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Abstract: This paper describes an improved non-linear switching circuit (INLSC) for active recti-
fication of voltage and reduction of ripples in the voltage waveform for the piezoelectric energy
harvesting (PEH) system. The proposed converter controls the alternating current (AC) generated
by the piezoelectric device (PD) under mechanical vibration. The proposed circuit combines the
boost and buck-boost processes through a switching process, which functions in both positive and
negative cycles. In addition, it controls the voltage and frequency of the load capacitor. In this
process, the passive components in the circuit are energised by being short with the AC voltage
using switching signals, which facilitates the active rectification of ultra-low AC voltage. Design
considerations, theoretical analysis, simulations and experimental results are presented. It was shown
that the circuit was able to control the switching signal and to convert low AC voltage (0.44 Vi) to high
direct current (DC) voltage (6.5 Vdc) while achieving an output power of 469 µW which outperforms
the existing similar circuits and synchronous rectifier circuit. The ripples in the rectified voltage were
also comparatively less. Application-wise, the proposed circuit could power a manually connected
7-segments display, commonly used for traffic applications.

Keywords: AC-DC conversion; boost; buck-boost; switching circuit; 7-segment display; piezoelectric
devices; rectifier-less circuit; synchronous rectifier circuit

1. Introduction

Power electronic circuits play a significant role in the piezoelectric energy harvesting
(PEH) system by acting as a mediator to convert the AC voltage, which is generated by PD
from mechanical energy (ME) [1–3] into direct current (DC) voltage. In practice, the PD
generates limited power due to its high internal impedance and erratic waveform due to
random vibrations from nature. Therefore, the efficiency of electronic circuits is essential to
minimise losses during the conversion process. The converted DC voltage can be used in
various applications, namely charging of storage devices [4], powering of wireless sensor
nodes for structural health monitoring and powering small scale devices for military and
medical use [5].

Numerous AC-DC rectification circuits for PEH systems have been developed and
reported in the literature [6–18]. The simplest one is a conventional full-bridge rectifier
(FBR) circuit. Despite their simplicity and popularity, this rectifier circuit suffers from
several limitations: (1) It comprises of diodes, which results in unavoidable voltage drop
across them; (2) it does not step up the voltage of PD, which limits its application as most
of the electronic devices require 2–3 Vdc; (3) the presence of ripple voltage (Vr) in the
converted voltage waveform. Therefore, it is arduous to design a power electronic circuit
suitable for converting and boosting the low voltage generated by PD, as well as to reduce
the ripples in converted voltage waveform. Various enticed circuits/methods have also
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been proposed in the literature, namely single-stage, dual-stage, and non-linear circuits.
The key difference between the single and the dual-stage circuits is that a single-stage
circuit includes AC-DC conversion, while the dual-stage includes AC-DC and DC-DC
conversion stages. A flow chart illustrating the process of single and dual-stage circuits for
the PEH system is depicted within the context of Figure 1a,b.
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A recent study on a single-stage rectifier circuit by the authors [4,19] improved MOS-
FET bridge rectifier circuit into a self-powered H-Bridge circuit. The proposed circuit was
proven applicable with ultra-low voltage and high-frequency excitation. The outcome
showed that the proposed circuit notably increased the output voltage and power produced
from the PD in comparison with FBR circuits. The ripples in rectified voltage waveform
were also lower, in comparison with the conventional rectifier circuit. However, the output
voltage was low, which was insufficient for powering any electronic devices.

A dual-stage rectifier circuit was proposed by [20], where a controller varied the
switching frequency (fs) of the step-down converter circuit to maximise the output power
flowing into the battery. However, due to its switching frequency, the switching losses
were higher than the output power. Another possible way of converting low voltage into
regulated DC is by using a dual-stage converter [21]. This circuit achieved maximum power
flowing into the storage by controlling the ripples of the output. However, the proposed
dual-stage circuit was very complex and costly.

Another approach, namely an energy-harvester circuit with a clock booster for PEH,
was proposed by [22] to minimise the voltage drop in the rectification process. The proposed
circuit, also known as the second stage converter, included a clock booster to maximise
the pulses’ amplitude and turn the buck-boost converter quickly. It was constructed in
CMOS and tested through simulation. The output voltage was nearly 0.8 Vdc at a frequency
of 100 kHz with an input voltage of 1.6 Vac. Despite the use of additional components
in the circuit, the rectified voltage was limited and unstable. Synchronous rectification
is another well-known power extraction method for PEH. One of its main advantages is
that the power generated by PD is independent of the connected load. However, recent
literature [10,23–25] mainly focused on synchronous power rectification using the non-
linear technique. Active rectification is not possible because the PD delivers low output
power in most cases.

