
Citation: Paprocki, M.; Erwiński, K.

Synchronization of Electrical Drives

via EtherCAT Fieldbus

Communication Modules. Energies

2022, 15, 604. https://doi.org/

10.3390/en15020604

Academic Editor: Federico Barrero

Received: 27 November 2021

Accepted: 9 January 2022

Published: 15 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Synchronization of Electrical Drives via EtherCAT Fieldbus
Communication Modules
Marcin Paprocki *,† and Krystian Erwiński †

Faculty of Physics, Astronomy, and Informatics, Institute of Engineering and Technology,
Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland; erwin@umk.pl
* Correspondence: marcin.paprocki@umk.pl; Tel.: +48-56-611-2435
† These authors contributed equally to this work.

Abstract: Synchronization between devices (in particular drive systems) is paramount for multi-axis
motion control systems used in Computerized Numerical Control (CNC) machines, robots, and
specialized technology machines used in many areas of the manufacturing industry. EtherCAT is an
Ethernet-based network that is one of the most popular industrial networks for multi-axis motion
control systems. EtherCAT is standardized in the IEC 61158 and IEC 61784 standards. In the article,
an EtherCAT communication network for electrical drives is presented. The article focuses on the
synchronization in the EtherCAT network consisting of one master device and slave servo drive
devices. Special attention is given to synchronization mechanisms in EtherCAT, such as distributed
clocks in slave servo drives devices. For this purpose, a laboratory stand was built consisting of
two prototype servo drive devices with BLDC motors equipped with EtherCAT communication
modules. A description of the working developed EtherCAT communication modules is given.
Authors in communication modules ware used an EtherCAT Slave Controller (ESC) chip (AX58100)
to implement lower EtherCAT layers. EtherCAT application layer was implemented in software
form on a 32-bit microcontroller, based on CANopen over EtherCAT (CoE) CAN in Automation 402
(CiA402) profile. This research’s main contribution was to show the time dependencies regarding
synchronization in terms of data flow in the EtherCAT communication stack in slave servo drive
devices. The research results showed that the synchronous operation of drives is mainly influenced
not by the mechanism of distributed clocks that ensures synchronization in the EtherCAT network
but the implementation of the highest layer of the communication stack in slave servo drive devices.
Experimental results are presented that prove the modules’ adequacy for use in high-performance
motion control systems.

Keywords: fieldbus; communication network; distributed clocks; EtherCAT; CiA402; motion control;
multi-axis; synchronization

1. Introduction

Electrical drives are used in most areas of industry. Many applications require precise
synchronization between mechanical axes controlled by electrical drives. These are CNC
machines, robots, and specialized technology machines. In these applications speed and
position of each axis has to be precisely matched to the speeds and positions of other axes in
the machine in each time step. In the past, such synchronism was achieved by mechanical
means (for example, cams), and each axis was controlled by analog signals. Nowadays, a
centralized approach is common [1–6]. The central controller computes all axes’ desired
positions and velocities in the machine and sends them to local axis controllers (usually
servo drives) in constant time intervals.

In modern industrial automation, communication fieldbuses are commonly used to
connect many types of devices such as controllers, input/output modules, Human-Machine
Interface (HMI) devices, sensors as well as electrical drives. An industrial fieldbus is a

Energies 2022, 15, 604. https://doi.org/10.3390/en15020604 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15020604
https://doi.org/10.3390/en15020604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2687-1181
https://orcid.org/0000-0001-6899-1785
https://doi.org/10.3390/en15020604
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15020604?type=check_update&version=3

Energies 2022, 15, 604 2 of 16

network solution to provide the cyclic exchange of process data in industrial control applica-
tions. Data exchange in systems of these kinds of devices requires addressing heterogeneity
and interoperability networks problems. These problems constitute an open research
question in modern industry, especially for the Industry 4.0 and Industrial IoT paradigms.
Several studies [7–12] focused on the role of communication networks. The quoted articles
emphasized the problem of interoperability between different communication layers in the
hierarchical model of the enterprise control system. In addition, it was noted that such a
system in the future would not necessarily have a hierarchical form. Relatively high hopes
are associated with the Open Platform Communications standard-Unified Architecture
(OPC UA), which connects many networks and standard types. The OPC UA standard is
currently mainly based on the Ethernet bus.

Ethernet-based communication has gained dominance in many automation solutions
due to its high data transfer speed, large data payload per frame, and compatibility with
existing IT solutions. Standard TCP/IP communication is not the best solution for motion
control applications because of its non-deterministic characteristics. In high-performance
motion control applications, multi-axis synchronization is required. Highly deterministic
real-time communication fieldbuses have to be used.

T. P. Corrêa et al. [13] in their research focused mainly on reducing the communication
cycle in the Ethernet network. Despite quite good delays minimization of Ethernet frames
in the proposed network (of the order of 1.1 µs-from physical layer to the upper layers
on user-level), the synchronization problem was partially solved (only forward synchro-
nization). Therefore, several Industrial Ethernet standards were developed to achieve time
determinism and synchronization, such as EtherNetIP [14], PROFINET IRT, EtherCAT,
POWERLINK, and SERCOS III [2,3]. Xuepei Wu et al. [15] compared the three most
used Industrial Ethernet standards: EtherNetIP, EtherCAT, and PROFINET IRT. The article
presents a research example of DC servo control. The research results show that the best
DC servo control is achieved for the EtherCAT bus (fastest relation times).

EtherCAT [16,17] is one of the most popular industrial networks in motion control
solutions [18]. It retains the high data rate of other Ethernet standards (100 Mbps) but also
offers very short communication cycles (as short as 12 µs) and very short handling time of
each node (as short as 1 µs).

In order to enable communication according to the EtherCAT standard in newly devel-
oped or existing automation devices, a slave communication module has to be implemented.
Such a module implements the EtherCAT communication protocol (fieldbus stack) without
the need to increase the workload on the device’s main control processor. In the case of
drive systems, the specific requirements of such devices have to be taken into consideration.
Also, compliance with various industrial standards has to be ensured. This is especially
true in high-performance motion control applications in which precise synchronization
between servo drive axes is crucial. This is important when the communication module can
be used in research drive systems to verify advanced control algorithms (e.g., in multi-axis
servo applications), which include: predictive, cross-coupled, repeatable, adaptive, and
other regulators [19,20].

In this article, an EtherCAT module that was developed for various electrical drives
is presented. EtherCAT communication standard is described. Specifically, a functional
description of an electrical drive slave device communication module is given that uses the
CiA402 device profile. A research stand is presented along with experimental results that
focus on the synchronization performance of electrical drive axes. The main contribution
of this research was to show the time dependencies regarding synchronization in terms of
data flow in the EtherCAT communication stack in slave servo drive devices. The presented
article is built upon the authors’ earlier works in the field of using Industrial Ethernet for
drive control systems [21–23].

