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Abstract: In this paper, a novel short-term load forecasting method amalgamated with quantile
regression random forest is proposed. Comprised with point forecasting, it is capable of quantifying
the uncertainty of power load. Firstly, a bespoke 2D data preprocessing taking advantage of empirical
mode decomposition (EMD) is presented. It can effectively assist subsequent point forecasting models
to extract spatial features hidden in the 2D load matrix. Secondly, by exploiting multimodal deep
neural networks (DNN), three short-term load point forecasting models are conceived. Furthermore,
a tailor-made multimodal spatial–temporal feature extraction is proposed, which integrates spatial
features, time information, load, and electricity price to obtain more covert features. Thirdly, relying
on quantile regression random forest, the probabilistic forecasting method is proposed, which exploits
the results from the above three short-term load point forecasting models. Lastly, the experimental
results demonstrate that the proposed method outperforms its conventional counterparts.

Keywords: short-term load forecasting; load point forecasting; LSTM; CNN; quantile regression
random forest

1. Introduction

Load forecasting is an important part of the planning and operation of power systems,
which is essential for energy management, economic dispatching, and maintenance plan-
ning [1]. Power load forecasting methods can be categorized into point forecasting and
probabilistic forecasting according to the output form [2]. As the uncertainty of the supply
side and the demand side in the power system increases, traditional deterministic power
load point forecasting theory will no longer meet the new demands of the development of
smart grid. Compared with traditional point forecasting, probabilistic forecasting could
successfully quantify the uncertainty of power demand and provide more comprehensive
information about future moments [3]. Therefore, probabilistic forecasting of the power
load has become an increasingly useful technology in smart grid data analysis.

In recent years, the combination of deep neural networks and intelligent algorithms
for probabilistic prediction has gradually become a hot spot in the research field of load
forecasting. Li et al. [4] conducted a new exploration of interval forecasting technology
and proposed a proportional coefficient method based on an extreme learning machine.
Vossen et al. [5] put forward a short-term load probabilistic forecasting method based on
density estimation and artificial neural network. Zhang et al. [6] came up with a method of
constructing a forecasting interval via multi-point forecasting based on bootstrap technol-
ogy. Wang et al. [7] figured out a short-term load probabilistic forecasting model based on
long short-term memory (LSTM). Chen et al. [8] proposed a day-ahead load forecasting
model based on deep residual network, and then gave an integration strategy combining
multiple networks. The model was further extended to probabilistic load forecasting using
the Monte Carlo (MC) dropout algorithm, while results of point forecasting task were
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obtained directly. Zhang et al. [9] integrated widely used technologies in deep learning and
proposed a short-term load probabilistic forecasting model based on an improved quantile
regression neural network. Fan et al. [10] proposed a probabilistic forecasting method of
short-term power load based on LSTM to predict the power load of each hour in the next
week. Although some achievements have been made in applying deep learning to load
probabilistic forecasting, the short-term load probabilistic forecasting method based on
deep neural networks is scarcely investigated and has the following problems:

(1) The use of a single deep neural network leads to some limitations of the prediction
model, and the prediction performance is difficult to improve.

(2) Most of the load point forecasting based on DNN is converted to probabilistic fore-
casting by linear methods; hence, it is difficult to analyze the nonlinear relationship
between load point forecasting results and load probabilistic forecasting results.

With the above consideration, this paper combines three point forecasting models
to propose a method which can transform point forecasting into probabilistic forecasting,
and it analyzes the effectiveness of the proposed method according to an actual dataset
experiment. Experimental results demonstrate that the proposed method has higher
accuracy in short-term load probabilistic forecasting than the traditional method.

The main research results and conclusions of short-term load probabilistic forecasting
based on a deep neural network are summarized as follows:

(1) For the missing values and outliers of the actual load data, missing data filling and
outlier correction technology are used to process the load dataset. Through analyzing
the features of short-term power load, the original load series is decomposed by EMD.
Then, those load decomposition components are converted into two-dimensional
matrices, which are subsequently used as the input of CNN to effectively assist the
model to learn local implicit features from the load series with different timescales.
Moreover, the similar daily load selection algorithm is used to select the similar daily
load as the input of point prediction and probabilistic prediction models to generate
additional effective features. The continuous features and discrete features in the
dataset are standardized by different standardization approaches. The preprocessed
features are used as the input of the model proposed in this paper.

(2) To solve the feature extraction problem of short-term power load point prediction,
this paper combines the EMD method with a CNN-LSTM [11] combined model and
proposes three short-term load point prediction models based on multi-mode DNN: a
point prediction model based on Visual Geometry Group networks (VGGNet) [12] and
LSTM [13], a point prediction model based on residual neural networks (ResNet) [14]
and LSTM, and a point prediction model based on Inception and LSTM. Specifically,
those three short-term load point prediction models adapt VGGNet, ResNet, and
Inception subnets to extract spatial features hidden in a two-dimensional load EMD
component matrix. Subsequently, the spatial features, load data, and load price are
input into the LSTM subnetwork as temporal information. Long-term dependencies
between data are captured through the LSTM subnets to estimate the load value for
the next hour. Therefore, the three proposed point prediction models can extract
multimodal spatial–temporal features with more hidden information.