To address the abovementioned shortcomings (i.e., voltage drop, low voltage and
ripple voltage) of the FBR circuit (i.e., linear circuit), a non-linear approach is proposed in
this study.

This paper mainly focuses on the improvement of active rectifiers; however, the
proposed circuit does not involve auxiliary interfaces. The main novelty of the proposed
circuit and similar circuits (i.e., similar to INLSC) [22,26–30], is that the proposed circuit
also efficiently works with the duty cycle of 50%, input voltage of 0.44 Vi, and achieves
maximum output power, which is not possible by the abovementioned literature circuits
in comparison with INLSC circuit. In addition, the proposed INLSC circuit requires only
one PD, whereas other literature circuits adopted a few PD’s, which results in additional
costs. Besides, the applicability of similar circuits is not shown in the literature. Therefore,
as a primary rule, an active and non-linear rectifier circuit is desired to achieve a high
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rectified voltage (HRV) and high output power (HOP) with only 50% of the duty cycle.
However, the balance between HRV and HOP has not been adequately addressed in the
literature. Therefore, this study proposes a non-linear circuit, aiming to achieve optimal
rectified voltage and high output power with active rectification. To verify the applicability,
INLSC was also tested briefly with a 7-segment display.

The motivation of this proposed study is to utilise the benefits of the conventional
boost converter [31], buck-boost converter [32], and synchronous rectifier circuits [23,33,34].
As a result, the proposed circuit is expected to reduce the voltage drop in the rectification
process, boost the input voltage, and minimise the ripples in the output voltage waveform.
The proposed circuit, namely an improved rectifier-less switching circuit, INLSC, consists of
both boost and buck-boost operations controlled by a switching process using bidirectional
switches. This circuit employs a polarity detector and an inductor that enables low voltage
operation with less complexity. Besides, it uses only one capacitor to reduce complexity
and cost.

To validate the performance of the proposed INLSC, a series of experimental tests and
numerical simulations were carried out in this study. A real-life application, which is not
attempted in the literature, is also presented in the proposed study.

2. Power Extracting Circuits for PEH

This section asserts the basics of the PEH system, including internal circuit modelling
of PD and commonly used conventional circuits in the rectification process. Subsequently,
the proposed INLSC is outlined.

2.1. Optimal Power Flow of PD

A vibrating PD is modelled as an AC current source, ii (t) or a voltage source, Vi (t) in
parallel or in series with its internal capacitance, CP, respectively, to ascertain its power flow
characteristics depicted within the context of Figure 2. The generated voltage or current
fluctuates with the mechanical vibrations; however, it is assumed to be constant regardless
of external loading [9].
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Figure 2. A vibrating PD circuit model (a) Current source and (b) Voltage source.

2.2. Conventional FBR Circuit

The simplest rectifier circuit to convert AC to DC is the FBR circuit. The operation of
the FBR circuit and its corresponding output waveforms are outlined in Figure 3.

From Figure 3, it can be observed that the current produced by PD needs to first charge
its internal capacitor, CP. During this period, the PD voltage is less than the sum of rectified
voltage and forward voltage (i.e., PD voltage ≤ Vdc + 2 Vd), where Vd is the voltage drop
across diodes. Thus, the FBR is blocked, and the load capacitor, CL does not charge. Such
process occurs in both positive and negative half cycles. Intervals 1 and 3 are known as
non-harvesting periods (i.e., PD is charging its internal capacitor). When the magnitude
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of the PD voltage matches the rectified voltage (i.e., PD voltage ≥ Vdc + 2 Vd), the FBR is
in conduction state. The load capacitor is now charged. Intervals 2 and 4 are known as
harvesting periods [4,19,35].
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Figure 3. AC-DC rectification using FBR circuit (a) PD and FBR circuit, (b) Output waveforms.