Examples of applications using the EtherCAT bus (including issues related to syn-
chronous data exchange) described by the researchers are presented in Section 2. The
EtherCAT fieldbus is discussed in detail in Section 3. In Section 4, the authors overview

Energies 2022, 15, 604 3 of 16

the developed EtherCAT slave module based on AX58100 and its use in a laboratory stand.
Discussion of the obtained experimental results is in Section 5. Finally, the main conclusions
are compiled and discussed.

2. Related works-EtherCAT synchronisation

EtherCAT bus is used in many multi-axis control applications. Therefore, to discuss
the state of the art regarding synchronization in the EtherCAT bus, the authors analyzed
selected articles in this field. Articles mainly related to the application were selected: multi-
axis CNC applications and controlling robot drives. Finally, the authors discussed several
articles directly relating to the EtherCAT DC synchronization.

For CNC applications, Martinov G.M et al. [24] described the general structure of
the external CNC control system additionally equipped with a PLC program module.
The developed CNC controller (AxiOMA) was equipped with a dedicated card to handle
the EtherCAT stack for communication with several servo drives. This paper does not
provide information on the EtherCAT bus cycle period. There were also no studies on the
communication cycle and the synchronization of devices in the network.

Another example is Hao Jia et al.’s paper [25]. The authors used CODESYS soft-
ware to program and CO-TRUST C37 motion controller. EtherCAT bus was used in the
hardware platform. In addition to servo drives, the CNC controller supports I/O devices
via the EtherCAT bus. No study of the communication cycle on the EtherCAT bus has
been presented.

Li, Beibei et al. [26] presented the open CNC system architecture. The CNC controller
hardware is consists of two processors architecture. EtherCAT Master stack is based on a
dedicated expansion card. Research on the EtherCAT bus communication cycle has not
been presented. However, the synchronization method between the Master device and the
servo drive systems has been mentioned.

For robot solutions applications, Chuang, W.-L. et al. [27] designed a real-time robot
control for human-robot collaboration. They used Robot Operating System (ROS) and
EtherCAT bus to build this control. Robot controller acting as EtherCAT master for com-
munication uses a dedicated PCIe expansion card based on a microcontroller with an
ARM core with embedded real-time Linux software. The communication cycle in the robot
application with drives was 1ms. Detailed research results on the communication cycle,
including synchronization, are not presented, but it is mentioned that only Free Run mode
synchronization was used.

R. Delgadol et al. [28] built a motion control system used in a mobile robot with a dif-
ferential drive with the EtherCAT bus. The EtherCAT master stack is software implemented
on the single board computer based on Atom D2700. The EtherCAT communication cycle
in the developed system was 10 ms. The researchers also carried out a more detailed
communication cycle study investigating the jitter of the communication cycle between the
robot controller and the drives.

D.-K. Yoon et al. [29] built a robot arm compact embedded motor controller. A DSP-
based main controller, an EtherCAT controller with a driver, and a BLDC motor driver
were used to build hardware components of the controller. The software EtherCAT slave
stack has been implemented on the DSP (TMS320F28335 from Texas Instruments). In the
developed robot application, the drives exchange data with the robot controller device via
the EtherCAT bus every 1 ms. However, the article does not present detailed studies of the
communication cycle.

Zhaoming Liu et al. [30] developed the EtherCAT based robot modular joint controller
that uses the EtherCAT Slave Controller ET1100 from Beckhoff. The EtherCAT slave
software stack was implemented on the DSP as in the previous article. The communication
cycle period was 1 ms. In the paper, the research on the communication cycle was carried
out to a small extent.

Guojun Zhang et al. [31] discussed the 7-DoF Light-weight Robot with EtherCAT bus.
Data transmission between joint controller and arm controller is provided via EtherCAT

Energies 2022, 15, 604 4 of 16

bus. Field Programmable Gate Array (FPGA) is used to design the joint controller. In the
device, it is possible sensor sampling and motor control. The joint controller is based on
EtherCAT Slave Controller ET1100 from Beckhoff. EtherCAT slave devices communicated
with the period: 1 ms, 5 ms, and 200 µs. The communication cycle research was not
conducted. However, the positioning of the robot arms for different communication cycles
was verified.

In the case of applications for solutions using Functional Safty, R. Delgado et al. [32]
developed an embedded system (based on JECS-600ITX board) connected to EtherCAT bus.
There were also drives in the network. IPCs were also used for safety-related tasks. The
controller is software implemented in an embedded system based on the EtherCAT master
IgH open stack. The communication cycle in the system was 1 ms. Detailed research on the
communication cycle was presented.

Furthermore, the EtherCAT offers a distributed clock synchronization mechanism
which is especially important in multi-axis applications like motion platforms combined
with virtual reality. Lord, C.-T. et al. [33] presents a virtual reality (VR) solution based on a
rotatable platform for flight simulation purposes. EtherCAT master Motion Control Card
PCI-L221-P1D0 with the ability to support up to 64 axes and communication cycle time of
1ms or 0.5 ms was used.

In Table 1 a comparison of the above-mentioned scientific articles is compiled. The
columns of the table include: the type of application (second column), the presented
EtherCAT device: master or slave device (third column), values of the communication cycle
period in EtherCAT bus, or the lack of such information (fourth column) and information
about the research carried out on the synchronization aspects in EtherCAT networks. The
problem of data synchronization on the EtherCAT network has been described in only a
few articles.

Since 2003, when the EtherCAT standard was developed, several research teams have
worked with device synchronization in this network. G.Cena et al. [34] presented a study
in which they discussed the results of DC synchronization research in EtherCAT bus on
a laboratory stand. The stand consisted of a master system and a few slave devices. All
used devices were commercial solutions of the Beckhoff company (the authors did not
analyze the device’s internal structure and assumed in the experiment that they were
“black box” devices). The research proved that the DC synchronization on the laboratory
stand works correctly. However, some discrepancies in the results were observed with a
different configuration of connections between slave devices. The authors assumed that
each slave device (of the same type) should operate identically, and any DC synchronization
discrepancies result only from the DC mechanism itself. However, in the study’s conclusion,
the authors questioned this assumption.

Another research team that worked with similar topics was the team of S.-M. Park et
al., who in a series of articles [35–37] presented a new mechanism to improve DC synchro-
nization in the EtherCAT network. The research team introduced various methods that
reduced jitter between the slave and master device (as the DC master clock) in their articles.
Despite demonstrating the effectiveness of each of the presented synchronization methods,
the authors did not discuss the structure of used slave systems architecture. As before,
they assumed that this structure does not affect the operation of the DC synchronization
mechanism.