(3) With regard to the problem of being unable to quantify the uncertainty of load
forecasting, this paper puts forward a short-term load probabilistic forecasting method
based on random forests with quantile regression. The proposed method uses the
three multimodal DNN based point prediction models mentioned above and a similar
day load selection algorithm to extract the hidden features of the original data, and
then get the representative to extract the features from the prediction of the transition
point. Random forest with quantile regression is used to predict short-term power load
probability in the form of loci according to transition point prediction results. In order
to verify the reliability and effectiveness of the method proposed, the quantile score
and Winkler score are used to evaluate the comprehensive index of the probabilistic
forecasting result on the actual load of the Singapore electricity market. The analysis
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indicates that the short-term load probabilistic forecasting method proposed in this
paper has higher accuracy and reliability than other baseline approaches.

2. Methodology
2.1. Convolutional Neural Network

Convolutional neural network (CNN) is a typical kind of deep artificial neural net-
work to deal with local and global correlation. In recent years, there have been many
papers on CNN architecture research. However, from some famous competitions held by
ImageNet and COCO, seven standard designed CNN architectures can be summarized as
SqueezeNet, ResNet, AlexNet, GoogLeNet, VGGNet, and ZFNet. In this paper, VGGNet,
ResNet, and GoogLeNet structures were used to construct a short-term power load point
forecasting model.

(1) VGGNet

VGGNet is a deep convolutional network structure proposed by the Visual Geometry
Group (VGG) of Oxford University. The core idea is to replace large convolutional kernels
with repeatedly stacked small convolutional kernels, to increase the network depth and
improve the model performance. The entire VGGNet is built using the convolution layer
and the maximum pooling layer. The continuous stacking of the convolutional layer and
maximum pooling layer continuously deepens the model structure, while the increase in
the number of network layers does not cause an explosion of network parameters. The
series of multiple convolutional layers can provide multiple nonlinear activation operations,
making the network more capable of learning features.

(2) GoogLeNet

GoogLeNet [15] is a deep neural network model launched by Google. In 2014,
GoogLeNet won the champion with 6.65% error rate in the ILSVRC classification task, beat-
ing VGGNet and other models. The core element of GoogLeNet is the Inception module,
which operates multiple convolutional kernels of different sizes in parallel and can provide
performance effects of different convolutional kernels at the same time. After iterations of
research and development, the Inception module has evolved into Inception V1, Inception
V2, and Inception V3 versions. The width of the network was expanded while the number
of parameters was gradually reduced.

(3) ResNet

ResNet was proposed by He and other scholars in 2015 [14] to solve the degradation
problem of deep neural networks. The core element is identity shortcut connection, which
adds a jump between several network layers, so that the output of the upper network layer
is connected identically to the lower network layer. ResNet solves the degradation problem
of a lower accuracy rate in a deeper network, and it is the most widely used CNN feature
extraction network at present.

2.2. Long Short-Term Memory

A typical LSTM block consists of four parts: (1) memory unit; (2) forget gate; (3) input
gate; (4) output gate. The memory unit of the LSTM block runs through the whole chain
structure and is only subjected to the linear operation of the forgetting gate and input
gate. The information of the memory unit can be easily transmitted through the whole
chain continuously. Therefore, some information stored in the storage unit can still be
learned by the network even after a long time interval. LSTM is a variant model of the
recurrent neural network (RNN) with excellent performance. While inheriting most of the
characteristics of RNN, it can solve the problems of gradient disappearance and gradient
explosion caused by RNN backpropagation to a certain extent. LSTM introduces a gate
mechanism to improve the RNN structure and long-term dependent learning problem,
it has long-term memory ability, better performance, and more advantages in processing
timeseries modeling tasks.
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2.3. Quantile Regression

Quantile regression [16] is a classical probabilistic forecasting technique first proposed
by Koenker and Bassett Jr. in 1978 [17], which is used to model the relationship between
the conditional quantiles of independent and dependent variables. The random forest was
modified to account for the concept drift phenomenon by Zhukov et al. in [18]. How-
ever, traditional regression analysis methods, such as linear regression and multilinear
regression, generally study the conditional expectation of dependent variables by estab-
lishing regression equations of independent and dependent variables, whose objective
optimization function is to minimize the square sum of residuals. These methods are mean
regressions in essence and are often weak in dealing with complex problems. Compared
with the traditional regression analysis method, the quantile regression method can more
comprehensively describe the conditional distribution of dependent variables without any
distribution assumptions.

The traditional point prediction method provides the conditional expectation ỹt of
target yt by minimizing 2-norm, as shown in Equation (1), and only one output value is
given.

Γ(ỹt, yt) =||ỹt − yt||2, (1)

where Γ : (ỹt, yt)→ R , ỹt ∈ R, and yt ∈ R. The probabilistic forecasting method is used
to estimate the probability distribution to fully reveal the uncertainty of the future. The
quantile method, as one of the most widely accepted and applied probability methods, is
used to discretely predict the density function of the target time interval by calculating a
group of quantiles. The quantile function is the inverse of the cumulative density function.
Assuming Y is a real-valued random variable, its cumulative density function is shown in
Equation (2).