The PD voltage (Vi) and the DC voltage (Vdc) rectified by FBR circuit are illustrated
in Figure 4a,b, respectively. From Figure 4b, it can be noticed that, in the positive half
cycle, the PD voltage charges the load capacitor from V2 to Vm. Then, at t = π/2, the load
capacitor discharges through the load resistor RL, and the ripple voltage is depicted in
Figure 4c. Besides, the currents through the load capacitor, CL and resistor, RL, denoted as
iCL and iRL, respectively, are shown in Figure 4d,e.
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Figure 4. Various output waveforms of an FBR circuit (neglected CP): (a) PD voltage, Vi, (b) Rectified
voltage, Vdc, (c) Ripple voltage, Vr, (d) Current through load capacitor, iCL and, (e) Current through
resistor, iRL.

The description of a negative half cycle is herein omitted, as it is similar to the positive
half cycle. It can be seen from Figure 4 that the maximum voltage drop occurs between Vm
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to V2 (i.e., Vm − V2). From Figures 2 and 4, the PD voltage applied to the proposed circuit
can be expressed as follows [36]:

Vi (t) = Vm sin
(

2 π t
Tin

)
(1)

where Tin is the period of vibration of PD and Vm is the magnitude of the AC.
Referring to Figure 4c, considering one cycle of charging and discharging time of FBR

as Ts, and the charging time as ∆t, the discharging time period can be written as:

Ts − ∆t (2)

Considering the load capacitor, CL is charged and discharged through load resistor,
RL, the voltage of the capacitor can be expressed as:

Vdc (t) = Vdc e(
−t

RLCL
) (3)

The maximum value of the ripple voltage, VP1 and the minimum value of the peak
ripple voltage, VP2, can then be derived:

VP1 = Vm (4)

VP1 = Vdc = Vm e[
−(TS −∆t)

RLCL
] (5)

Assuming that ∆t� Ts:

VP1 = Vdc = Vm e[
−(TS)
RLCL

] (6)

1st assumption:

Vm

[
1 +

(
1 + (

− TS

RLCL
)

1
.

1
1!

+ (
− TS

RLCL
)2.

1
2!

+ (
− TS

RLCL
)3.

1
3!

)]
(7)

Assuming that Ts � RL CL:

VP2 = Vm

[
1−

(
TS

RLCL

)]
(8)

In addition, the ripple voltage (Figure 4c) can be written as:

Vripple = (max peak −min peak) (9)

= (VP1 − VP2) (10)

Substituting Equations (6) and (8) into Equation (10), the ripple voltage of the FBR
circuit can be written as:

Vripple = Vm

[
Ts

RLCL

]
(11)

Considering TS =
1

fs (frequency)′
(12)

Vripple = Vm
1

2 fsRLCL
(13)

From Figure 4, it can be observed that the rectified voltage differs from the expected
DC voltage. This issue (i.e., ripple voltage) is also taken into consideration in this study.
A switching control circuit that includes boost and buck-boost modes is proposed to over-
come these issues, namely forward voltage, boosting voltage, and ripple reduction.
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2.3. Proposed Circuit’s Benifits

For ease of switching operation, bidirectional switches are used, which consist of four
N-MOSFETs. These switches work in both positive and negative half cycles simultaneously.
In addition, one inductor and one capacitor are included in the circuit. The main benefits of
the proposed switching circuit are:

• Low input voltage for activation;
• Smaller size and lower cost;
• Able to boost low voltage into high voltage;
• Able to reduce ripples in the output waveform;
• It utilises the internal body diode of the transistors to reduce the forward voltage,

which reduces the cost.

Further explanation of the circuit is delineated in the following sections.

3. Operation Principle

The proposed INLSC and its operation are depicted in Figure 5. An input AC voltage
of 0.44 Vi at a frequency of 100 Hz is utilised to rectify the output of the PD. In order to
convert AC into DC, the switches must be able to conduct and to block the currents in both
cycles during ON and OFF conditions.
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Figure 5. Schematic of the proposed INLSC (M1–M4: MOSFET switches, G: Gate, D: Drain, S: Source,
A1, A2: Logic gates).

Therefore, four MOSFET (bidirectional) switches were adopted and connected. Note
that, in both positive and negative half cycles, switches M3 and M4 were only in ON state,
while M1 and M2 are in OFF state, which prevents the circuit from reverse recovery loss.
In other words, the voltage stored in the load capacitor could not flow back to the PD, and
this process is known as return phenomenon, which is a significant research gap in the
SSHI method [33,37]. Therefore, these M1, M2 switches are always in OFF state.