I. Kim et al. [38] developed another method to minimize jitter between the slave
and master device (as the DC master clock). They present solutions with the use of the
heuristic method. As before, they do not overview the slave architecture in the context of
DC synchronization.

The above articles only focused on the EtherCAT master and slave cycle synchroniza-
tion. Synchronizing data processing between the slaves and processing these data in the
slaves’ devices (between layers of the EtherCAT stack) was not discussed. For this purpose,
the authors decided to build EtherCAT communication modules for an electrical device to
conduct more research in the synchronization of processed data in the developed modules.

Energies 2022, 15, 604 5 of 16

Table 1. Selected examples-applications with EtherCAT bus (CNC-multi-axis CNC applications;
robots-applications for controlling robots drives; Safety-Functional Safety application; VR-virtual
reality multi-axis motion solution for flight simulation purposes).

Application Type of
Application

Type of EtherCAT
Device (M—Master,
S—Slave)

Communication
Cycle (ms) (?—
Undefined)

Research on Com-
munication Cycles
(Y—Yes, N—No)

Martinov G.M
et al. [24]

CNC M ? N

Hao Jia et al. [25] CNC M ? N

S. N. Grigoriev
et al. [6]

CNC M 1–4 N

Li, Beibei
et al. [26]

CNC M ? N

Chuang, W.-L.
et al. [27]

robots M 1 N

R. Delgadol
et al. [28]

robots M 10 N

D.-K. Yoon
et al. [29]

robots S 1 N

Zhaoming Liu et
al. [30]

robots S 1 Y

Guojun Zhang
et al. [31]

robots S 5, 1, 0.2 N

R. Delgado
et al. [32]

Safety M 1 Y

G. Peserico
et al. [12]

Safety M 1–2.5 N

Pan, C.-T.
et al. [33]

VR M 1, 0.5 N

3. EtherCAT Fieldbus

EtherCAT fieldbus uses the master-slave communication model. There is always one
master device and several slave devices. The master is usually a Programmable Logic
Controller (PLC) or Industrial PC (IPC) controller, and the slaves are I/O modules, sensors,
or actuators. In multi-axis motion control applications, a motion controller (i.e., CNC or
robot controller) is the master, and servo drives are the slaves. One master can theoretically
handle up to 65535 slave devices. However, this number is limited in practice by desired
minimum cycle time, required process data payload, and master controller performance.
EtherCAT’s physical layer is based on Fast Ethernet cabling and 8P8C (RJ45) connectors
with a data rate of 100 Mbps. EtherCAT uses two out of four available twisted pairs for
full-duplex transmission-one pair to send data in master-to-slaves direction and the other
for data frames returning to the master. Physically the devices are usually connected in
line with a dual-port switch in each slave. Due to the utilization of both signal paths in
the Ethernet cable, a logical ring topology is created. EtherCAT master device can use a
standard Ethernet card. The master stack can be implemented entirely in software. slaves
require a specialized communication chip to implement EtherCAT’s custom data link layer
(OSI layer 2) called an EtherCAT Slave Controller (ESC).

Dedicated slave hardware is required because EtherCAT uses a unique frame pro-
cessing method called “on the fly processing”. In most industrial Ethernet variants such
as Ethernet Powerlink, SERCOS III, or Profinet, the communication cycle is divided into
time slots. In each time slot, the master polls each slave with a data frame and the slave
responds with a return frame. This mechanism is called Time Division Multiple Access

Energies 2022, 15, 604 6 of 16

(TDMA) and ensures time determinism which is required, especially in motion control
applications. Every time the data frame is sent or received, it has to be processed by the
entire master’s or slaves’ stack. This takes time and limits the number of slaves that can be
handled in a defined cycle time. Such an approach also wastes bandwidth because each
frame contains a very small amount of data, but the Ethernet frame headers, addresses,
and control sum are all transmitted regardless of the data size. The EtherCAT process data
for all slaves are usually encapsulated within a single Ethernet frame sent by the master
at the start of each communication cycle. This frame passes through the dual-port switch
of each slave. During this time, the slave hardware communication chip collects data
designated for that slave from the frame and puts return data. This is done at the lowest
hardware level of the stack, so the delay incurred by each slave is negligible (well below
100 nanoseconds). The actual processing of the received data and preparation of return
data for the next cycle takes place in the higher layers and does not interfere with low-level
processing. When the last slave receives the frame, in the next step, the frame is sent back to
the master with return data updated by each slave. Such an approach allows much shorter
cycle times compared to competing industrial Ethernet standards. Only the master can
initialize communication, so time determinism is also achieved. This mechanism is utilized
for the cyclic exchange of process data in each communication cycle, such as setpoints and
actual process variable values. In addition, acyclic communication is also possible in the
remaining time of the communication cycle. EtherCAT’s cyclic data transfer mechanism
with on-the-fly processing is presented in Figure 1.

ETHERNET FRAME WITH

ENCAPSULATED ETERCAT DATAGRAMS

SLAVE 1
DATAGRAM

ETHERCAT

SLAVE 2

SLAVE 2
DATAGRAM

SLAVE 3
DATAGRAM

ETHERCAT

SLAVE 3

ETHERCAT

SLAVE 1

ETHERCAT

MASTER

Figure 1. EtherCAT communication mechanism.

3.1. Device Synchronization in EtherCAT

EtherCAT can perform communication using one of three synchronization modes.
The simplest one is the Free Run mode (no synchronization), in which the local timer of the
slave runs independently of the master timer and the bus cycle. Due to the time drift of each
slave and jitter of the master clock, the local timers can trigger events such as control loop
computation at different times. High-performance motion control applications with cycle
times well below 1 ms can lead to errors because each axis achieves the desired positions or
velocities at different times. As such Free Run mode is usually used only in distributed I/O
or basic motion applications.

Due to the importance of synchronizing several axes in robotics and CNC machining,
the synchronization of slave devices is crucial for the EtherCAT fieldbus. Synchroniza-
tion allows better control over when events such as input and output data latching are
performed relative to the communication cycle. The first synchronization mode is called

Energies 2022, 15, 604 7 of 16

SM Event Synchronization. Synchronization Manager (SM) Events are triggered when a
frame passes through the device. There are two events SM2 if cyclic outputs are present
and SM3 otherwise. In the case of drives, SM2 is usually used. Figure 2 presents time
dependencies in this synchronization mechanism. The local slave timer is started when
the frame triggers the SM2/3 event. This is usually achieved by a dedicated interrupt
of the communication processor triggered by the ESC. Outputs and inputs are assumed
valid at specific, well-defined points of the cycle time, which start is defined by the SM2/3
event. The received setpoint data is always synchronized with the control loop of the main
drive processor. This ensures that the sent and received process data values are not lost or
processed twice due to bus and processor cycle mismatch. The moment of latching input
data (i.e., drive actual values) can be shifted to be as close to the next SM event as possible.