FY(y) = P(Y ≤ y), (2)

where FY : (y)→ R , Y ∈ R, and y ∈ R. The corresponding Q quantile can be defined as

QY(q) = FY
−1(q) = inf{y|FY(y) ≥ q}. (3)

Quantile regression can be expressed as an optimization problem to minimize the
Pinball loss function. In probabilistic forecasting, the Pinball loss function is often used to
comprehensively evaluate the reliability, sharpness, and correction of prediction results,
and it is expressed as

Pinball(ỹt,q, yt) =

{
(1− q)(ỹt,q − yt), ỹt,q ≥ yt
q(yt − ỹt,q), ỹt,q < yt

, (4)

where Pinball :(ỹt,q, yt)→ R , ỹt,q ∈ R, and yt ∈ R; yt is the condition of the prediction
target, and ỹt,q is its expectation.

For the quantile regression problem, ỹt,q can be expressed in the following linear form:

ỹt,q = Xtβq, (5)

where Xt is the input feature vector at timepoint t, and βq is the estimated parameter at
quantile q. Assuming k features, then Xt ∈ R1×k, and βq ∈ Rk×1.

For a quantile regression model, its parameters can be optimized by the following
optimization problem:

βq = argmin
βq

∑
t

∑
q

Pinball(Xtβq, yt). (6)

The estimated parameter βq can be obtained from Equation (6), and then the estimated
value ỹt,q of the dependent variable under the conditional quantile q can be obtained from
Equation (5). When q is continuously valued within the interval of (0, 1), the conditional
distribution function of the prediction target can be obtained. Thus, compared to the
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traditional regression analysis model, this quantile regression model can obtain more intact
and useful information.

Although linear quantile regression can comprehensively describe the distribution
of dependent variables when dealing with linear problems, it is not ideal when solving
nonlinear problems such as load forecasting. Therefore, when faced with nonlinear tasks,
quantile regression is often combined with other models. In Equation (5), ỹt,q can be
estimated in other forms, such as artificial neural network and random forest.

2.4. Quantile Regression Random Forest

Random forest (RF) is a learning method of establishing decision tree sets proposed
by Breiman [19]. For the regression task, random forest is a typical point prediction model,
which takes the arithmetic mean of predicted values of multiple decision trees as the
final output result. Therefore, random forest can only give a certain predictive value, but
cannot describe the uncertainty of prediction. In order to address this shortcoming, many
researchers combined probabilistic prediction theory with random forest to construct a new
probabilistic forecasting model. The quantile regression random forest is one of the most
effective and widely used models.

Meinshausen and Ridgeway [20] applied the random forest model to quantile regres-
sion and formed a new quantile regression random forest technology. Quantile regression
random forest combines the advantages of both methods. Specifically, random forest is suit-
able for high-dimensional regression and classification problems, while quantile regression
is a nonparametric estimation method for predicting conditional quantiles of variables. The
main idea of quantile regression random forest is that, instead of preserving the average of
predicted values in each leaf node of the forest, all observed predicted values in the leaf
node are saved and the conditional distribution is obtained. Quantile regression random
forest can give not only the mean value of the predicted values, but also the complete
conditional distribution of each predicted value. Suppose NRF represents the number of
trees that will grow in the forest, and MRF represents the number of random selections of
all features of the dataset at each split in the decision tree. The random parameter of each
independent decision tree is WnRF

q ; then, the decision tree is expressed as TWnRF
q

, TWnRF
q
∈ T,

and T =
{

T∗
∣∣T∗ = T(WnRF

q ), WnRF
q ∈ R

}
. The parameters of each decision tree are trained

by sampling subsets of the original training set using the self-service sampling method,
and the training method is the same as the CART algorithm. Each decision tree provides a
predicted result,

ỹt,nRF = TWnRF
q

(Xt) , (7)

where ỹt,nRF ∈ R.
Then, the prediction of random forest is expressed as

ỹt =
1

NRF

NRF

∑
nRF=1

ỹt,nRF . (8)

Traditional random forests attempt to reduce absolute errors by approximating the
conditional mean. Random forest can provide multiple yt estimates, and distribution
functions and quantiles can be calculated on the basis of ỹt,nRF , thereby realizing the
quantile regression random forest.

3. Implementation
3.1. Data Preparation

(1) Data standardization and transformation

As the feature data used in this paper include not only the historical data of power
load, but also the load price load components after the EMD process, it is necessary to
standardize the feature data to solve the problems of different dimensions.
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As for load data, EMD load components, and load price data, these components are
processed by min–max normalization in the range of [0,1] for better training results. The
min–max normalization is as follows:

xi =
xi − xmin

xmax − xmin
, (9)

where xmax and xmin are the maximum and the minimum of each component, respectively,
xi is the i-th sample value of each type of data, and xi is the i-th sample value of each type
of data after min–max normalization processing.

The prediction model uses standardized data for training; hence, the prediction results
of this model need to be reversely normalized to the actual power load value, and the
inverse normalization formula is as follows:

x̂i = (xmax − xmin)xp
i + xmin, (10)

where xp
i is the standardized predicted value of power load, and x̂i is the power load

predicted value of the actual dimension after anti-standardization.
For calendar and hour information, one-hot coding is used for standardization. One-

hot encoding, also known as one-bit efficient encoding, is conducted by transforming
m possible values of each feature into m binary features, and these binary features are
mutually exclusive; that is, for any state, only one digit is 1, while the others are 0.

