measures in the residential
sector are addressed by [22,36]. Though our review topic overlaps with theirs, we do not
focus on the ABMs of “innovation diffusion” only and explore a wider range of approaches.

3. Methods

This work is based on the literature review type originating in biomedical and health-
care research and becoming prominent in energy system research too [35,36]—systematic
literature review (SLR).

The current SLR is carried out on the 13th of September, 2021 in the Scopus database
only. The main research question thereby is: “how ABM has been applied in studying the
urban district (building-related) energy systems?”. Accordingly, the search string provided
in the PRISMA Flow diagram in Figure 2 reflects this question. First, the literature suggests
many variations of agent-based concepts—simulations, models, approaches, as well as
“multi-agent” and “multi-agent-based” simulations, models, and approaches. Although
there are differences between MAS and ABM (see Section 2.2), they are sometimes used
interchangeably in the literature. Therefore, the studies referring to “multi-agent-based”
simulations were not excluded automatically but carefully checked. Second, the search
term “energy OR heat*” ensures that all studies mentioning energy or heat are captured.
Urban district energy systems are defined here as a group of buildings, heating and cooling
infrastructure, distributed energy resources (PV, battery, solar thermal, heat pump, CHP),
electricity distribution network, and energy producers, consumers, prosumers and other
relevant stakeholders in a given district or city. Hence, we exclude, for example, transport-
related studies, which returned 92 additional records in Scopus. Third, as explained in
Section 2.1, "district” is used interchangeably with “neighbourhood”, “quarter”, “block”,
“community”. Moreover, sometimes city or town-level models are applicable to a smaller
scale too. Hence, we considered the article with at least one of the terms.

After a rigorous identification in the Scopus database and removing duplicated records,
further screening was performed using Scopus automatic filtering, reading titles and
abstracts. Journal and conference articles, written in English, accessible either openly or the
research institution’s library, and relevant to the energy research were filtered out. Finally,
full-text analysis has been applied to ensure the selected studies match the aim of this
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review. The exact reasons for exclusion together with the full SLR process are presented in
Figure 2.

Figure 2. PRISMA Flow Diagram of study selection for reviewing ABM of urban district en-
ergy systems.

After the papers have been selected, they are qualitatively analysed based on the
following key aspects of ABMs:

1. model purpose and outputs (Section 4.1)
2. agents (Section 4.2)
3. agent decision rules (Section 4.3)
4. agent interaction (Section 4.4)
5. technologies and policies modelled (Section 4.5)
6. spatial and temporal aspects (Section 4.6)
7. empirical grounding (Section 4.7)

As already mentioned in one of the previous review articles [37], ABMs differ strongly
in how they are designed and implemented, so a quantitative comparison of models is
impractical. Therefore, we focused on the qualitative description of modelling choices and
methodological aspects within the selected ABMs. The defined thematic clusters of analysis
were inspired by the review approaches of [20,36], as well as by the Overview, Design
Concepts, and Details (ODD) protocol [52–54]—the attempt to formalise the documentation
of the ABM’s modelling process and results. Whenever included or implemented, the ODD
protocol improves the readability and ensures that the information needed to understand
and further analyse the models is present.

Within this work, we focus on the components of the energy system related to the
built environment of a district (i.e., buildings, heating, cooling, electricity supply systems)
and human individuals or groups. Thus, studies focusing on other sectors (i.e., transport,
industry, or agriculture and forestry) and elements (e.g., energy markets, information
systems, power network) of the energy system, though recognised as part of the energy
system, are outside the scope of this review.
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4. Results: ABMs of Urban District Energy Systems

This section presents the findings from the thorough analysis of 25 studies based on
model purposes and outputs, agents, their decision-making frameworks and interactions,
technologies and policies covered, spatial and temporal aspects, and empirical grounding.

4.1. Model Purposes and Outputs

The review by [17] highlights that ABM is well-suited to answer two kinds of energy-
demand questions: those related to policy design and evaluation and those related to
system design and infrastructure planning. The review process reflects the existence of
these two motivations for modelling, of which we only focus on those that are relevant for
policy design. These studies evaluate the agents’ behavioural response to external stimuli
in the form of a policy, regulation, observation or feedback, and peer influence. Rai &
Robinson [51] present a well-validated example of an ABM used to test the influence of the
regulatory framework on adopting renewable technology. They examine how additional
rebates (i.e., partial refund of an item’s cost) for low-income households and changes in the
amount of rebate, affect the adoption of rooftop PV in Austin, Texas.

A model’s purpose or objective must be “clear, concise and specific” [52], which is
essential for others to understand why some aspects of reality are included in a model
while others are omitted. It is because each a model should be a “purposeful” abstraction
of reality [55]. The purposes of the 25 selected models are diverse. However, we identified
two main thematic clusters: diffusion and exploratory ABMs (see Figure 3).

Figure 3. Two major thematic clusters based on model purposes within the ABM of urban district
energy systems.

One large thematic cluster is the exploration of technology adoption that has its
foundations in innovation diffusion theories [56]. This type of ABM is often named “agent-
based diffusion model” [22,36,56,57]. They aim to analyse adoptions of energy-efficient or
renewable energy technology by households, firms and other entities, often due to certain
policy interventions [3,51,58–64]. Usually, such models’ outputs are the number of adopters
or adopted units, energy or emissions saved over time (see Table 1). This approach allows
us to observe what factors affect the adoptions of technologies in which ways. The term
“diffusion” encompasses concepts like social learning and dissemination [65]. Thus, this
approach is also well-suited to represent the dissemination of energy-related practices and
behaviours, such as energy-saving [47,49], energy-efficient ventilation behaviour [66,67],
user learning (i.e., energy saving) after authoritative smart meter adoption [68], building
renovation behaviour [69], weatherisation (i.e., making apartments weather-proof) [70],
buying energy-efficient appliances and switching an energy provider [71]. Similar to
technology adoption, these studies investigate how energy-related behaviours are adopted
and how much energy can be saved. Three models [66–68] focus on both technology
adoption and the resulting behaviour dissemination.
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Table 1. Model purposes and model outputs of the selected studies—Diffusion ABMs.