Figure 2. EtherCAT synchronization mechanisms-Sync Manager Event synchronization (SM sync) [39].

SM Event Synchronization works well if the master’s clock is stable and has a very
low jitter compared to the cycle time and frame propagation delays of the network are
negligible [39]. Otherwise, the actual slaves’ cycles can vary depending on when the frame
reaches their respective ESC’s. Due to the prevalence of Industrial PCs in high-performance
motion control, which perform many complex control tasks, low jitter cannot always be
guaranteed. Also, large networks with many different slaves and long cable propagation
delays can play a significant role. This is especially true for short cycle times in the order of
100 µs. In this case, the Distributed Clock (DC) synchronization is recommended.

In DC synchronization mode, a global system time is defined (Figure 3). The first slave
is assumed to hold the reference time. Usually, the slave controller is an embedded device
whose clock is assumed to be more precise and stable than the master’s (often PC-based).
Each slave holds the copy of the system time sent by the master at bus startup. The network
is then mapped by the master by sending several test frames and recording times of their
arrival in the forward and return paths by each slave. This information is sent back to
the master, which computes time offsets corresponding to propagation delays of each
slave in the EtherCAT network. The local timers synchronized to the global timer measure
the bus period. They are set to periodically trigger to interrupt an event called SYNC0.
This event is offset from the start of the cycle measured by each local timer by different
time offsets in each slave that compensate for master clock jitter and further propagation
delays. The idea is to trigger the SYNC0 event simultaneously in each slave but only after
the data frame from the master arrives at the given slave and is processed by the ESC.
During the cyclic phase, the global time is periodically read from the reference slave clock
and sent to other slaves to resynchronize their clocks to the global clock. This ensures
compensation of clock drift. In electrical drives, SYNC0 is used similarly to the SM event to
synchronize the control loop with the communication bus. Such advanced mechanisms
provide excellent synchronization of drives in the EtherCAT fieldbus required by high-
performance multi-axis applications where the exact following of a motion trajectory has to
be ensured.

Energies 2022, 15, 604 8 of 16

Figure 3. EtherCAT synchronization mechanisms-Distributed Clock synchronization (DC sync) [39].

3.2. CiA402 Communication Profile for Electrical Drives

To build a fully functional EtherCAT slave, the ESC chip needs an application layer
(OSI layer 7) usually implemented in a communication processor. EtherCAT uses CANopen
and, more specifically, CANopen over EtherCAT (CoE) [40], as the application layer, which
interfaces with the actual master or slave device control program. CANopen was developed
initially for CAN-based fieldbus networks. It is now also used in EtherCAT and Ethernet
Powerlink fieldbuses. CANopen defines a data structure containing all data relevant to an
Object Dictionary (OD) communication. Every entry in the object dictionary is given an
address called an index, and sometimes a sub-address called a subindex. Each of the OD
objects consists of 16-bit and data indexes. Addresses between 1000h and 1FFFh contain
communication objects. Addresses between 2000h and 5999h contain manufacturer specific
objects, and addresses from 6000h contain deviceprofile objects.

CANopen also defines two structures for data exchange (Figure 4). Process Data Object
(PDO) is the structure containing Object Dictionary entries that are cyclically transferred
as process variables. Before cyclic communication is started in the configuration phase,
particular object dictionary objects are mapped to this structure. Each PDO entry has a
defined offset in the dataset encapsulated in the Ethernet frame. This is important so
that during the cyclic phase, the slaves’ hardware knows precisely where in the frame the
relevant data is located. After cyclic communication is started, PDO entries are exchanged
between master and slaves in every cycle and cannot be changed without reconfiguring the
communication configuration of the network. Service Data Objects (SDO) contains object
dictionary entries sent and received acyclically. SDO works as a mailbox buffering received
data and sending data. This communication is acyclic and is dependant on available
bandwidth in the communication cycle. This communication is not deterministic and is
best suited for transmitting configuration data.

��������	
����

������� ����������

�����	
��������

������	
���	������

������
���

���	�������

������� ������
���

��������	�����	���������

��������	������� �����

������

Figure 4. CANopen has two structures for data exchang-Service Data Objects and Process Data Object.

Energies 2022, 15, 604 9 of 16

CANopen defines several device profiles which establish standard objects and behav-
ior for similar device classes. For electrical drives, this profile is CiA402 “CANopen device
profile for drives and motion control”, which is defined by the IEC standard [41]. Index
objects in Object Dictionary in the range 6000h to 67FEh are specified by the CiA402 profile.
If a drive is compatible with CiA402, typical process values such as position, velocity, or
torque setpoints and actual values will always be defined in the same objects with the same
address regardless of the manufacturer. This dramatically simplifies the commissioning
of different drives in a motion control system. CIA402 also defines a state machine that
corresponds to the drive’s actual operating state (Disabled, Faulted, Switched ON, etc.).
This state machine is controlled and monitored by two mandatory PDO entries: Control
Word and Status Word. The drive cannot be started until the state machine has been put
into the appropriate state. Figure 5 shows the CiA402 communication profile state machine.

��������	����
�������

����������
�����

����	����
�������

�������

���������������� �����
���������

�������������������

�����

�

�

� �

��������	
����

�������
����

�
���

� ��

�

	

��

��
��

�

�	

��

Figure 5. CiA402 communication profile state machine.

The state machine transitions depend on the 6040h index value named ControlWord.
The NOT_READY_TO_SWITCH _ON state of the state machine is an internal state in which
communication is enabled. The user cannot monitor this state. SWITCH_ON_DISABLED is
the minimum state that the user has access to. In this state, drive initialization is complete.
Drive can perform “0” and “1” transitions after auto initialization. The voltage in the drive
converter system may appear in the READY_TO_SWITCH_ON state, but further operations
on the drive require a change to the next state. SWITCHED_ON is the state where the drive
is ready but still cannot receive motion commands. Only the OPERATION_ENABLE state
allows the drive to be fully used for operation. As a result of an emergency in the drive,
regardless of the current machine state, a jump to the FAULT state has proceeded.