(2) EMD

Empirical mode decomposition (EMD) [21] is a nonlinear analysis method that con-
verts nonstationary and nonlinear data into stationary and linear data. Unlike Fourier
decomposition and wavelet decomposition, EMD [22] overcomes the problem that the basis
function is not adaptive and only decomposes the timeseries based on its own timescale.
Furthermore, the EMD method decomposes the original timeseries into a set of intrinsic
mode functions (IMF) and a residual. Each eigen modal function contains the local features
of the original timeseries at different timescales, and the residual represents the trend of
the original timeseries. In the empirical mode decomposition method, each eigenmode
function has the following two properties:

(1) The difference between the number of extreme points and zero-crossing points is not
more than 1;

(2) The average of the upper envelope and the lower envelope must be zero.

The specific execution process of the empirical mode decomposition algorithm is as
follows:

(1) Identify all local maxima and minima in a given timeseries y(t);
(2) According to local extremum, upper envelope yu(t) and lower envelope yl(t) are

generated by cubic spline interpolation;
(3) Calculate the average sequence of the two envelopes:

m(t) =
yu[t] + yl [t]

2
; (11)

(4) Calculate the difference between the initial data and the mean:

d(t) = y(t)−m(t); (12)

(5) Check d(t) to see whether it meets the two required properties of the eigenmode
function mentioned above:

If d(t) is an eigen modal function, the residual r(t) can be calculated as

r(t) = y(t)− d(t); (13)
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If d(t) is not an eigen modal function, replace y(t) with d(t), and repeat steps (1) to (4).

(6) Take r(t) as the new initial time series y(t), and return to step (1). The process
terminates when the trend of the final residuals is monotonous.

In this way, after empirical mode decomposition, timeseries y(t) can be decomposed
to obtain n eigenmode components d1(t), · · · , dn(t). The residual component is r(t). The
original timeseries y(t) can be reconstructed as

y(t) = r(t) +
n

∑
i=1

di(t). (14)

EMD has two significant advantages in timeseries analysis or prediction. One is its
powerful reconstruction feature, whereby all eigenmode components can reconstruct the
original timeseries data without losing any data. The other is that it is good at obtaining
the trend of nonstationary data. Therefore, EMD is very helpful for timeseries analysis or
prediction. In this paper, empirical mode decomposition is used to decompose power load
timeseries. The normalized EMD component of power load is converted into an appropriate
form as the input of CNN. For example, the EMD components of historical power load
data 168 h ahead of the time to be predicted can be rearranged into the following matrix:

XM(t) =


im f1(t− 1) im f1(t− 2) · · · im f1(t− 168)
im f2(t− 1) im f2(t− 2) · · · im f2(t− 168)

...
...

. . .
...

im fC(t− 1) im fC(t− 2) · · · im fC(t− 168)

, (15)

where t represents the time to be predicted, im fc(t− i) is the value of the C-th EMD
component after normalization processing i hours before the time t, and C is the number of
components, which is 12 in this experiment. Thus, the normalized load EMD component is
transformed into a two-dimensional matrix of size (12,168).

(3) Similar day load selection

The similar day selection algorithm is a method to find similar days from historical
data, and the similar day load selection is to extract the power load value corresponding to
the time to be predicted from the similar days. Selected similar day loads are used as input
of the prediction task. In power load forecasting, selecting an appropriate similarity date is
one of the effective ways to improve the performance of the forecasting model.

Under different circumstances, there are different factors influencing load variation,
but only a few are dominant factors. For example, the holiday index is the dominant
factor in the metropolitan area, since the main electricity loads in the metropolitan area are
commercial and residential loads, which have very different demands on weekdays and
holidays. A good similarity day selection algorithm should be able to identify the main
factors of load variation under different conditions, so as to ensure a reasonable choice of
similarity days.

Let the standardized variable x(n), n = 1, 2, · · · , N represent a load influencing factor;
then, the load influencing factor vector can be obtained as follows:

X = [x(1), x(2), · · ·, x(N)]. (16)

For the days to be predicted and the historical days, vector X is expressed as X0 and
Xj.

X0 = [x0(1), x0(2), · · ·, x0(N)]. (17)

Xj = [xj(1), xj(2), · · ·, xj(N)]. (18)
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The similarity between the predicted date and the historical date can be defined as

Fj =
N

∏
n=1

ε j(n), (19)

ε j(n) =
min

j
min

n
|x0(n)− xj(n)|+ ρmax

j
max

n
|x0(n)− xj(n)|

|x0(n)− xj(n)|+ ρmax
j

max
n
|x0(n)− xj(n)|

, (20)

where ε j(n) represents the correlation between the influence factors X0 and Xj for the n-th
load, and ρ is the recognition coefficient, which is usually set to 0.5.