Study Model Purpose Model Output

[47]
Explore the effect of social-network char-
acteristics on the diffusion process of en-
ergy conservation

% energy savings from different feed-
back methods with various social
network characteristics

[50]
Examine the impact of information diffu-
sion algorithm on residential PV adoption
in city neighbourhoods

Number of new and total adopters over time

[58] Test alternative policy scenarios for PV
adoption in a neighbourhood

Number of PV adoptions per year (simu-
lated vs. real data), spatial visualisation of
total adoptions

[67]
Design and test marketing strategies for
feedback devices (CO2-meter) to identify
which would be most effective

Technology and shock ventilation behaviour
adoption for different lifestyles

[66]
Identify the effect of the ‘CO2 meter’
(feedback device) on energy-efficient heat-
ing behaviour

Adoption numbers with various market-
ing strategies (awareness, give-away device,
training) and their locations

[59]
Analyse diffusion patterns of rooftop PV
under the influence of five factors on
the adoption

Number of adopters over time; spatial repre-
sentation of adoption

[60]
Explore individual and community so-
lar PV adoption under the Energy Act
in Switzerland

Installed capacity of individual and commu-
nity PV systems over time

[3]
Test consumer adoption behaviours over
time in the presence of different renew-
able energy options

Number of adopters by renewable op-
tions, restricted households, % of neighbour-
hood RE

[61]

Predict the consumer adoption of differ-
ent renewable energy models and to de-
termine the resulting impacts on energy
system performance

Utility and solar installer revenues, total
power added to the grid, total number of
adopters, number of rooftop PV and commu-
nity solar adopters over time

[62] Determine the effect of PV diffusion on
the profitability of utilities

% of buildings with installed PV, % of new in-
stallations per year, % of demand met by PV,
spatial representation of building adoption.

[71]

Observe the impact of socioeconomic
heterogeneity, social dynamics, and car-
bon pricing on individual energy-related
decisions

CO2-emissions over time; avoided CO2-
emissions by each type of behaviour (invest-
ment, conservation, switching supplier)

[51] Test the effect of solar rebates on PV adoption
Cumulative number of PV systems over time;
thematic maps with spatial distribution and
density of PV systems adopted

[63]

Determine the diffusion rate of the green
technologies under uncertainties caused
by climate change, characteristics of
adopters, and their interactions

Number of installed technologies over time,
under six different policies

[64]

Assess the impact of switching from the
self-consumer paradigm to a jointly act-
ing renewable community on adoption
rate of rooftop PV in a city district

kW installed over time, number of new
adopters per year, spatial distribution, typi-
cal daily production-consumption profile

[68]
Study user learning in authoritative tech-
nology adoption based on the case of
smart meter deployment in Leeds

Average daily electricity load curve (kW),
number of experienced users, agents’ atti-
tude and energy-saving awareness over time
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The remaining works have more exploratory purposes and are less established than
diffusion ABMs. Fouladvand et al. [72] investigate how Thermal Energy Communities
(TEC) can be formed and sustained, where agents can either join a new or existing com-
munity or decide to drop-out based on financial, technological and energy plan (e.g.,
self-consumption) evaluations. Busch et al.’s [73] model is distinguished from other models
by representing the continuous process of engagement and district-heating development
instead of instantaneous decisions (e.g., to adopt, to invest). In these studies, the output
metrics are very specific to the purpose and subject studies (see Table 2).

Table 2. Model purposes and model outputs of the selected studies—Exploratory ABMs.

Study Model Purpose Model Output

[73]

Explore the development of heat network
business models by focusing on the deci-
sions and actions of local actors in devel-
oping projects

Number of realised project by various insti-
gators (i.e., municipal, commercial and com-
munity) over time

[72]
Provide insights into factors influencing
the formation and continuation of TEC
initiatives

% of joined households (at initiation), % of
households who joined afterwards, satisfac-
tion of the households who joined the com-
munity

[74]

Explore policy scenarios and campaigns
aimed at reducing domestic energy de-
mand (i.e., economic scenarios affecting
energy prices and household income)

Total energy demand (in 2049), factors that af-
fect the demand (income & fuel price growth,
external influences)

[70]

Explore the impacts of social interactions
on weatherization decisions for house-
holds under pre- and post-weatherisation
conditions

Number of weatherized households (with
and without Assistance Program, with and
without community leader, for different
memory lengths of agents, and network char-
acteristics)

[75]

Explore socioeconomic conditions that
could support the neighborhoods’ heat
transition over time while meeting the
neighbourhood’s heat demand

Number of heating systems adopted at cer-
tain combination of time horizon for all,
changes in natural gas price and electricity
price, fraction of households that is able to
compare combined investments

[76]

Explore how group decision-making in
strata buildings could affect the heat tran-
sition in the owner-occupied share of the
housing sector in the Netherlands

Individual preferences for thermal systems at
the beginning of the simulation, group lock
out (when the Homeowner Association can’t
agree on the decision), cumulative heating
costs over time

[69]

Explore the development of the renova-
tion state of the building stock based on
renovation behaviour of different types of
homeowners

Development of overall heat demand
(GWh/a) and number of buildings renovated
in the city over time

[77]

Analyse the effect of behavioural out-
comes in different policy situation due to
the influence of energy-saving behaviour
and intentions

Descriptive statistical mean values of differ-
ent situational factors

[48]

Find the near-optimum targets among a
social network of households in order to
participate in a typical Energy Efficiency
Program (EEP)

Energy Index that changes due to the EEP or
the social interactions

[49]
Investigate participants’ related factors
that can affect short-term and long- term
effects of these programs

Short-term (right after the eco-feedback pro-
gram) and long-term (after interactions with
other agents) efficiencies of the program
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4.2. Agents

Agent is a key element in this modelling approach. Many previous studies highlight
that there is no common definition of an agent [44,78], as its properties depend on the
model’s purpose and application area. Nevertheless, many authors refer to the following
basic definition presented by [79]: “Agent is an encapsulated computer system that is
situated in some environment, and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives”. In the ODD protocol, agents are one
of the model’s “entities”, along with spatial units and the overall environment [54]. It is
due to the parallels between the agent-based modelling approach and Object-Oriented
Programming (OOP) (i.e., the ‘classes’ or its instances in OOP could be equivalent to
‘entities’ in ABM). It might lead to confusion among readers who are new to Agent-based
modelling or use different implementation tools. In the current article, we differentiate
between agents and other entities, where we refer to “agents” as autonomous entities that
can make decisions (i.e., implement certain algorithms) and interact (i.e., obtain information
from its environment or other agents) in order to reach its objectives.