Received PDO entries and SDO entries directly affect the servo drive’s process vari-
ables such as position, velocity or torque setpoints, mode of operation. Transmitted PDO
and SDO entries are directly copied from actual process variable values such as actual
position, velocity, current, following error. An example of a slave’s CIA402 structure in a
drive’s communication processor is presented in Figure 6.

Energies 2022, 15, 604 10 of 16

��������	�	
�

�����

�
�
�
�
�
�
�
�
��
�
�
	

�
�
�

�

�
��
�
�
�	
�
��
�

�
�

��������		
�����������������

��������	
���	� ����

���	�������
�������

�	�������
�������

�	���	���	��� � ��

!����
��	���� ��

������ �	
���	� � �

������ ���	���� ���

������ �	���� ����

"#�$#�# �"��#!! %�����&#��

�
�
�
�
�
�
�
�
�
��
	
�

�
�
�
�
�
�
��
�
�

�
�
�
�

�������������

���������

������

��	
����

�����
��	

����	���

�
����	�����

	����
�

��	���������

����	�

���	�����

�������	�

�
��	��

�	
����

����
��	�	
�

�����

��''()$���$�)���&#��!

'�)(*���("#"�!�#�$*$��

��&#��!

�$� ���!��)%�"%���&#��!

!+��#��&#�� %$��$�)�",

�
����
�

��	��

���
�	��

�������

�"�)!'$���"��#!! %�����&#��

Figure 6. Example implementation of CIA402 object dictionary in drives.

4. EtherCAT Slave Module Based on AX58100

The ESC chip was used to construct the EtherCAT slave devices. The chip provides
(“on-the-fly”) PDO data capture from the Ethernet frame. The slave device consists of
two RJ45 (8P8C) connectors with integrated transformers (Physical Layer of the EtherCAT
stack). Data Link Layer (DLL) in slave device is based on the ESC AX58100 chip from ASIX
Electronics Corp chip. This chip also has built-in standard Ethernet PHY. In many slave
devices, the Application Layer of the EtherCAT stack is very often in a software form and
is implemented in microprocessor systems. In this work, the authors implemented this
Application Layer on a 32-bit STM32F303RBT6 microcontroller from STMicroelectronics
in the communication module. In the presented solution, the authors also implemented
the CiA402 profile of the EtherCAT stack (for electric drives control purposes). The elabo-
rated EtherCAT slave communication module with AX58100 ESC and STM32F303RBT6
microcontroller diagram is shown in Figure 7.

����

������

����

������

�	
���� ��
��

�������

���� �����

���� ��!� ��
��

""��#�

$%�&�'&�&�(%)

�**������! ��
��

�)�&�

$�$+"$�

$��,

�#$-

�-$#

$-.%

(���

�#%#�

$/.��

$/.��

Figure 7. The EtherCAT slave communication module with AX58100 ESC and STM32F303RBT6
microcontroller diagram.

Process Data Interface (PDI) is called local ESC interface that provides data exchange
with the microcontroller with AL. From the STM32F303RBT6 microcontroller perspective,
access to the ESC chip is treated as access to external memory. ESC is connected with the
microcontroller also using interrupts signals. The PDI interface makes it possible to read
and write data from the ESC chip address space and exchange it with the microcontroller
for further processing.

Energies 2022, 15, 604 11 of 16

The AX58100 chip has a 9 KB address space. The first 1 KB (0000h-0FFFh) is dedicated
to the ESC configuration registers. The process data RAM starts at the address 1000h. The
RAM is read and written by the EtherCAT master or by the microcontroller via the PDI
interface. ESC must be adequately initialized each time at the start because the configuration
data is not saved in it permanently. Therefore, each ESC chip requires an external EEPROM
to store the configuration data (I2C interface). The ESC system will not start to work until
its correct configuration from EEPROM memory is read and set up correctly.

Several PDI interfaces can be used in the ESC AX58100 controller-serial SPI interface,
parallel interface, or digital inputs and outputs. Registers from 0140h to 0141h are responsi-
ble for the PDI configuration in the ESC system. In the elaborate EtherCAT slave devices
module, an SPI interface is used as a PDI interface (Figure 7). The SPI master is a microcon-
troller, and ESC is an SPI slave. When the output SCS_ESC line of the microcontroller is
set to state “0”, a data exchange process is started between both devices. Writing data to a
specific address registers in the ESC chip is a two-phase process. First, an address data is
sent, and then—data transfer phase occurs.

The PDI interface provides synchronization between the microcontroller and the
ESC. As mentioned in earlier sections of this article, the EtherCAT bus supports three
synchronous network data exchange modes. These modes are: FreeRun, SM, and DC.
Generating SINT interrupt signal by slave device in FreeRun mode is not occur (Figure 7).
However, in SM mode, an interrupt (SINT interrupt signal) is generated by ESC to handle
the PDO data by the microcontroller. The source of this interrupt is the prompt of an
Ethernet frame received by the slave device. There is another source of interrupt signal syn-
chronization in DC mode-the SYNCx signals. Thanks to the distributed clock mechanism,
these signals are generated simultaneously for all EtherCAT slave devices in the network.

4.1. Laboratory Stand

The EtherCAT communication modules were built for electrical drives. A laboratory
stand was made with one EtherCAT master device and two Brushless DC (BLDC) servo
drive system stands to verify the synchronization between communication modules. In
Figure 8 laboratory stand diagram is presented. In Figure 9 laboratory stand photograph
is presented.

One servo drive stand consists of STM32F303RBT6 microcontroller (NUCLEO-F303RE
board), ESC AX58100 modules (AX58100-EVB-SSPDI-1 board), and L6230 three-phase
brushless DC motor driver (X-NUCLEO-IHM07M1 board) with BR2804-1700 BLDC motor.
On the STM32F303RBT6 microcontroller, the AL EtherCAT stack implementation uses
the EtherCAT Slave Stack Code Tool v.5.11 library from Beckhoff and software needed to
operate the PDI (SPI). To build a closed control loop for BLDC motor speed controls, the
library MotorControl Workbench by STMicroelectronics was used. All sources were written
in C language. The whole project (EtherCAT communication and cascade speed controller)
was compiled using the STM32CubeIDE environment (GCC compiler, O3 optimization,
and debugger flags switch off).

Figure 8. DLaboratory stand diagram.

Energies 2022, 15, 604 12 of 16

Figure 9. Photograph of the laboratory stand.