In this study, a polarity detector is employed to detect the polarities of PD. Therefore,
the switches M3 and M4 are always synchronised with the PD voltage. When the polarity
detector detected the polarity, the resultant signal was sent to the logic AND gates, A1
and A2. Besides, the gates were also powered by PWM (pulse with modulation) of the
controller [2].

Thus, the output signal of the polarity detector and the pulse signal was compared.
The resultant signals from both AND gates (A1 and A2) are sent to switch M3 and M4,
respectively. The switch, M3 conducts in positive half cycle, while the switch, M4 works
in negative half cycle. In the positive half-cycle of the PD voltage, it operates as a boost
converter while in the negative half cycle, it works as a buck-boost converter. This type
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of discontinuous mode (DCM) circuit has the advantage of limiting the switching losses.
Besides, it reduces the reverse recovery loss of the diode.

In this operation, the proposed circuit possesses four main operating modes in each
half cycle. Modes 1–4 and Modes 5–8, corresponding to the positive half cycle and the
negative half cycle, respectively. Each mode is described below:

Mode 1: In the beginning, the PD charges its internal capacitor, CP while the proposed
INLSC is in OFF state.

Mode 2: During t0, the switch, M3 is in ON state, and the PD voltage feeds the
inductor, L1. The current flow path in this mode is PD–L1–M3–D4–PD. Thus, the inductor
is energised. However, since the inductor does not allow a sudden change in current, the
current linearly increases from zero to its peak value. At this instant, the load capacitor
powered the load resistor, RL.

Mode 3: During this time, the switch, M3 is in OFF state. The energised inductor in
Mode 2, freewheels via D1, which is an internal body of M1. As stated above, the inductor
does not discharge instantly as well; it discharges linearly and charges the load capacitor,
CL. However, the capacitor also energises linearly since it does not allow a sudden change
in voltage. Therefore, it charges from zero to its peak value.

Mode 4: When the inductor current reaches zero through the internal body diode, D1
of M1, the internal body diode turned OFF automatically. This mode effectively eliminates
the reverse recovery loss of the diode since in practice, a diode is not physically presence.
Besides, switch M1 is in OFF state.

Mode 5: Modes 4–8 occur in the negative half cycle of PD. This mode is similar to
Mode 1, but it works in the negative half cycle of the PD and charges its internal capacitor.

Mode 6: During this time, the switch, M4 is in ON state, while the other switches
are in OFF state and the PD feeds the inductor, L1. The current flow path in this mode is
PD–M4–D3–L1–PD. Thus, the inductor is energised from zero to its peak value. At this
instant, the load capacitor powered the load resistor, RL.

Mode 7: During this time, the switch, M4 is in OFF state. The energised inductor in
Mode 6, freewheels via D2, which is an internal body of M2. As stated above, the inductor
discharges and charges the load capacitor linearly. Therefore, the load capacitor charges
from zero to its peak value.

Mode 8: When the inductor current discharges to zero, the internal body diode, D2
of M1 is turned OFF automatically. This mode eliminates the reverse recovery loss of
the diode since there is no presence of a diode in practice. Besides, the switch M2 is in
OFF state.

Considering the operating modes, both M1 and M2 are in OFF state in both positive
and negative half cycles while the other two switches, M3 and M4, are in ON and OFF
states simultaneously.

4. Theoretical Analysis and Design

To increase the extracted output power from PD and reduce the ripples in the out-
put waveform, two key aspects were considered in the design of the circuit, namely the
impedance matching and the switching process. It is worth noticing that the impedance of
the proposed converter circuit can be varied by adjusting the duty cycle. Considering the
primary focus of this study is on the basic topology of circuit and its verification, sinusoidal
AC voltage was taken as input voltage to simplify the process of analysis. The proposed
circuit enjoyed the benefits of lower cost and complexity, as only one inductor and one
capacitor were used. Unlike most previously proposed circuits, no diode was used to
transfer the energy from inductor to load capacitor. For the purpose of analysis, a few
assumptions were made for the switching process:

• The output load capacitor must be large enough to keep the rectified voltage stable.
• The switching frequency, fs should be higher than the external vibration frequency

applied to the PD to minimise the ripples. Besides, due to high fs, the vibration fre-
quency of PD is assumed constant across each switching period [31,36]. Subsequently,
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the PD voltage can also be considered as a constant voltage source, as expressed in
Equation (1).

• For ease of calculations, internal properties of passive components in the circuit are
not taken into consideration.