Using the continuous multiplication in Equation (19), the dominant load factors can
be easily identified automatically without the need to assign a weight to each factor. The
steps of the similarity day selection algorithm are as follows:

(1) Starting from the historical day nearest to the day i to be predicted, the similarity
value Fj between the day to be predicted and the historical day j is reversely calculated
daily according to Equations (19) and (20);

(2) Select D days with the highest similarity to the day i to be predicted in the recent N
days as its similarity day.

On this basis, this paper uses the similarity in Equation (20) to select the 3 days that are
most similar to the days to be predicted from the recent 30 days according to the historical
load data, prices, and calendar information. The load influencing factor vector is described
as follows:

VS = [LH , PH , DI ], (21)

where LH and PH respectively represent the loads and prices of the most recent 168 h prior
to the day, and DI represents the days of the week and the holiday index. Moreover, the
day 1 year earlier than the day to be predicted is also selected as another similar day. The
power load value corresponding to the time to be predicted is extracted as similar day
loads in the above four similar days.

3.2. Point Forecasting Model

The short-term load point prediction model is the prerequisite for realizing probabilis-
tic forecasting. This section constructs three short-term load point prediction models based
on multimode DNN using VGGNet, Inception, and ResNet variants of the convolutional
neural network [11].

(1) Point forecasting model based on VGGNet and LSTM

As illustrated in Figure 1, the construction process of the point forecasting model based
on VGGNet and LSTM is mainly divided into two steps. In the first step, the VGGNet
subnetwork is constructed on the basis of VGGNet, and the spatial features of XM(t) are
extracted using the sensitivity of the subnetwork to obtain spatial information. The VGGNet
subnetwork consists of two VGGNet blocks, each containing two 3× 3 convolution layers
and a 2× 2 maximum pooling layer. The results after each convolution layer are activated
by ReLU activation function. At the end of the VGGNet subnetwork, the feature extracted
by the VGGNet block is flattened, and a fully connected layer is employed for outputting
the feature vectors. As a result, the extracted features can be taken as the encoded features
that represent the input XM(t).
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Figure 1. Structure diagram of point forecasting model based on VGGNet and LSTM.

In the second step, a fusion layer integrates feature vectors extracted from the VGGNet
subnetwork with load series, electricity price series, and time information. The vector after
fusion is described as follows:

X f (t) = [XCNN(t), Xload(t), Xprice(t), Xtime(t)], (22)

where XCNN(t) is the feature vector extracted from VGGNet subnetwork, Xload(t) is the
historical load vector, Xprice(t) is the historical electricity price vector, and Xtime(t) is the
time information vector.

The output of the fusion layer serves as the input of the LSTM, which learns the
long-term dependence between data and realizes the power load point forecasting in the
next hour. Through the above two steps, the point forecasting model based on VGGNet
and LSTM can extract multimodal spatial–temporal features containing more hidden
information.

(2) Point forecasting model based on Inception and LSTM

As illustrated in Figure 2, the structure of the point forecasting model based on
Inception and LSTM is similar to that of the point forecasting model based on VGGNet
and LSTM, which is divided into two main subnetworks: CNN and LSTM. Unlike point
forecasting models based on VGGNet and LSTM, the CNN subnetwork is composed of
Inception modules. The internal structure diagram of the Inception module is presented in
Figure 3.
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Figure 2. Structure diagram of point forecasting model based on Inception and LSTM.

Figure 3. Inception module internal structure diagram.

The Inception subnetwork consists of two Inception modules with no pooling layer
used between module connections. The last Inception module follows a layer of average
pooling with a pooling kernel of 3× 3 and step of 2, which reduces the size of the output
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from the Inception module. Finally, the output of the mean pooling layer is flattened, and a
fully connected layer is used to output feature vectors, which represents the spatial features
extracted from the load EMD component matrix XM(t).

The main function of the LSTM subnetwork is to make deterministic point forecasting
of the load value in the next hour as a function of the time characteristics of input vector
learning. The input of the LSTM subnetwork is also a fusion vector X f (t), whose specific
composition is depicted in Equation (9), except that XCNN(t) changes as an eigenvector
output by the Inception subnetwork, and other sub-vectors remain the same.

(3) Point forecasting model based on ResNet and LSTM

As illustrated in Figure 4, the point forecasting model based on ResNet and LSTM is
also divided into two main subnetworks, the ResNet subnetwork and LSTM subnetwork,
which is similar to the above two point forecasting models. The ResNet subnetwork is
mainly composed of two ResNet modules, which are used to extract the spatial features
of the load EMD component matrix XM(t). The convolutional results of each layer of the
ResNet subnetwork are activated by the ReLU activation function.

Figure 4. Structure diagram of point forecasting model based on ResNet and LSTM.

This is the same as the above two point forecasting models. The input of the LSTM
subnetwork is the fusion vector X f (t) output by the fusion layer, and XCNN(t) changes
as an eigenvector extracted by the ResNet subnetwork. The LSTM subnetwork learns
the relationship between fusion vector and load, captures the long-term dependence, and
realizes the prediction of power load points in the future hour.