EtherCAT master device runs at Beckhoff CX9020 IPC device. On that device, a
TwinCAT 3.1 eXtended Automation Runtime (XAR) application is installed. The CX9020
IPC device is connected to a standard PC with Windows 10, where the TwinCAT 3.1
eXtended Automation Engineering (XAE) application is installed. In this case, the authors
built a PLC project using the TwinCAT XAE version to set the speed to the servo drives
stand. The authors decided to use such an architecture of the EtherCAT master system
because it ensures stable operation and minimizes the appearance of high communication
jitter of EtherCAT frames generated by the EtherCAT master device.

5. Experimental Results

The experimental research focused on the study of the synchronous operation of
both servo drives. Two types of tests were carried out on a laboratory stand. The first
focuses on whether the data received from the EtherCAT bus is equally processed in the
data link layer for both control drives (in both ESC chips). In the second experiment, the
processing time measured of data transfer in the DLL to the AL direction (until processed
by the regulator). All tests were carried out for two different EtherCAT communication
cycles-1 ms and 500 µs (requirements of motion control-to synchronize several axes over
a network [42]). Due to the easy measurement of the output signals from the ESC system
and the microcontroller (SINT, SYNC0, and SYNC1), the authors decided to test only in the
DC synchronization mode.

In the first experiment, the synchronous operation of both servo drives was investi-
gated. The research focused on measuring the cyclicity of SYNC0 signal generation from
two servo drives (Figure 8). The SINT signal occurs when data on the SPI bus is available
(data for the SPI master-microcontroller). The SYNC0 signals indicate the moment when
these data should be processed. While the SINT signals can be generated at different times
for both servo drives, in the case of SYNC0 signals, they should occur simultaneously for
both servo drives. The test results are presented in Table 2. The results were compiled from
1000 measurements of the SYNC0 signal (the number of measured samples is limited due
to the limitations of the measurement equipment). Figure 10 shows the one oscillogram
from the tests on the laboratory stand for the generation of SYNC0 signals for both servo
drives (DC synchronization, EtherCAT cycle communication-500 µs).

Table 2. Time dependence measurements for SYNC0 servodrive signals (DC synchronization).

EtherCAT
Cycle (µs)

Average Value
Time (µs)

Maximum
Value of Time
Difference (µs)

Minimum
Value of Time
Difference (µs)

Standard Deviation
Value of Time
Difference (µs)

1000 805.5 831.5 730.0 4.621

500 807.2 831.5 760.0 3.725

Energies 2022, 15, 604 13 of 16

Figure 10. Time dependence measurements for SYNC0 servodrive signals (DC synchronisation,
EtherCAT cycle communication-500 µs).

The SYNC0 signal occurs in both modules in every EtherCAT communication cycle
(1000 µs and 500 µs). Such work confirms correct cyclic and synchronous communication
of devices in the EtherCAT network. The difference time between the SYNC0 signals
occurrence in both modules is in worst case 831.5 ns (in 1000 µs and 500 µs EtherCAT
communication cycles) and in best case 730ns (in 1000 µs EtherCAT communication cycles).
The researches prove that the servo drives synchronization at the ESC level (between
the physical layer and data link layer) has a minimal delay (<1 µs) for motion control
requirements [42].

In the second experiment, the time to process data in the EtherCAT application layer
in each servo drive was investigated. The research focused on the measurement of duration
time of a high state of “Custom Signal” (Figure 8). This signal is set (high state) when the
interrupt services procedure is realized (when SYNC0 has occurred) and reset (low state)
when the value “Target Velocity” is sent to the servo drive regulator. The test results are
presented in the Table 3 for 1st servo drive and Table 4 for 2nd servo drive. The results
were compiled from 1000 measurements of the “Custom Signal”. Figure 11 shows the
oscillogram from the tests on the laboratory stand for the generation of “Custom Signals”
for both servo drives (DC synchronization, EtherCAT cycle communication-500 µs).

Figure 11. Maximum time to processed data in application layer in EtherCAT servodrive (DC
synchronisation, EtherCAT cycle communication-500 µs).

Table 3. Maximum time to EtherCAT processed data in application layer in 1st servodrive (DC
synchronization).

EtherCAT
Cycle (µs)

Average Value
Time (µs)

Maximum
Value of Time
Difference (µs)

Minimum
Value of Time
Difference (µs)

Standard Deviation
Value of Time
Difference (µs)

1000 50.49 146.0 2.93 30.30

500 76.37 146.3 4.93 35.03

Energies 2022, 15, 604 14 of 16

Table 4. Maximum time to EtherCAT processed data in application layer in 2nd servodrive (DC
synchronization).

EtherCAT
Cycle (µs)

Average Value
Time (µs)

Maximum
Value of Time
Difference (µs)

Minimum
Value of Time
Difference (µs)

Standard Deviation
Value of Time
Difference (µs)

1000 52.44 151.6 2.805 32.40

500 76.13 147.4 13.56 34.77

The duration of the “Custom Signal” (average value) takes nearly the same amount
of time for both servo drives. This time (in all cases), it is dependent on EtherCAT com-
munication cycles. For EtherCAT communication cycles of 500 µs, handling of switching
“Custom Signal” output state takes average longer time than for the same operation in a
cycle of 1000 µs. The previous experiment showed that data transfer from the EtherCAT
ESC (physical and transport layer) has a lower average jitter than synchronous processing
of switching “Custom Signal” in both microcontrollers (CoE application layer-CiA402) re-
sulting from the second experiment. Experiment two confirms that any timing problems in
EtherCAT slaves depend on the application layer implementation of the EtherCAT stack in
each device. The research also confirms that the operation of the EtherCAT synchronization
process (Distributed Clock synchronization) is correct and the communication cycle jitter at
this level is less than 1 µs.

Therefore, when considering the build of a servo drive (especially an experimental
application) equipped with an EtherCAT slave interface (with ESC chip), the concept of
implementation and the related challenges should be analyzed quite strongly. In particular,
the method of implementation of the application layer of the EtherCAT stack should be
considered in the context of integration with control systems and data exchange with the
ESC chip. In the case of implementing the AL stack in the same place (e.g., in a microcon-
troller), particular attention must be paid to the time dependencies of data processing, and
hardware interrupts of the communication stack and control algorithms.

6. Conclusions

The authors describe the electric drives communication in the EtherCAT network
in the paper. In particular, the aspect of synchronizing data transfer in the EtherCAT
network. Most of the literature presents research results on synchronization between
EtherCAT master and slaves. On the other hand, the article’s authors focus attention on
synchronization mechanisms in EtherCAT (including DC synchronization), Emphasizing
slave devices-in this case, servo drives. The presented research was carried out on the
laboratory stand consisting of one master device and two slave servo drives. As a result of
the research, it can be emphasized that:

• EtherCAT communication modules for electrical drives were presented. The module
was implemented using the ESC AX58100 chip and the STM32F303RBT6 microcon-
troller. The EtherCAT stack has been implemented into the module microcontroller,
especially the application layer with the CANopen protocol (CiA402). The module can
be used to build experimental electric drives and use with commercial devices as part
of the research. The data exchange between communication modules via EtherCAT
bus was carried out at the laboratory stand for 1000 µs and 500 µs cycles. Presented
experimental results prove the modules’ adequacy for use in high-performance motion
control systems.