Most of the agents in the selected studies are “households” (15 out of 25) and three
studies also denote them as “energy consumers” [3,68,71] (see Table 2). Since most of these
studies model the adoption of PV or other technologies, “households” are most common
decision-makers in this regard. Majority of these models limit their agent population to
the households that live in a single-family building, because installation of renewable
energy in other types of housing (rented apartments, multi-family housing) is subject
to additional legal or physical constraints. However, few models are exceptions: [3,61]
differentiate agents into tenants and house owners, where only house owners can buy and
install PV and tenants can choose from green electricity or community solar program; Nava
Guerrero et al. [76] attempts to represent group decision-making regarding heating system,
insulation or RE system installation in multi-family houses. In other models, building (or
building block) owner [60,69] and building agents [59] can make building-level decisions,
i.e., adopting PV or renovation. The rationale of these models is that there is only one
building owner that can make such a decision.

While the above-mentioned studies focus predominantly on one type of stakeholder,
there are few models that involve different types of stakeholders as agents [73]. For
example, in [73], instigator agents (i.e., local authorities, commercial, and community-based
developers) are driving the development of projects, whereas “projects” are management
agents responsible for carrying out actions on behalf of their parent instigators [73]. In
models with multiple types of stakeholders, it is becoming more challenging to draw a
line between agents and other entities, e.g., as in [47], as all of them are essentially realised
as classes. However, one can observe the tendency to call human-like entities “agents”,
e.g., instigator agents, and passive entities like grid cells and projects [73] as just “entities”.
Figure 4 summarises the types of agents we identified in the reviewed models.

The essential part of ABMs is decision rules that govern the actions of agents. Decision
rules are realised with the help of attributes that describe agents [43]. Moreover, interaction
and social influence play a significant role in agent’s decision making. Hence, the following
subsections give an overview of the decision-making rules and agent interaction strategies
implemented in the reviewed models.

4.3. Agent Decision Rules

Decision-making rules (also called behavioural rules, decision rules or models, or
just “rules”) are methods by which agents’ dynamic states can change their value and
translate into agent action [43]. Behaviour is the overall sum of agent actions and state
changes [43]. However, authors often use the terms “actions”, “behaviours” and “decisions”
interchangeably [80]. The ODD protocol suggests to include a detailed description of
individual decision-making [81]. The information such as identifying subjects and objects,
the method, the uncertainty, and other aspects must be part of this documentation [81].
However, in practice, such protocols are rarely adhered to by the authors.
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Figure 4. Agents in the reviewed models.

The articles describing the diffusion ABMs are more explicit about the decision-making
algorithms. In such models, agents decide to adopt or not adopt (i.e., to invest or not invest
in a certain technology or to perform a certain energy-related action) based on specific
rules or algorithms. Decision rules range from simple ad-hoc rules to most elaborate
models, such as psychosocial or cognitive models [43]. The classification of existing de-
cision models has been previously done by [80] for human agents in ecological ABMs,
by [56,57] for agents in ABMs innovation diffusion and by [43] for ABMs of socio-technical
systems. The ODD+D by [81] clusters agent decision algorithms based on the nature of the
underlying assumptions:

• theory-based (e.g., microeconomic and psychosocial models)
• empirical-based (e.g., statistical regression models, heuristic rules),
• ad-hoc rules (i.e., dummy rules and pure assumptions that are not based on theories

or observations),
• combinations of the above methods (see Figure 5).

Figure 5. Types of decision-making frameworks.

Most of the diffusion ABMs cited in this article apply theory-based decision models,
namely, psychosocial (also called “socio-psychological” or “cognitive”) and microeconomic
models. Psychosocial models are based on social psychology theories that assume that hu-
man decisions are based on psychological rules, rather than on rational economic rules. The
most frequently used psychosocial theory in the selected models is the Theory of Planned
Behaviour (TPB) by [82]. It states that human behaviour results from the intention to
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perform the behaviour; individual attitudes, subjective norms, and perceived expectations
can influence the agent to perform such behaviour [83]. Usually, the more favourable these
three aspects of human psychology are, the stronger is the person’s intention to perform
a certain behaviour [83]. The standard form of TPB is static, i.e., it describes how these
three components are translated into intention and action at a given time. The models
by [51,66,67] are examples of implementing this theoretical model. Other psychosocial
models including “consumat” model by [84] in [68], Norm Activation theory by [85] in [71],
the goal-framing theory by [86] in [74], and Influence, Susceptibility, and Conformity
Model by [87] in [49], are also used. Several models rely on models from microeconomic
or network theories, namely on innovation diffusion models. Azar & Al Ansari [47] draw
on the opinion dynamics models by [88–90] to represent the effect of energy feedback
interventions among building residents.

Another class of frequently used agent decision-making model is the empirical-based
heuristic models. They are described as models “not built on any grounded theories” and
“having the impression of being ad-hoc” [57]. Agents are often assigned rules derived from
empirical data, and also model parameters are selected such that results match simulated
output against a real-life observation [57,80]. They might not represent the process of
agent decision-making very accurately or realistically, but have the advantage of being
easy to implement and to interpret [57]. Heuristic decision rules can be implemented
in various ways. Several modellers favour data-driven approaches, thus, implementing
machine learning algorithms, such as logistic regression models [59] and artificial neural
networks [77]. In this approach, several sets of factors that can affect the adoption of PV or
energy-saving behaviour, given that data about those factors are available, are tested. The
more qualitative approach is followed by [72,73], who created the decision rules relying on
the stakeholder’s expertise.