In addition, the power semiconductor components used in the proposed circuit turns
ON with the zero current switching (ZCS) method. Due to this reason, most of the switching
losses could be eliminated. The switching signals applied to the switches, namely M3
and M4, are shown in Figure 6. The proposed circuit integrated the boost and buck-
boost operations in the positive and negative half cycles, respectively by applying the
abovementioned switching signals to M3 and M4. The operation loops of the circuit in the
positive half cycle are outlined below and plotted in Figure 7.
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where D1 and D2 are the duty cycle of ON and OFF periods, respectively, and Tsw is the
switching frequency of the duty cycle. VL1 is the voltage across the inductor.
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Loop 1: Loop 1 occurs in Mode 2. During this time, the PD voltage charges the
inductor, L1 and the circuit is shorted. Therefore, the voltage across the inductor, VL1 is
equal to the PD voltage, Vi, and it can be expressed as:

VL1 = Vi (14)

At this instant, the load capacitor is powering the load resistor. Thus, the voltages
across the load capacitor and resistor are the same, and the current flow through CL can be
expressed as:

iCL=
−Vdc

RL
(15)

Loop 2: Loop 2 takes place in Mode 3. At this time, the load capacitor is powered by
the peak inductor current, ipk, which was initially charged in Mode 2. The voltage across
the inductor can be expressed as:

VL1 = Vi −Vdc (16)
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Furthermore, the current through CL is expressed as:

iCL = iL1 − Vdc/RL (17)

Loop 3: Loop 3 occurs in Mode 4. When all the switches are in OFF condition, no
PD voltage and current are flowing through the circuit. At this time, the PD voltage and
current across the inductor can be expressed as:

VL1 = 0, ii (t) (18)

Furthermore, the current through the load capacitor can be written as:

iCL =
−Vdc

RL
(19)

The output waveforms of the proposed INLSC in switching process, when the switches
are in ON, OFF state, are shown in Figure 8. The inductor slope during the time interval
from t0 to t1 can be expressed as:

diL1 (t)
dt

=
VL1 (t)

L1
=

Vi

L1
(20)
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Similarly, the current slope of inductor, L1 can be written as:

diL1 (t)
dt

=
VL1 (t)

L1
=

Vi

L1
(21)
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From Equations (20) and (21), the peak ripple current of inductor, ∆iL1 is solved:

∆iL1 =
Vi

2L1
DTsw (22)

Similarly, slope of the load capacitor in time intervals of t0 to t1, and t1 to t2 are shown
in Figure 8. Note that the energy stored in an inductor by the PD and voltage stored in the
load capacitor by the inductor must be the same. From the capacitor slope equations, the
ripple voltage can be written as follows:

∆Vdc =
Vi

2CLRL
DTsw (23)

However, to verify the performance of the electronic circuit, it is necessary to calculate
the voltage gain and power. Therefore, in this study, the peak value of input current is only
calculated in the boost mode. A similar trend was observed in other modes, and it can be
represented as follows [36]:

iPk (t) = D1 Tsw Vi/L1 (24)

As per inductor volts-second balance, net volt-seconds added to inductor during one
switching period is:

Vi D1Tsw = (Vdc/2 − Vi) D2Tsw (25)

D2Tsw =
Vi D1 Tsw(
Vdc

2 − Vi

) (26)

From the above, in each switching time, the average input power, Pin can be derived:

Pin = Vi iPk (D1 + D2)/2 (27)

The boost ratio was designed based on a specific application, and the power output
from the circuit was based on RL, which was connected in parallel to the proposed circuit.
To meet the requirement of the application, the inductor, the duty cycles, and the switching
frequency must be designed accordingly. The larger is the switching frequency, the smaller
is the inductance.

Therefore, to reduce the cost, complexity and weight of the proposed circuit, a higher
frequency was chosen to reduce the ripples. The drawback of higher switching frequency is
the inherent higher losses. The voltage ratings of the passive components in the proposed
circuit were chosen higher than the rectified/output voltage for safe operation. One
significant advantage of the proposed circuit is the sole use of internal body diodes of the
MOSFETs, which are always in turn OFF state to transfer the stored energy in the inductor,
while the other circuits in the literature [38–41] were using separate diodes. As a result, the
forward voltage drop, rectification losses, cost, and complexity of the circuit can be reduced.