• It has been confirmed that the synchronization of EtherCAT slave devices is also
influenced by the implementation of the EtherCAT stack (in particular, the application
layer). The research results showed that the synchronous operation of drives is
primarily influenced not by the distributed clock mechanism ensuring synchronization
in the EtherCAT network but by implementing the highest layer of the communication
stack in slave servo drive devices. In the case of servo drives, the data exchange

Energies 2022, 15, 604 15 of 16

between the communication stack and the drive control system also affects the correct
synchronization with other devices.

Although synchronization devices in short communication cycles (100 µs and less) in
the EtherCAT network are possible, it requires further research. This aspect is of particular
importance at servo drive solutions. High-speed synchronous data exchange opens up new
possibilities for constructing new servo drive control systems. This opportunity allows limit
servo drives controller to the fundamental functionality of such a drive (e.g., direct control
algorithms for the power modules or torque controller). In this approach, the remaining
control systems can be moved to an external supervisory system (e.g., at EtherCAT master
device). This is an interesting direction for further research that the authors consider
continuing in the future.

Author Contributions: Conceptualization, M.P. and K.E.; methodology, M.P.; software, M.P.; valida-
tion, M.P. and K.E.; formal analysis, M.P. and K.E.; resources, M.P.; writing—original draft preparation,
M.P.; writing—review and editing, K.E.; visualization, M.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the basic research fund of the Department of Automatics and
Measurement Systems, Nicolaus Copernicus University, Poland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, N.; Li, D. Cyber-Physical Co-Design of Field-Level Reconfigurations in Networked Motion Controllers. IEEE/ASME Trans.

Mechatronics 2020, 26, 2092–2103. [CrossRef]
2. Zurawski, R. Industrial Communication Technology Handbook; CRC Press: Boca Raton, FL, USA, 2015.
3. Wilamowski, B.M.; Irwin, J.D. Industrial Communication Systems; CRC Press: Boca Raton, FL, USA, 2011.
4. Yu, D.; Hu, Y.; Xu, X.W.; Huang, Y.; Du, S. An open CNC system based on component technology. IEEE Trans. Autom. Sci. Eng.

2009, 6, 302–310.
5. Fischer, H.; Vulliez, M.; Laguillaumie, P.; Vulliez, P.; Gazeau, J.P. RTRobMultiAxisControl: A framework for real-time multiaxis

and multirobot control. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1205–1217. [CrossRef]
6. Grigoriev, S.N.; Martinov, G.M. The control platform for decomposition and synthesis of specialized CNC systems. Procedia CIRP

2016, 41, 858–863. [CrossRef]
7. Scanzio, S.; Wisniewski, L.; Gaj, P. Heterogeneous and dependable networks in industry—A survey. Comput. Ind. 2021,

125, 103388. [CrossRef]
8. González, I.; Calderón, A.J.; Figueiredo, J.; Sousa, J. A literature survey on open platform communications (OPC) applied to

advanced industrial environments. Electronics 2019, 8, 510. [CrossRef]
9. Zeid, A.; Sundaram, S.; Moghaddam, M.; Kamarthi, S.; Marion, T. Interoperability in smart manufacturing: Research challenges.

Machines 2019, 7, 21. [CrossRef]
10. Colombo, A.W.; Karnouskos, S.; Kaynak, O.; Shi, Y.; Yin, S. Industrial cyberphysical systems: A backbone of the fourth industrial

revolution. IEEE Ind. Electron. Mag. 2017, 11, 6–16. [CrossRef]
11. Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The future of industrial communication: Automation networks in the era of the

internet of things and industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [CrossRef]
12. Peserico, G.; Morato, A.; Tramarin, F.; Vitturi, S. Functional Safety Networks and Protocols in the Industrial Internet of Things

Era. Sensors 2021, 21, 6073. [CrossRef]
13. P Corrêa, T.; Almeida, L. Hardware Support to Minimize the End-to-End Delay in Ethernet-Based Ring Networks. Electronics

2019, 8, 1097. [CrossRef]
14. Saez, M.; Maturana, F.P.; Barton, K.; Tilbury, D.M. Real-time manufacturing machine and system performance monitoring using

internet of things. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1735–1748. [CrossRef]
15. Wu, X.; Xie, L. Performance evaluation of industrial Ethernet protocols for networked control application. Control Eng. Pract.

2019, 84, 208–217. [CrossRef]
16. Standard IEC 61158-1:2019; Industrial Communication Networks-Fieldbus Specifications-Part 1: Overview and Guidance for the

IEC 61158 and IEC 61784 Series. International Electrotechnical Commission: Geneva, Switzerland, 2019.
17. Standard IEC 61784-5-12:2018; Industrial Communication Networks-Profiles-Part 5-12: Installation of Fieldbuses-Installation

Profiles for CPF 12. International Electrotechnical Commission: Geneva, Switzerland, 2018.

http://doi.org/10.1109/TMECH.2020.3032571
http://dx.doi.org/10.1109/TASE.2018.2889813
http://dx.doi.org/10.1016/j.procir.2015.08.031
http://dx.doi.org/10.1016/j.compind.2020.103388
http://dx.doi.org/10.3390/electronics8050510
http://dx.doi.org/10.3390/machines7020021
http://dx.doi.org/10.1109/MIE.2017.2648857
http://dx.doi.org/10.1109/MIE.2017.2649104
http://dx.doi.org/10.3390/s21186073
http://dx.doi.org/10.3390/electronics8101097
http://dx.doi.org/10.1109/TASE.2017.2784826
http://dx.doi.org/10.1016/j.conengprac.2018.11.022

Energies 2022, 15, 604 16 of 16

18. Stój, J. Cost-Effective Hot-Standby Redundancy With Synchronization Using EtherCAT and Real-Time Ethernet Protocols. IEEE
Trans. Autom. Sci. Eng. 2020, 18, 203–2047. [CrossRef]

19. Szczepanski, R.; Tarczewski, T.; Grzesiak, L.M. Adaptive state feedback speed controller for PMSM based on Artificial Bee Colony
algorithm. Appl. Soft Comput. 2019, 83, 105644. [CrossRef]

20. Szczepanski, R.; Tarczewski, T.; Grzesiak, L. PMSM drive with adaptive state feedback speed controller. Bull. Pol. Acad. Sci. Tech.
Sci. 2020, 68, 1009–1017.