Some models rely on ad-hoc rules without any validated theory or empirical ground-
ing. Huang et al. [70] derives the agents’ decision logic from relevant secondary literature
and assumes that social influence plays a great role in deciding to adopt weatherisation of a
dwelling. In this model, agents decide between adopting weatherisation with the Weather-
ization Assistance Program or without and it depends on several attributes, memory length
about the energy costs, current satisfaction level and information level about the assistance
program. Mittal et al. [3] developed a decision model similar to [51], but do not apply the
TPB. The agents assess the affordability of PV options (i.e., buy, loan, community PV) and
the attitudinal factors in the corresponding submodels and make the adoption decision
based on certain if-else type rules. The remaining studies are summarised in Table 3.

4.4. Agent Interaction

Emergent phenomena to be observed via ABM is the result of not only individual
decision-making but also agent interactions [21,78]. The behaviour of agents is often
influenced by the information fed from its environment, including other agents. In the
ODD the authors differentiate conceptually between ’sensing’ and ’interaction’: the first
concept defines what state variables of which other individuals and entities can an agent
perceive; the latter is the direct (via communication) or indirect (e.g., via a common resource)
interaction between agents or between agents and other entities. However, in practice it is
challenging to differentiate between those. For example, human agents’ social influence
(also known as ‘peer effect’ or ‘neighbourhood effect’) can be represented using either (or
even both) of those concepts, as it seen from the pool of the reviewed papers. Hence, in
this work, we consider ‘sensing’ as one of the ways of representing interaction (as depicted
in Figure 6).

In the selected studies, one must, first of all, differentiate between studies where agents
can interact and influence each other and those where agents do not interact. Only two
studies have not considered agent interactions in any way [62,69]. In [73,77], interactions
are considered as important, however, treated in an abstract and implicit way. Table 3
shows how interactions are represented in each reviewed study.
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Figure 6. Ways of implementing ’interactions’ and relevant modelling choices.

The majority of studies which include agent interaction agents are often placed in a
network structure, often called “social network”, that imitates the relationship between
agents, through which they can exert an influence upon each other based on certain rules
(i.e., “peer influence” or “social influence”). The resulting structure allows modelling the
social interactions of agents, resulting in the spread of desirable, or non-desirable, ideas,
products, or behaviours [91,92] (also called “opinion dynamics”). One common way of
doing so is through making an agent’s decision dependent on other agents’ (either selected
group of agents or all agents) choice or decisions.

A social network typically consists of two components: individuals or agents (rep-
resented by nodes) and social connections (represented by edges or links). It can also
have various topologies, e.g., small-world network, and created by various algorithms,
e.g., Watts-Strogatz algorithm. Some modellers test the effect of varying the topology and
other characteristics (e.g., number of links per node) of social networks [47–49]. A modeller
should also specify between which agents interaction (or ‘sensing’) occurs, between all
agents or certain group of agents or between agents and other entities (e.g., grid cells). In a
social network, usually, agents that have a link can interact or the influence of connected
agents is more significant compared to those with whom the agent doesn’t have one. This
assumption is based on the empirical findings: friends and family have a larger impact
on each other’s behaviour than strangers [66,67]. In some cases, agents interact based on
similarity (also called ‘homophily’) [3] or geographical proximity [51] (‘neighbour effect’).

Another choice that a modeller should take is regarding the frequency of interactions.
Huang et al. [70], for example, let agents that are linked with each other interact every
time step, whereas “strangers” (without direct links) interact with a probability of 0.10.
The “strength” of the influence can also be characterised in various ways. The most used is
the opinion dynamics model by relative agreement algorithm, where agents with similar
opinions have a stronger influence on each other than those whose opinions are more
polarised [93]. To sum up, there are usually four key things a modeller should consider
when characterising an interaction of agents, as we summarise in Figure 6.

4.5. Technologies and Policies Modelled

This subsection discusses the technologies and policies that are in the scope of the
reviewed ABMs. Similar to [36], we identify which technologies and policies are explored
using ABM. However, since the selected studies are not narrowed down to studies of
technology diffusion only, it gives a broader overview of the discussion subject.
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Table 3. Agents, decision frameworks and representation of agent interaction.

Study Agents Decision Framework Interaction

[47] occupants and
buildings

Theory-based: several
opinion dynamics models

Opinion dynamic models (information
exchange within own social networks
with following topologies: small world,
scale free, and random)

[50] households Theory-based: linear
threshold theory

Opinion dynamics; Barabási Albert
model (scale free network)

[58] households Psychosocial: TPB Opinion dynamics; Watts-Strogatz small-
world network

[67] households Psychosocial: TPB
Social influence changes the Subjec-
tive Norms (TPB); Watts-Strogatz small-
world network

[66] households Psychosocial: TPB
Social influence changes the Subjective
norms (TPB); Watts-Strogatz small-world
network

[59] buildings Empirical-based: Logistic
regression

‘Sensing’ in a geographic proximity (i.e.,
for every additional neighboring adopter
in <100 m, buildings would be more
likely to adopt PV)

[60] building block
owners Psychosocial: TPB Social influence changes the Subjective

norms (TPB)

[3] households Ad-hoc rules

‘Visual interactions’ (i.e., sensing) and
information exchange based on similar-
ity within own social networks (Watts-
Strogatz small-world network)

[61] households Ad-hoc rules Interaction within and outside of fixed
social networks with a probability

[62] building own-
ers/buildings Ad-hoc rules None

[71] energy
consumers

Psychosocial: Norm
Activation Theory

Simple opinion dynamics model in a
fixed social network

[51] households Psychosocial: TPB

Opinion dynamics via Relative Agree-
ment (RA) algorithm; Small World net-
work; interaction based on geographic
proximity

[63] households Psychosocial: TPB

Opinion dynamics via RA algorithm;
Small World network; interation in lo-
cal (based on the physical distance) and
global networks

[64] households Psychosocial: TPB Opinion dynamics via RA; Small World
network; interaction based on similarity

[68] energy
consumers Psychosocial: Consumat Opinion dynamics; Small world network

[73]
instigators,
projects and
grid cells

Empirical-based:
stakeholder expertise Abstract interpretation of ‘interaction’

[72] households Empirical-based:
stakeholder expertise

Opinion dynamics in a small-world so-
cial network

[74] households Psychosocial:
Goal-framing theory

Interaction based on similarity in a social
network (no further details).
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Table 3. Cont.