5. Simulation Results

Waveforms of the proposed circuit with the input voltage of 0.44 Vi at a frequency of
100 Hz (time period: 10 ms or 0.01 s), simulated using LTSPICE and the enveloped inductor
current, and rectified voltage, is shown in Figure 9.

In the simulation, the PD source impedance was neglected to produce an ideal wave-
form for ease of verification of the proposed concept. In the experiment, the ideal source
was replaced by the actual PD. To further understand the performance of simulation wave-
forms, namely the zoom-in view of a positive half cycle with the duty cycle of 0.50 and the
resultant rectified voltage (in both half cycles) due to switching, is shown in Figure 10.
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6. Experimental Results and Discussion

The experimental setup and the proposed circuit constructed on a breadboard are
shown within the context of Figure 11. The performance of the circuit was tested using one
test setup. In this test, the power extracted from the PD through the proposed circuit was
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investigated by varying the input voltages at a fixed frequency. Table 1 summarises various
components and their parameters for the abovementioned testing scenario.
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Figure 11. An experimental setup and its flowchart (a) Experimental setup, (b) Proposed cir-
cuit with individual experimental devices, (1) Function generator, (2) Amplifier, (3) Mechanical
shaker, (4, 5, 6) PD, Aluminium beam, Proof mass, (7, 8) INLSC, 7-segment display, (9) Oscilloscope,
(10) Ammeter, Voltmeter.

Table 1. Parameters of various components used in the experiment.

Components Parameters

MOSFETs (M1, M2, M3, M4) 0.3 Vth, 20 V
Inductors (L1–L4) 4.7, 10, 22, 47 µH

Load capacitors (CL: C1–3) 1, 10, 100 µF
Load resistors (RL) 100 kΩ, 200 kΩ, 300 kΩ, and 400 kΩ
Vibration frequency 100 Hz

Input voltage 0.44 Vi
Switching frequency 50 kHz

Duty cycle 0.50, 0.87

The experimental setup and flow chart of this study is shown in Figure 11. The piezo-
electric cantilever beam was made up of an aluminium beam (dimensions: 205 × 20 × 1 mm),
with one end fixed on the vibration shaker (APS—113), while the other end of the cantilever
beam carried two permanent magnets. These permanent magnets were placed at the tip of
the aluminium beam, acting as proof mass. A microfiber composite (MFC) patch (category:
M2814-P2, 37 mm × 17 mm × 0.180 mm, CP = 33.90 nF) was attached near the fixed end of
the aluminium beam, where the highest strain occurred.

A function generator (Agilent 33210A) was used to deliver a sinusoidal signal to a
power amplifier (2706, B & K Agilent), which then amplified the signal before activating
the shaker. The shaker generated mechanical excitations according to the input vibration
frequency and amplitude to excite the piezoelectric cantilever beam.

For this test, the vibration frequency was fixed at 100 Hz, and the amplitude of input
voltage was adjusted to obtain the desired peak open-circuit (OC) voltages during the
experiment. Then, the OC voltage was connected to the proposed circuit for conversion into
DC. The converted DC voltage was stored in a capacitor, which behaved like a battery or
source for low electric current at a fixed voltage level. The average current of the proposed
circuit was calculated using a resistor that was connected in parallel with the proposed
circuit. A voltmeter (FLUKE 117) and an oscilloscope (TBS 1052B) was used to measure the
voltage across the capacitor.

In addition, the calculated current through the load was also verified using a current
meter (CD 771). The experimental waveforms of the proposed circuit with the duty cycle
of 0.87 are presented in Figure 12.
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When the abovementioned switching signals (Figure 12) were applied to the proposed
circuit, the applied gate voltage, energising inductor current, and energising inductor
current, the rectified voltage over one switching period are shown in Figures 13 and 14. Be-
sides, the extracted rectified voltage and calculated output power over different resistances
are shown in Figure 15.
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As can be seen from Figure 15a, the rectified voltage through the proposed circuit
increased with its load resistance at constant input voltage and inductance. It can also
be noticed that the proposed circuit was extracting the highest rectified voltage with an
inductance of L1 at a resistance of 400 KΩ. Ohm’s law can be used to explain the positive
correlation between the rectified voltage and resistance. Besides, as stated above, the PD
current charged the inductor in the form of a magnetic field. When the PD current began
to flow into the inductor, an opposing magnetic force was generated. At this time, in
the positive cycle, the switch S1 was turned ON and OFF. Therefore, when the switch
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was ON, the PD current in the inductor was shorted in the circuit, which resulted in a
higher magnetic field across the inductor as changing the magnetic field caused the higher
potential difference.
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When the switch was in the OFF state, the stored magnetic field across the inductor
discharged through the switch, M1, to charge the load capacitor. In other words, the
enveloped inductor current (L1 = 4.7 µH) was synchronised with the PD at 100 Hz. As a
result, it delivered maximum rectified voltage.