21. Paprocki, M.; Wawrzak, A.; Erwinski, K.; Karwowski, K.; Klosowiak, M. PC-based CNC machine control system with LinuxCNC
software. Meas. Autom. Monit. 2017, 63, 15–19.

22. Erwinski, K.; Paprocki, M.; Grzesiak, L.M.; Karwowski, K.; Wawrzak, A. Application of ethernet powerlink for communication in
a linux rtai open cnc system. IEEE Trans. Ind. Electron. 2012, 60, 628–636. [CrossRef]

23. Paprocki, M.; Wawrzak, A.; Erwinski, K.; Klosowiak, M. Flexible PC-based CNC machine control system. Mechanik 2018, 91,
299–303. [CrossRef]

24. Martinov, G.; Kozak, N.; Nezhmetdinov, R. Implementation of control for peripheral machine equipment based on the external
soft PLC integrated with CNC. In Proceedings of the 2017 International Conference on Industrial Engineering, Applications and
Manufacturing (ICIEAM), St. Petersburg, Russia, 16–19 May 2017; pp. 1–4.

25. Jia, H.; Yao, P.; Li, B.; Tian, X. Four axes wear-resistant coating testing system based on EtherCAT. In Proceedings of the 2017
Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 2842–2846.

26. Li, B.; Lin, H.; Zheng, L.; Sun, S.; Yin, Z. An open CNC system based on EtherCAT network. In Proceedings of the 2016 IEEE
Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 3–5
October 2016; pp. 795–801.

27. Chuang, W.L.; Yeh, M.H.; Yeh, Y.L. Develop Real-Time Robot Control Architecture Using Robot Operating System and EtherCAT.
Actuators 2021, 10, 141. [CrossRef]

28. Delgado, R.; Kim, S.Y.; You, B.J.; Choi, B.W. An EtherCAT-based real-time motion control system in mobile robot application. In
Proceedings of the 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Xi’an, China,
19–22 August 2016; pp. 710–715.

29. Yoon, D.K.; Kim, S.Y.; Cho, J.; Lee, K.K.; You, B.J. Development of a compact motor controller supporting EtherCAT for a dual-arm
telepresence robot. In Proceedings of the 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), Kuala Lumpur, Malaysia, 12–15 November 2014; pp. 253–256.

30. Liu, Z.; Liu, N.; Zhang, T.; Cui, L.; Li, H. EtherCAT based robot modular joint controller. In Proceedings of the 2015 IEEE
International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 1708–1713.

31. Zhang, G.; Ni, F.; Li, Z.; Liu, H. A Control System Design for 7-DoF Light-weight Robot based on EtherCAT Bus. In Proceedings
of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018;
pp. 2169–2174.

32. Delgado, R.; Park, J.; Lee, C.; Choi, B.W. Safe and Policy Oriented Secure Android-Based Industrial Embedded Control System.
Appl. Sci. 2020, 10, 2796. [CrossRef]

33. Pan, C.T.; Sun, P.Y.; Li, H.J.; Hsieh, C.H.; Hoe, Z.Y.; Shiue, Y.L. Development of Multi-Axis Crank Linkage Motion System for
Synchronized Flight Simulation with VR Immersion. Appl. Sci. 2021, 11, 3596. [CrossRef]

34. Cena, G.; Bertolotti, I.C.; Scanzio, S.; Valenzano, A.; Zunino, C. Evaluation of EtherCAT distributed clock performance. IEEE
Trans. Ind. Inf. 2011, 8, 20–29. [CrossRef]

35. Park, S.M.; Kim, H.; Kim, H.W.; Cho, C.N.; Choi, J.Y. Synchronization improvement of distributed clocks in EtherCAT networks.
IEEE Commun. Lett. 2017, 21, 1277–1280. [CrossRef]

36. Park, S.M.; Kwon, Y.; Choi, J.Y. Time Synchronization Between EtherCAT Network and External Processor. IEEE Commun. Lett.
2020, 25, 103–107. [CrossRef]

37. Park, S.M.; Kim, H.W.; Kim, H.J.; Choi, J.Y. Accuracy improvement of master–slave synchronization in EtherCAT networks. IEEE
Access 2020, 8, 58620–58628. [CrossRef]

38. Kim, I.; Kim, T. Guaranteeing isochronous control of networked motion control systems using phase offset adjustment. Sensors
2015, 15, 13945–13965. [CrossRef]

39. Beckhoff Automation GmbH. EtherCAT System Documentation; Beckhoff Automation: Verl, Germany, 2020.
40. Seoane, L.; Diaz, C.; Zafra, J.; Ibarmia, S.; Quintana, C.; Pérez, C.; Moral, A.; Araujo, A. CAN implementation and performance

for Raman Laser Spectrometer (RLS) Instrument on Exomars 2020 Mission. IEEE Trans. Emerg. Top. Comput. 2018, 9, 67–77.
[CrossRef]

41. Standard IEC 61800-7-1:2015; Adjustable Speed Electrical Power Drive Systems-Part 7-1: Generic Interface and Use of Profiles for
Power Drive Systems-Interface Definition. International Electrotechnical Commission: Geneva, Switzerland, 2015.

42. Felser, M. Real-time ethernet-industry prospective. Proc. IEEE 2005, 93, 1118–1129. [CrossRef]

http://dx.doi.org/10.1109/TASE.2020.3031128
http://dx.doi.org/10.1016/j.asoc.2019.105644
http://dx.doi.org/10.1109/TIE.2012.2206348
http://dx.doi.org/10.17814/mechanik.2018.4.46
http://dx.doi.org/10.3390/act10070141
http://dx.doi.org/10.3390/app10082796
http://dx.doi.org/10.3390/app11083596
http://dx.doi.org/10.1109/TII.2011.2172434
http://dx.doi.org/10.1109/LCOMM.2017.2668400
http://dx.doi.org/10.1109/LCOMM.2020.3027388
http://dx.doi.org/10.1109/ACCESS.2020.2982704
http://dx.doi.org/10.3390/s150613945
http://dx.doi.org/10.1109/TETC.2018.2874643
http://dx.doi.org/10.1109/JPROC.2005.849720

	Introduction
	Related works-EtherCAT synchronisation
	EtherCAT Fieldbus
	Device Synchronization in EtherCAT
	CiA402 Communication Profile for Electrical Drives

	EtherCAT Slave Module Based on AX58100
	Laboratory Stand

	Experimental Results
	Conclusions
	References