Study Agents Decision Framework Interaction

[70] households Ad-hoc rules Barabási Albert model (scale free net-
work)

[75] households Ad-hoc rules ‘Sensing’ of group-decisions in the neigh-
bourhood

[76] households Ad-hoc rules ‘Sensing’ of group-decisions in the neigh-
bourhood

[69] building
owners Ad-hoc rules None

[77]

urban residents,
policy-makers,
management
agents

Empirical-based: artificial
neural networks Abstract interpretation of ‘interaction’

[48] households
Theory-based: Influence,
Susceptibility, and
Conformity Model

Opinion dynamics, social network: Ran-
dom, Small-world, Scale-free

[49] households
Theory-based: Influence,
Susceptibility, and
Conformity Model

Opinion dynamics, social network: Ran-
dom, Small-world, Scale-free

4.5.1. Technologies

From the 25 reviewed models, technologies are relevant to 20, while the rest have
not modelled technology explicitly. Within these 20 studies, PV system, and specifically,
diffusion of PV is the most frequently explored topic, as there are ten studies which focus
on that (see Table 2). Majority of these studies consider the diffusion of a single technology:
rooftop PV [50,59,60,62,64], feedback device (CO2 meter) [66,67]. In some cases, there could
be several options are available for agents: [3,61] let agents choose between buying PV via
cash payment of a loan, adopting community solar (i.e., renewable energy community) or
opting for green electricity; Ramshani et al. [63] make agents choose the optimal solution
for their rooftops—either rooftop PV or green roof; Nava Guerrero et al. [76] introduces
the combinations of technologies as “technology state” of a household (i.e., combination
of heating system, insulation level, and appliances). Building insulation or renovation
is addressed in three studies [69,70,75]. Most studies are interested in the adoption of
technologies by households: under what conditions are households willing to adopt these
technologies, how does it affect their subsequent energy consumption, etc. Zhang et al. [68]
call the latter “learning” and observes how the installation and the subsequent interaction
with this technology make them decrease their energy consumption.

Finally, the five studies focus on the energy-related behaviour that is not directly linked
to a single technology. For example, the works by [47–49,77] investigate how feedback
interventions could be improved, so that building occupants consume even less energy.
Although the consumption of energy practically occurs as a result of interaction with certain
technology (e.g., heater, shower, computer), such details are ignored in these models in
order to focus on the macro-level phenomena, such as the interaction of occupants in their
network [47]. Similarly, [71] examined the effect of several actions (i.e., investment, conser-
vation, switching) in different socio-political framework conditions without emphasising
the technological aspects. For a more detailed description of the review articles regarding
ABMs refer to Table A1 (Appendix A).

4.5.2. Policies

The selected 25 works can be the first split into those that explicitly model policy
interventions (11) and those that do not (14). The policies covered in the 11 models are of
two major types: ones that promote investment for energy-efficient technology (PV, DH,
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feedback device, etc.) and those that encourage energy-saving behaviour. The examples
of the first type of policies are those that stimulate PV system investments [51,60,63,64],
assistance programs for weather-proofing [70], and promotional campaigns for feedback
devices [67]. The examples of the interventions for stimulating energy-saving are energy
feedback mechanisms [47]. Beyond these clusters, Niamir et al. [71] introduces several
carbon emission price scenarios to see how it affects the emissions caused by household en-
ergy consumption. Busch et al. [73] explore various ways of encouraging different district
heating (DH) system developers and found out that creating policy specific to the motiva-
tions and capabilities of different actors, enabling networking and learning, and supporting
all stages of the decision process is crucial for developing DH network successfully.

The prevailing share of the papers do no implement policies explicitly. They rather
explore various socio-economic or other aspects that can affect the policy design or help
policymakers make decisions or interpret the results of their model for policy-making [68].
For example, Nava Guerrero et al. [75] investigates the socioeconomic conditions, such
as value orientation of the population, gas price changes, the time horizon for investment
evaluation, that support the transition to the natural gas-free economy.

The detailed description of how policies are implemented in the models are provided
in Table A2 (Appendix B).

4.6. Spatial and Temporal Aspects

Identifying the spatial and temporal scale of the models is important in order to un-
derstand the system modelled. Moreover, certain patterns and processes can be dependent
on the scale [94] and, thus, they need to be clearly stated. By spatial scale, we mean “geo-
graphic scale”, defined as a research area’s spatial extent in a study [94]. The geographic
scale of the models considered range from “group of buildings” [47] to an entire city, such as
Hamburg [69]. 16 studies describe community, or district, or neighbourhood-scale models,
while nine studies are in city-scale [51,67–69,73,77]. Although these articles present the
models as having been applied to specific geographic scales (i.e., via case studies), it is
difficult to say if they can be scaled up or down, as it might depend on many factors.

The chosen scale in ABM usually determines the number of entities (i.e., agents)
covered [33]. This can be limited by computers’ processing capacity, especially if decision
algorithms are sophisticated, much data is used, or a considered city is very large, e.g., like
in [59]. Therefore, the majority of selected models opt for district or neighbourhood scale.
Those whose models are in city-scale focus on smaller cities of about 100–150,000 [62,66,67].
Only one model has modelled a city of approx. 174,000 households and the simulation had
to be carried out on a supercomputer [51]. There are also such models whose scale depend
on the topic of research. For example, DH network development is usually city-scale
phenomena [73], the development or properties of energy communities are explored on a
neighbourhood or district level [3,72].

Although traditionally ABMs have not focused on the geographic environment and
spatial representation, more and more models are striving to represent space explicitly and
realistically (e.g., using GIS techniques) [95]. According to [95], models can have three levels
of spatial explicitness: (1) implicit and non-geographic representation of space (e.g., social
networks that are only partially tied to space); (2) explicitly represented but abstract in how
it maps onto reality (e.g., Schelling’s segregation model); (3) explicit and realistic spatial
representation. Among the reviewed models, only a few are spatially explicit and realistic.
For instance, [51,58,59,64] join building information with actual geographical locations of
those buildings and have a clearly defined boundaries of the study area. The rest of the
models integrate spatial properties in different, semi-abstract ways. For example, in [3,61]
agents in the same community, i.e., neighbours, are defined by a community ID, and each
agent in a community becomes aware when somebody in that community installs a PV.