During this time, the voltage across and current through the load resistor was mea-
sured to calculate the extracted output power through the proposed circuit, as illustrated in
Figure 15b. The resistors in Table 1 were connected sequentially as load. Note that only the
case of inductance, L1 = 4.7 µH is presented with the three load capacitors. In Figure 15c,d,
only the case of load capacitor, C1 = 1 µF with different inductances is presented, as other
capacitances followed the same trend.

As identified in Figure 15, the increasing trend of rectified voltage was observed with
other inductances as well. Despite using the inductance of L3 = 22 µH, the proposed circuit
has delivered maximum rectified voltage and output power. Overall, the proposed circuit
delivered a maximum output power of 469 µW with an input voltage of 0.44 Vi at 100 Hz.

Figure 16 illustrates the captured voltage waveform of the proposed circuit using the
oscilloscope (input voltage = 0.5 Vi, inductance = 22 µH, frequency = 100 Hz). The rectified
voltage waveform was compared with a recently published H-Bridge circuit [3]. It can be
observed that the ripples in the voltage rectified by the proposed circuit were significantly
less pronounced in comparison with the H-Bridge circuit. The main reason for the fewer
ripples through the proposed circuit was the inclusion of the non-linear method and the
switching process, while the H-Bridge includes only the linear method. The following
observations were also made regarding ripples reduction:
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• The ripples in the H-Bridge circuit could also be controlled by applying the switching
method proposed in this study.

Note that the proposed circuit was also tested with other input voltages, namely
0.55 Vi and 0.75 Vi, at various frequencies, namely 100, 110, 120, 130 Hz. However, only the
case of input voltage of 0.44 Vi at a frequency of 100 Hz is presented, where the proposed
circuit delivered prominent output in comparison with other scenarios, and the remaining
testing scenario trends were similar.

Finally, the applicability of the proposed circuit was tested through powering a
7-segment display, as shown in Figure 17. For such purpose, the load resistor was re-
placed with a 7-segment display, which is commonly used in traffic applications. The
segment display was manually connected on the breadboard, and it is noted that the
proposed circuit could power the 7-segment display, which was not shown in the existing
similar designs and literature.
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Lastly, the performance of the proposed circuit was compared with some previously
proposed similar circuits, and the outcome is tabulated in Table 2. The proposed circuit
outperformed all previously proposed circuits/methods in terms of rectified voltage and
output power.
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Table 2. Comparison of the output of numerous circuits available in the literature.

Methods No of PD’s Input Voltage
(Vi)

Output Voltage
(Vdc)

Output Power
(µW)

External Power
Supply

[36] 1 0.4 3.3 - Yes

[40] 1 2.5 5.5 300 No

[42] 1 0.65 1.8 75 Yes

[43] 1 10 20 310 Yes

[26] (Similar design) 3 3.5 - 254 Yes

[22] (Similar design) 1 4.9 - 136 No

[44] 1 - 10 - Yes

[45] 1 0.5 - 43.35 Yes

[46] 1 1.6 5.5 200 Yes

Proposed INLSC 1 0.44 6.5 469.1 Yes

7. Conclusions

An INLSC capable of extracting higher power from low voltages and reducing the
ripple in rectified voltage waveform was proposed and investigated in this study. The
proposed INLSC could rectify and boost the low magnitude AC voltage generated by the
PD used in PEH systems. The proposed converter combines the process of synchronous
rectifier boost, buck-boost, and dual-stage circuits into an improved rectifier-less switching
circuit. An additional advantage of the proposed circuit is that it does not require program-
ming or external tuning, as it can self-adjust while the PD harvests energy from ambient
vibrations. The operation and performance of the proposed circuit were verified through
simulation and experiment. The proposed circuit converted 0.44 Vi to 6.5 Vdc and extracted
a maximum output power of 469 µW, which is superior to similar circuits in the literature.
The ripples in the rectified voltage were reduced. The circuit was found to be superior to
the existing circuits/methods. In addition, the proposed circuit was capable of powering a
7 segment display.
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