3.3. Probabilistic Forecasting Method Based on Quantile Regression Random Forest

The point forecasting models based on VGGNet and LSTM, Inception and LSTM,
and ResNet and LSTM were proposed in the previous section. According to the results
obtained by the three point forecasting models, quantile regression random forest was



Energies 2022, 15, 663 12 of 20

used to generate short-term load probabilistic forecasting results at the model end. The
frame diagram of the short-term load probabilistic forecasting method based on quantile
regression random forest is shown in Figure 5.

Figure 5. The frame diagram of the short-term load probabilistic forecasting method based on
quantile regression random forest.

For convenience, the definition of some variables is listed in Table 1 where t is the time
to be forecast. As shown in Figure 5, the load probabilistic forecasting method based on
quantile regression random forest mainly includes four layers, which are the input layer,
the feature extraction layer, the forecasting layer, and the output layer.

The feature data required for short-term load probabilistic forecasting are fed to the
input layer, including XM(t), XS(t), and VS(t). The feature extraction layer includes four
sub-models, which are the three point forecasting sub-models on the basis of VGGNet
and LSTM, Inception and LSTM, and ResNet and LSTM, as well as a similar day load
selection sub-model. These four sub-models forecast the short-term power load points on
the basis of load influencing factors. The forecasting results from these sub-models are
the transition forecasting values, which represent the features extracted from the input
data. ỹ1(t), ỹ2(t), ỹ3(t), and Sday(t) are the transition point forecasting results obtained
from the feature extraction layer. The three point-forecasting models use the subnetworks
of VGGNet, Inception, and ResNet to extract the spatial features hidden in the load EMD
component matrix. Then, the spatial features are integrated with the information of load,
electricity price, and time as the supplementary information and input into the LSTM
subnetwork. Next, the LSTM subnetwork captures the long-term dependence in the data
and estimates the load value for the next hour.
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Table 1. Description of the defined variables.

Variable Size Description

XS(t) (1,379)
Input vector containing the load and the electricity price information

168 h before t, and the time information of the hour, week, month,
and holiday at t.

VS(t) (1,344) Input load influencing factors vector at t.

ỹ1(t) (1,1)
Output forecasting results obtained by the point forecasting

sub-model based on VGGNet and LSTM in the feature extraction
layer at t.

ỹ2(t) (1,1)
Output forecasting results obtained by the point forecasting

sub-model based on Inception and LSTM in the feature extraction
layer at t.

ỹ3(t) (1,1) Output forecasting results obtained by the point forecasting
sub-model based on ResNet and LSTM in feature extraction layer at t.

Sday(t) (1,4) Output vector of the forecasting results obtained by the similar day
load selection sub-model at t.

The similarity daily load selection sub-model uses the similarity defined in Equation
(19) to select the 3 days most similar to the day to be predicted from the past 30 days
according to the historical loads, prices, and calendar information. In addition, a date
1 year earlier than the predicted date was chosen as another similar date. In the above
four similar days, the power load values corresponding to the time to be predicted were
extracted as similar daily loads as the prediction output of the sub-model. The similar
daily load selection sub-model was used to provide additional effective features for the
prediction layer and improve the prediction accuracy of the method.

According to Equation (20) and on the basis of the information of the calendar, the
historical power load, and historical electricity prices, the 3 days most similar to the forecast
day could be selected from the past 30 days. In addition, the day 1 year earlier than the day
to be predicted was also selected as another similar day. In the above four similar days,
the power load corresponding to the time to be forecast was extracted as the similar day
load and used as the forecasting output of the sub-model. The similar day load selection
sub-model was adopted to provide additional effective features for the forecasting layer
and improve the forecast accuracy of the method.

The process of the forecasting layer can be divided into two steps. In the first step,
the output of feature extraction layer is feature-fused to generate a new feature vector. In
the second step, the quantile regression random forest realizes the short-term power load
probabilistic forecasting in the form of a quantile based on the new feature vector obtained
in the first step.

In the final part of the proposed probabilistic forecasting method, an output layer is
constructed to get the short-term power load probabilistic forecasting results.

The training process of can be divided into two stages. In the first stage, the input
training data sets are used to train the sub-models in the feature extraction layer. In the
second stage, the point forecasting outputs obtained by the four sub-models are used to
generate a new dataset, on which the quantile regression random forest of the forecasting
layer is trained. In the test process, the test data are input into the feature extraction
layer of the four trained sub-models. The final quantile forecasting value is generated by
the forecasting layer of quantile regression random forest using the output of the feature
extraction layer in the point forecasting model.

4. Numerical Simulations

To verify the validity of the proposed probabilistic forecasting method, a series of
simulations were conducted on the basis of the Singapore National Electricity Market
electricity load dataset. Hourly data from a total of 35,064 timepoints in 4 years from 2016
to 2019 were selected as training and test datasets. The training samples comprised 75%
of the datasets, from 2016 to 2018. The test samples comprised the remaining 25% of the
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datasets, in 2019. In addition, 0.1, 0.2, 0.3, 0.4, . . . , 0.9 were selected as the nine quantiles.
The number of decision trees in the quantile regression random forest was 200.

The comprehensive evaluation indicator of probabilistic forecasting is introduced in
this section. Moreover, the analysis of the probabilistic forecasting results obtained by the
proposed method is provided. Lastly, the probabilistic forecasting accuracy of the proposed
method is compared with other existing probabilistic forecasting methods.