The temporal scale is a duration of a process observed, i.e., time horizon between
the start and end of a single simulation run. Temporal resolution represents the unit
of a time step in a considered model. According to temporal scale and resolution, the
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reviewed studies have time horizons of several years and resolutions of 1 month or three
month-periods. These models have large simulation horizons and resolutions because
the behavioural dynamics captured in those models occur in lower temporal resolutions.
For example, in real life, people’s attitudes do not change in a matter of hours. Such time
horizons and resolutions are characteristic of policy-guiding models, aiming to observe the
effect of a policy intervention over the years. In their models, the authors [51,59] choose the
years when adoption data are available, which makes it possible to improve their empirical
model in such a way that the simulated outputs fit the real adoption data.

4.7. Empirical Grounding

Empirical grounding of ABMs is becoming more important, especially for models that
aim to reflect a specific real-world situation and provide decision support for policymakers
and stakeholders [57,96]. As opposed to hypothetical or theoretical (or highly abstract)
ABMs, empirical ABMs use real-life data to parameterise models, initialise simulations,
and evaluate model validity [57]. Modellers try to improve the realism of agent decision-
making algorithms by consulting with system-relevant actors [72,73] or relying on empirical
data [59,64,66], e.g., geospatial information on buildings. It is becoming more feasible due
to the contemporary trends we observe the availability of high-resolution data sets, the
spread of open data culture in science, advances in data analytics, machine learning, and
computational power. Therefore, we aim to assess for what purpose, what kind of, and
how empirical data is used in the selected ABMs of district energy systems. By empirical
data, we mean both qualitative and quantitative data based on observation or experiment.

The review by [36] highlights that empirical data in ABMs are used for two general
purposes: (1) to form the agent decision-making algorithm; (2) to determine the specific
properties of technologies, policies, etc. that an agent can access to use in their decision
rules. In the first case, empirical data from surveys, statistical data (i.e., census), interviews,
and other sources are used to determine the attributes (both which attributes and their
values) of the agents that are further incorporated in a decision-making framework (as
described in Section 4.3). Jensen et al. [66] describe how they utilised empirical data for
creating household agents and their social network in the appendix of their article. Building
data (i.e., floor area, spatial information, etc.) are connected to agents, and the commercial
geo-marketing data defines the “lifestyle” of agents, which further define their affinity for
technology and behaviour adoption. Social influence is modelled by introducing a social
network based on interviews with households. The second purpose of integrating empirical
data involves using statistical data and secondary literature to define other, for example,
scenario-relevant information or model parameters (i.e., global parameters). For example,
Azar et al. [47] use building energy consumption survey data to initialise the model-level
parameter “building energy intensity” and the number of agents in each building. However,
it is not easy to determine for all models for what the specific data is used, as authors
do not sufficiently describe it. Sometimes the authors refer to another article for detailed
information about surveys or stakeholder interviews [73,74].

In general, there are three processes in model building where the use of empirical data
make models more reliable and realistic: parametrisation, calibration and validation [37].
The parameterisation is the process of connecting model and target system (i.e., the real
system being modelled) via assigning the set of parameters and their values to enable sim-
ulation [96]. In line with observations of [37], only a few modellers explicitly differentiate
their modelling process into these three phases. Moreover, if calibration and validation
are somewhat known to data-driven modellers, the process of parameterisation is not
recognised as much. Among the selected models, only [66,67] describe parameterisation in
more detail: they select the parameter values to reflect the empirical patterns of ventilation
behaviour adoption derived from survey data.

Calibration is the adjustment of parameters to ensure that model output matches the
relevant empirical data, e.g., in a specific location and application [37]. The difference
to validation is that the parameters are tuned to match a specific context (i.e., location,
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time), which does not necessarily mean that the model will exhibit accurate results and be
predictive upon application in another context. To achieve that it has to be first validated
on a separate set of data independent of data used for calibration [57]. The following
models describe how they calibrated their models: [62] calibrates the parameters of the
logistic function governing the adoption of PV based on the secondary literature and
publicly available data; Ramshani et al. [63] performs the partial calibration (i.e., only of
the financial submodel) based on the values reported in the literature, experts’ opinions
and publicly available datasets; Jensen et al. [66] provides an indirect calibration with three
empirical patterns, the same used for parameterisation in [67]. As for the remaining models,
some do not differentiate between validation and calibration [60], some call calibration
“model fitting” [51], but the majority do not mention calibration at all. Often authors
mention the lack of data for calibration as their limitations [63,73].

Validation aims to achieve the matching between the observations of the models and
reality. It should not be confused with “verification”, which is the process of making sure
the model implementation is carried out correctly with respect to the conceptual model [97].
As ABM is a highly multi-disciplinary and flexible framework, its validation is a highly
debated topic. For more detail, we suggest referring to the works of [57,98] that explore
this topic in more detail. Our observations are mostly limited to the validation processes
provided in the selected works, the majority of which either do not mention validation,
state it as a limitation and future task, or have insufficient information on the validation.

Among the models which consider validation, there are two following generic ap-
proaches. The first approach is an aggregate behaviour validation, mainly based on statisti-
cal data fitting. Rai & Robinson [51] and Lee & Hong [59] applied this way of validation,
because they had empirical data on the number of adopters in a given location, over a
certain period. Lee & Hong [59] use the Wald test (i.e., Wald Chi-squared test) which tests
the significance of a set of independent variables in a statistical model. Rai & Robinson [51]
first calibrate the six model parameters by an iterative fitting via historical adoption data
and then validate the model in terms of predictive accuracy, i.e., comparing predicted
adoption with empirical adoption level for the period starting after the last date in the
calibration dataset. Also, they carry out temporal, spatial, and demographic validation [51].
Another group of modellers [47,49,73] pay more attention to the validation of social pro-
cesses and, by drawing on the work of [99], offer conceptual, operational or structural, and
technical validation (by this, [47] refer to verification). Conceptual validation is the process
of determining that the theories and assumptions underlying the conceptual model are
correct [99] and usually achieved by basing the model on validated concepts [47,49] or the
insights from stakeholder workshops [73].

5. Discussion and Conclusions

This article reviews the state-of-the-art ABM approaches in the context of urban energy
systems. By analysing a pool of 25 carefully selected research articles, we observe some key
domains where ABMs are used to simulate agent decisions and stakeholder behaviours in
urban energy systems to guide policy design. The added value of this work is in the deep
analysis of the preliminary work in agent-based modelling energy transition of district and
neighbourhoods for the purpose of policy testing; understanding the key aspects of ABM
foe energy system modelling; and identifying gaps and future research streams.

In the district energy systems domain, the use of ABM for policy implications is
becoming more prominent. The ability of ABMs to model complex interactions of inde-
pendent agents enables the modellers to observe the broader implications of a specific
policy design. The model structure, agent types, decision models, spatial and temporal
scales are determined by the goals and the questions the ABM seeks to answer. Policy
design studies are very versatile when it comes to specific purposes: from evaluating
particular measures that stimulate the adoption of technologies, over studying the effect of
social connectedness of households, to exploring novel concepts, such as the formation of
thermal energy communities. It is important to reiterate that the origin of ABMs was in
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social and natural sciences. When ABMs become popular in other scientific fields, such
as energy systems research, scientists try to adapt the original ABM concepts to fit their
specific purposes. Such adaptations are often study-specific, and therefore, some essential
modelling details may get lost or unclear to the audience without careful and standard-
ised documentation. In this regard, the ODD protocol provides an essential standardised
framework for model documentation.

Our analysis shows tremendous potential in ABMs to help policymakers make bet-
ter policy decisions, especially in the upcoming years of post-covid recovery. With the
Next Generation EU plan that pays a great attention to fair climate transition and funding
research that supports such just transition, there’s a chance to accelerate local neighbour-
hoods’ and districts’ decarbonisation. This is when agent-based models can help a great
deal and be used to test various “what-if” scenarios.

The main challenge for future ABM applications in district energy systems is whether
the ABM concepts can evolve and scale-up to represent the complexity of agents’ decisions
and interactions in a smart and decentralised energy system. Prosumers, i.e., those who self-
consume PV energy and sell the surplus contribute vastly to energy transition (especially in
countries with higher influx of solar energy) [100]. There are still many gaps and potentials
in studying how to encourage the transition of consumers towards prosumers. ABM is
useful in this regard, as it can represent different needs and interests of heterogeneous
prosumers. That is something that no other modelling paradigm can offer.

Most of the reviewed ABMs deal with the various questions around adopting energy-
efficient or renewable energy technology. These adoption decisions represent single-step
investment decisions dependent on one decision-maker. However, there is a vast field of op-
portunity when it comes to exploring phenomena that involve multi-level decision-making
and interactions of various stakeholders. Building stock retrofitting and development
of district heating system are examples of such phenomena. Though a few exploratory
ABMs investigate these topics, there are no models that comprehensively study retrofitting
decision-making. The decision-making process and stakeholders will be different depend-
ing on whether we are studying social housing [101] or owner-occupied or rental sectors.
These differences in decision-making of owner-occupiers, landlords or housing associa-
tions, their implications and how to use them to tailor policies should be investigated
further too. Furthermore, the studied literature mainly deals with the energy issues of
residential neighbourhoods and not commercial or industrial entities. Therefore, we also
find it an exciting research avenue to explore whether ABMs, with their unique abilities,
can answer some of the challenging energy transition questions related to commercial and
industrial stakeholders.

Empirical data can be used to parameterise agent decision-making and provide con-
textual information to the model. Based on our analysis, we find significant gaps in the
use of empirical data. Only a handful of reviewed models have made an explicit effort
to clearly describe the use of data for parameterisation, calibration, validation, and veri-
fication purposes. Agent and model level parameter selection is often not given the due
respect and attention it deserves. As the energy system complexity and, hence, the model
complexity increase, careful parameterisation can significantly lower the computational
cost. Lastly, careful integration of empirical data for model calibration, validation, and
verification purposes significantly improves our confidence in the model and the results
for practical purposes.
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Appendix A. Previous Review Articles

Table A1. List of previous review articles.

Study Focus of the Review Type of Review Number of Reviewed
Papers Covered Aspects Key Conclusions

[102]
Application of ABM in the built environ-
ment domain (building energy and indoor-
environmental performance)

selective 23

Motivational background, approach for rep-
resentation of both people (and their be-
haviour) and environment (e.g., case stud-
ies), implementation tools, state of ABM de-
velopment and its future directions in the
domain of buildings’ energy and indoor-
environmental performance

Motivation of the studies analyzed: to re-
alistically capture the interactions between
occupants as well as the interactions be-
tween occupants and their surrounding
built environment.

[37] Application of ABM in studying climate-
energy policy selective 61

Reasons for using ABM, number and types
of markets represented (e.g., transportation,
electricity, financial services), empirical ba-
sis, time horizon, agent types and numbers,
types of bounded rationality, social inter-
actions and networks; link between model
features and policy results

3 main themes identified: focusing on poli-
cies that (1) directly trigger emissions re-
duction, (2) stimulate the diffusion of low-
carbon/energy products and technologies,
and (3) encourage energy conservation in
other ways. Research gaps are identified.

[35]
Application of ABM in the built environ-
ment domain (building energy and indoor-
environmental performance)

systematic 62

Thematic analysis from a multi-level per-
spective of energy transitions; Modelling
complexity in energy transitions (complex-
ity categories).

6 topic areas identified: Electricity Market
(25), Consumption Dynamics/ Consumer
Behaviour (12), Policy and Planning (9),
New Technologies/ Innovation (7), Energy
System (6), Transitions (3). Application
in Policy and Planning is very important
(drives energy transitions).

[36] Adoption of energy efficient technologies
by households systematic 23

Technologies studied, barriers to the adop-
tion of energy efficiency, policy measures
that are explored using the ABMs, theories
used to describe decision making of house-
holds and the use of empirical data

Modelled policies: subsidies, regulation
and taxation, technology ban, household
adoption obligation and various informa-
tion campaigns. Many of the models are
rooted in the TPB, use utility functions,
and/or use empirical data.
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Table A1. Cont.