The probabilistic forecasting model was trained using the efficient Adam optimizer
with default parameters as suggested in [23]. All models were built and trained on a
desktop PC with a 3.4 GHz Intel i5 processor and 8 GB of memory using the Keras 2.4.3
with Tensorflow 2.3.1 as backend in the Python 3.6 environment. Training the model took
approximately 3.2 h.

4.1. Evaluation Indicators

Probabilistic forecasting accuracy is mainly evaluated from the aspects of reliability,
sharpness, and resolution. At present, most studies related to load probability forecasting
simultaneously consider the above three aspects to comprehensively evaluate the proba-
bility forecasting accuracy. Quantity score and Winkler score are the two most commonly
used comprehensive indicators.

(1) Quantity Score

The Global Energy Forecasting Competition 2014 formally introduced probability
score into the load forecasting field and put forward quantity score indicator to evaluate the
probabilistic forecasting result. The quantity score indicator uses the Pinball loss function
to measure the forecast error of the quantile forecast. T is the total number of time points in
the test set, K is the total number of the subpoints, and yt is the true load value at t in the
test set. The average value of quantity score can be defined as

Avg.QS =
1

TK

T

∑
t=1

K

∑
k=1

Pinball(ỹt,qk , yt), (23)

where Pinball(ỹt,qk , yt) represents the Pinball loss function at quantile qk and time t in the
test set. A smaller Avg.QS means a better performance of the probabilistic forecasting
method.

(2) Winkler Score

The Winkler score is a probabilistic forecasting evaluation method proposed by Win-
kler, which considers both coverage rate and forecast interval width. Let Lt and Ut denote
the lower and upper bounds of the prediction interval, respectively, while δt is the width of
the prediction interval, which is given by

δt = Ut − Lt. (24)

Then, the Winkler Score at time t can be defined as

WSt =


δt Ut ≥ yt ≥ Lt,
δt + 2(Lt − yt)/α Lt > yt,
δt + 2(yt −Ut)/α Ut < yt.

(25)

According to the above analysis, when yt is located in the forecast interval and δt
is the smallest, the Winkler score is the minimum. Thus, a smaller Winkler score means
a better prediction interval. When Winkler score is used to evaluate the probabilistic
forecasting performance, the value at all timepoints should be calculated, and their average
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is considered as the accuracy of the probabilistic forecasting model using the whole test set.
The average value of Winkler score can be defined as

Avg.WS =
T

∑
t=1

WSt. (26)

To comprehensively evaluate the probabilistic forecasting performance of the proposed
method, the quantile score and Winkler score were both used to evaluate the accuracy of
probabilistic forecasting.

4.2. Forecasting Results and Analysis

The probabilistic forecasting method based on the mixed point forecasting model was
implemented to obtain the probabilistic forecasting results. The probabilistic forecasting
results are analyzed in detail below.

The 48 h load probability prediction results based on the mixed point prediction model
are shown in Figures 6 and 7. Figure 6 shows the short-term load probabilistic forecasting
results within 48 h on weekdays, and Figure 7 shows the short-term load probabilistic
forecasting results within 48 h on weekends. The solid red line represents the actual load,
and the dotted green line represents the forecast quantile of load probability from 0.1 to
0.9 with an interval of 0.1. The actual load at each timestep is compared with the forecast
quantile. The quantile curve of load probabilistic forecasting can track the overall trend of
load change. In most cases, the actual load value stays in the quantile range. Therefore,
it is believed that the proposed method has high reliability and accuracy on probabilistic
forecasting.

Figure 6. Short-term load probabilistic forecasting results within 48 h on weekdays.
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Figure 7. Short-term load probabilistic forecasting results within 48 h on weekend.

Three existing short-term load probabilistic forecasting methods (quantile gradient
enhanced regression tree [24], quantile regression random forest [25], and probabilistic
forecasting method based on prediction residual modeling [26]) are introduced to verify
the performance improvement of the proposed method. To ensure the fairness and validity
of the numerical simulations, all the load probabilistic forecasting methods were tested
on the same dataset. The specific information of the three short-term load probabilistic
forecasting methods used for comparison is as follows:

(1) Comparison method 1: quantile gradient enhanced regression tree. This method
uses a quantile gradient enhanced regression tree to directly predict short-term load
probability. The input features are historical load data and related factors, and the
output is the quantile of load.

(2) Comparison method 2: quantile regression random forest. The quantile regression
random forest was briefly introduced in Section 4.1. This method uses quantile
regression random forest to directly predict short-term load probability, and the input
features are historical load data and related factors.

(3) Comparison method 3: probabilistic forecasting method based on prediction residual
modeling. Firstly, it uses historical load data and related factors to realize a point
prediction and obtain the result. Then, the result is used as an additional input feature
to describe the conditional distribution of residuals on the point prediction. Finally,
the point prediction is combined with the conditional distribution of residuals to
obtain the final load probabilistic forecasting result.

The comparison results of the forecast performance based on Avg.QS and Avg.WS
with different methods are listed in Table 2. The value of Avg.WS was calculated under the
condition α = 60%. As shown in Table 2, Avg.QS and Avg.WS of the proposed method were
significantly smaller than the other three methods on the test set, proving the superiority of
the proposed method.