Study Focus of the Review Type of Review Number of Reviewed
Papers Covered Aspects Key Conclusions

[22]

Application of ABM for understanding
technology diffusion of residential energy
efficient technologies and to evaluate poli-
cies’ effects on adoption.

selective -

Types of ABM approaches (both theoretical
and empirical); applicability and limitations
of ABM for modelling of the uptake of en-eff
tech-s in energy sector

Key components of ABM for describing the
adoption and key decision when intending
to model the uptake of energy-efficiency
technologies. ABM can model technology
diffusion with at least the same accuracy
as equation-based modelling when appro-
priately parameterised based on empirical
data, calibrated based on macro-level data,
and validated using sensitivity analysis.

[17]

ABM work in the area of consumer energy
choices, with a focus on the demand side
of energy to aid the design of better poli-
cies and programmes

selective, critical about 60
Limitations of non-ABM approaches, frame-
work for describing the essential features of
ABM, use of ABM in practice

Two major types of energy-demand ques-
tions that ABM is well-suited to answer:
those related to policy design and evalu-
ation, and those related to system design
and infrastructure planning.

[44] Application of ABM for analysing smart
grids from a systems perspective selective 23

How ABM can be used to analyse electric-
ity systems; typology of agent-based re-
search of electricity systems; review of litera-
ture specifically studying smart grids using
ABMS techniques is reviewed

ABM is still a limited field of research, but
can deliver specific insights about how dif-
ferent agents in a smart grid would interact
and which effects would occur on a global
level. Valuable input for decision processes
of stakeholders and policy making.

[45]
Overview of AB electricity market mod-
els and present the most relevant work in
detail.

selective 31

Comparison of current AB electricity mod-
els, Methodological questions: Agent learn-
ing behavior, Market dynamics and com-
plexity, calibration and validation, Model
description and publication.

Choice of specific learning algorithms,
more careful and well documented vali-
dation and verification procedures as well
as the appropriate publication of details of
concrete simulation models are crucial for
the further development of AB electricity
market modeling.

[103] Study of the ABM simulation packages for
electricity markets selective 4

Overview of electricity markets, general-
purpose ABS tools to introduce some back-
ground of ABS, detailed study of four pop-
ular ABS packages for Electricity Markets
(SEPIA, EMCAS, STEMT-RT, NEMSIM).

ABS packages are divided into 2 types:
toolkit (Netlogo, Repast) and software
(AnyLogic, AgentSheets)
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Appendix B. Technologies and Policies

Table A2. Technologies and policy scenarios modelled using ABM.

Study Technologies Decision Regarding
Technology (Policy) Scenarios

[47] No technology Energy-saving in
buildings

No policy; insights for energy feedback
methods, for any building stock

[50] PV Adoption No policy

[58] PV Adoption

Subsidies for low-income and
high-income classes; a discount voucher
proposed by PV sellers; an information
campaigns on environmental issues & on
adopting PV

[67] Feedback device
(i.e., CO2-meter)

adoption and resulting
energy-efficient heating
behavior

Promotion-type policies (i.e., marketing
strategies) to support product diffusion:
giving away, lending out and raising
awareness about CO2-meter/feedback
device.

[66] Feedback device
(i.e., CO2-meter)

adoption and resulting
energy-efficient heating
behavior

No policy; incentives and financial
supports for PV systems are included in
economic factors

[59] PV Adoption No policy

[60] PV Adoption

“Self-consumption Communities”:
building owners can install PV and sell
the electricity to their tenants at prices
lower than the retail price of electricity

[3] PV Adoption

No policy; different renewable energy
models (e.g., solar community, buy/lease
PV, etc) with different conditions (price,
time, etc) for agents to adopt

[61] PV Adoption

No policy; different renewable energy
models (e.g., solar community, buy/lease
PV, etc) with different conditions (price,
time, etc) for agents to adopt

[62] PV Adoption No policy

[71] PV Adoption Carbon price as a climate policy scenario

[51] PV Adoption
Rebates for low-income households (i.e.,
households in the bottom quartile of
wealth, proxied by home value).

[63] PV, green roof Adoption Investment Tax Credit, promotional
campaigns

[64] PV Adoption

Self-consumption scheme (PV electricity
is sold at market price) and
Citizen/Renewable Energy Community
scheme (share the electricity produced by
a single PV unit with many citizens, e.g.,
in a condominium)

[68] Smart meter

learning after SM
adoption,
energy-saving
behaviour

No policy; insights for facilitation of
learning following the smart meter
roll-out
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Table A2. Cont.

Study Technologies Decision Regarding
Technology (Policy) Scenarios

[73] DH network project development

Forcing the Local Authorities to have a
heat strategy; increasing the availability
of capital finance for all DH project
instigators; support community
instigators, i.e., include proactive LA
(Energy Leader) and support at every
stage of the DH development

[72]
Renewable
heating
technology

joining or exiting a
thermal energy
community

No policy

[74]
Electric
appliances,
insulation

purchase No policy described, but the model is
capable

[70]

Weather-
proofing
(“weatheriza-
tion” for winter)
technology

Adoption

Publicly funded Weatherization
Assistance Programs that are intended to
help low-resource residents improve the
energy efficiency of their homes

[75]
Insulation,
renewable
heating

investments in new
technology

No policy; changes in natural gas price
and electricity price are taken as proxies
for market forces and policies

[76]
insulation,
renewable
heating

investments in new
technology

Fiscal policy (i.e., linear growth of
natural gas taxes, taxes on electricity, and
regulated price of heat from networks)
and disconnection from gas network.

[69] Renovation
technology renovation decision No policy

[77] No technology energy-saving
behaviour

Range of external situational factors are
tested: social norms related to energy
saving, popularization of economic
energy-saving policies, etc.

[48] No technology energy-saving
behaviour No policy; insights for EEP

[49] No technology energy-saving
behaviour

No policy; insights for normative
interventions (ecofeedback programs)
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