Table 2. Comparison results of the short-term load probabilistic forecasting performance with
different methods on test sets.

Method Avg.QS Avg.WS

Comparison method 1 31.09 237.60
Comparison method 2 30.37 233.18
Comparison method 3 27.26 198.72
The proposed method 24.44 185.80
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The comparison results of Avg.WS under different confidence levels with the four
methods are listed in Table 3. It can be found that, under the same confidence level, Avg.WS
of the proposed method was smaller than that of the other three methods. Therefore,
compared with the other three methods, the proposed method is more effective in short-
term load probabilistic forecasting.

Table 3. Comparison results of Avg.WS with different methods on test sets under different confi-
dence levels.

Method α = 20% α = 40% α = 60% α = 80%

Comparison method 1 599.85 296.87 237.60 247.76
Comparison method 2 601.90 282.84 233.18 269.12
Comparison method 3 583.45 275.05 198.72 199.91
The proposed method 503.75 238.58 185.80 204.64

According to the above analysis, compared with comparison methods 1, 2, and 3,
the proposed method significantly improved the probabilistic forecasting accuracy, with a
smaller prediction interval, higher coverage rate, and higher reliability.

From the above analysis, it can be concluded that, among the three comparison
methods, the performance of comparison method 3 was optimal. Therefore, in order to
intuitively show the performance improvement of the proposed method, Figure 8 describes
the probabilistic forecasting results of the proposed method and comparison method 3
under the confidence level of 80%. The forecast time duration in the figure is from 2 August
2019 to 8 August 2019. The 0.1 and 0.9 quantiles of the forecast results were selected as the
upper and lower limits of the forecast interval.

According to the figure analysis, when the confidence level was 80%, the actual load
values at most timepoints were within the upper and lower limits of the two methods.
Especially in the time periods from peak to trough and trough to peak, the upper and
lower limits of the two methods were smaller and more consistent with the actual value.
Compared with comparison method 3, the upper and lower bounds of the proposed
method were closer to the actual value, and the width of the prediction interval was smaller.
In particular, the prediction interval of the proposed method was significantly narrower
than that of comparison method 3. During the week from 2 August 2019 to 8 August 2019,
the quantile score of comparison method 3 was 15.33 and the quantile score of the proposed
method was 15.15. Therefore, in these 2 weeks, the probabilistic forecasting effect of the
proposed method was better than that of comparison method 3.

On the basis of the above analysis of short-term load probabilistic forecasting results,
the load probabilistic forecasting method based on quantile regression random forest pro-
posed in this paper has high probabilistic forecasting accuracy. Compared with other
existing load probabilistic forecasting approaches, the proposed method has a better proba-
bilistic forecasting performance, narrower forecasting interval, higher coverage, and higher
reliability, while significantly improving the accuracy of probabilistic forecasting.
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Figure 8. Short-term load probabilistic forecast for the week from 2 August 2019 to 8 August 2019.

5. Conclusions

To solve the problem that the point forecasting model cannot quantify the uncertainty
of power load, this paper proposes a short-term load probabilistic forecasting method
based on quantile regression random forest. Firstly, three short-term load point forecasting
models based on multi-model deep neural networks are established to extract multimodal
spatial–temporal features containing more hidden information. Using these three short-
term load point forecasting models and the similar day algorithm, the transition point
forecasting results can be obtained. According to the forecasting results, the quantile
regression random forest method was used to achieve short-term power load probabilistic
forecasting. Lastly, taking the Singapore National Electricity Market electricity load dataset
as a case study, the comprehensive evolution indicators quantity score and Winkler score
were used to measure the short-term probabilistic forecasting accuracy. The numerical
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simulations showed that, compared to QGERT, QRF, and PFPRM, the proposed method
has higher forecasting accuracy and higher reliability.

Although the probabilistic forecasting method proposed in this paper significantly im-
proved the prediction accuracy, due to the limitations of subjective and objective conditions,
further research is needed in the following aspects:

(1) Although LSTM has a strong performance in processing timeseries modeling tasks,
its parameters still have some room for optimization. In order to reduce the computa-
tion and time consumption of model training and improve computing efficiency, it
should be considered to reduce the parameters while keeping the prediction accuracy
unchanged.

(2) In this paper, only historical load, historical load prices, month, week, holiday, and
hour information are used to predict the probability of short-term power load. How-
ever, in practice, the influencing factors of power load are complicated, and the
accurate prediction of short-term power load may not be achieved only by relying on
the above features. Therefore, subsequent research needs to consider the influence of
other factors on power load such as temperature, humidity, regional economy, and
environment, so as to improve the accuracy of short-term load forecasting.

(3) The data used in this paper only correspond to the Singapore National Electricity
Market. In future research, different power load datasets can be selected to train
and verify the proposed model and method, as well as optimize it to enhance its
generalization ability. In addition, it is also necessary to classify the types of electricity
users, such as residential, industrial, and commercial, and construct load probabilistic
forecasting models for all types of users according to the differences in the behavior
characteristics of each type, so as to provide suggestions for personalized electricity
sales services.
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