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Abstract: The noise pollution caused by urban substations is an increasingly serious problem, as is
the issue of local residents being disturbed by substation noise. To accurately assess the degree of
noise annoyance caused by substations to surrounding residents, we established a noise annoyance
prediction model based on transfer learning and a convolution neural network. Using the model,
we took the noise spectrum as the input, the subjective evaluation result as the target output, and
the AlexNet network model with a modified output layer and corresponding parameters as the
pre-training model. In a fixed learning rate and epoch setting, the influence of different mini-batch
size values on the prediction accuracy of the model was compared and analyzed. The results showed
that when the mini-batch size was set to 4, 8, 16, and 32, all the data sets had convergence after
90 iterations. The root mean square error (RMSE) of all validation sets was lower than 0.355, and
the loss of all validation sets was lower than 0.067. As the mini-batch size increased, the RMSE,
loss, and mean absolute error (MAE) of the verification set gradually increased, while the number
of iterations and the training duration decreased gradually. In this test, a mini-batch size value of
four was appropriate. The resultant convolutional neural network model showed high accuracy
and robustness, and the error between the prediction result and the subjective evaluation result was
between 2% and 7%. The model comprehensively reflects the objective metrics affecting subjective
perception, and accurately describes the subjective perception of urban substation noise on human
ears.

Keywords: urban substation; noise; annoyance; convolutional neural network; transfer learning

1. Introduction

With the continued popularization of electric vehicles, more charging piles are being
installed, creating a corresponding increase in the demand for power supply, which has
led to the construction of more urban substations and other basic power grid facilities.
However, the location of the new urban substations is increasingly problematic due to the
associated noise pollution. With the acceleration of urbanization in China, residential areas
have grown up around existing substations, resulting in more residents being disturbed
by the noise produced by these substations. The local residents frequently complain of
noise pollution, and the social problems caused by residents who are adversely affected
by the noise from the substations have become more pronounced. Therefore, the accurate
evaluation and prediction of the degree of substation noise disturbance to residents is
important in the construction of new substations and with respect to implementing noise
control measures for existing substations, which is a common problem in the power grid
industry which needs to be solved urgently.

Urban substation noise is usually composed of low-frequency noise caused by trans-
formers and reactors and high-frequency noise caused by transformer cooling systems,
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although the former is dominant [1–3]. Low-frequency noise is characterized by strong
penetration, slow attenuation, and long transmission distance, and it is easily perceived
by local residents. In addition, the most typical low-frequency substation noise occurs at
100 Hz and its harmonic frequency components are prominent [4], which leads to a high
level of subjective annoyance. When residents are exposed to substation noise for a long
time, their physical and mental health is seriously affected [5–8]. Therefore, it is important
to explore methods for evaluating noise annoyance and to establish a noise annoyance
prediction model that conforms to the noise characteristics of urban substations.

Currently, the noise level of substation equipment is evaluated using the A-weighted
sound pressure level (AWSPL) of a sound signal [9–12]. Chen et al. [10] established a
noise annoyance prediction model for urban substations based on commonly used psy-
choacoustic metrics utilizing the multiple linear regression (MLR) method and concluded
that annoyance depends mainly on the AWSPL. Liu [11] established a substation noise
annoyance prediction model based on logical regression and stepwise regression anal-
ysis, concluding that in addition to AWSPL, loudness and loudness levels also have a
significant impact. Another study [12] predicted the noise annoyance of urban substations
by establishing a multiple linear regression model, concluding that pure tones of typical
frequencies have a significant effect on annoyance [13]. The MLR model is simple and
less time-consuming, but its prediction accuracy needs to be improved to better reflect
the subjective perception of the human ear [14]. In this paper, a convolutional neural
network model is presented as a means of evaluating the degree of urban substation noise
disturbance to residents. Compared to traditional sound quality prediction methods that
are based on objective acoustic metrics, the convolutional neural network automatically
extracts and learns features from images or signals without tedious manual feature extrac-
tion and has achieved satisfactory results in many applications [15]. In 2012, the AlexNet
convolutional neural network was proposed and won first place with only a 15.3% error
rate in the ImageNet image classification competition [16]. In 2013, Wan et al. [17] estab-
lished an upgraded version of Dropout technology, DropConnect, which converts the fully
connected layer into a sparsely connected layer to make the network more generalized
and robust. In 2015, He et al. [18] built the ResNet network, and the error rate on the
ImageNet dataset set a new record of only 4.49%, which is lower than the human error
rate (5.1%). In 2016, Yuan et al. [19] constructed a convolutional neural network model
for rolling bearing fault diagnosis. The input data were the grayscale time-frequency map
after continuous wavelet transform of the vibration signals of rolling bearings. The training
results showed that the model has a strong recognition ability. In 2019, Liang et al. [20]
established a sound quality prediction model based on a convolutional neural network
after processing the input sound signals of internal combustion engines with the auditory
spectrum and short-time average energy. The results showed that the model has a high
prediction accuracy. In 2020, Huang et al. [21] used a self-constructed convolutional neural
network to evaluate the sound quality of interior noise. They used two-dimensional noise
time-frequency images and one-dimensional time and frequency vector data as the input.
They found that the network performance was better when using two-dimensional images
as the input. In 2021, the same team proposed a convolutional neural network model
based on an adaptive learning rate tree (ALRT) to predict the interior sound quality of a
pure electric vehicle (PEV) under non-steady state conditions. It adjusts the learning rate
adaptively according to the training loss. It was proved that the ALRT convolutional neural
network has a better parameter update effect than traditional methods, and its use in future
technology is promising [22]. Based on transfer learning, we developed a convolutional
neural network model for the degree of noise annoyance under small data sets. Compared
to traditional convolutional neural networks, the transfer learning method can make the
model achieve the expected effect in a shorter training time, significantly saving the training
costs such as time and computing resources, and considerably improving the generalization
ability of the model.
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The remainder of this paper is structured as follows: Section 2 briefly introduces the
basic principles of the convolutional neural network and the transfer learning methods.
Section 3 develops a convolutional neural network model for the prediction of substation
noise annoyance. This section also compares and analyzes the effects of different mini-
batch size values on the prediction accuracy of the model when the learning rate and
epoch remain unchanged. Section 4 discusses the advantages of the proposed model by
comparing the prediction results with a well-established multiple linear regression model.
Section 5 sets out our conclusions.

2. Materials and Methods

A convolutional neural network (CNN) is a feedforward neural network [23], and its
basic structure includes mainly convolutional layers, pooling layers, and fully connected
layers. These layers are stacked hierarchically, as shown in Figure 1 [21]. A convolutional
neural network usually takes multi-dimensional data as input, and it automatically extracts
input features and performs recognition and classification. It is essentially a non-linear
mapping from input to output, which can automatically learn the mapping relationship
between input and output without specific mathematical expressions between input and
output.
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The traditional convolutional neural network requires tens of thousands of training
data, but it is time- and labor-consuming to obtain sufficient tagged data. Transfer learning
uses the principle of analogy to transfer the feature information learned from the source
domain to the target domain [24]. The two domains are different but somewhat related.
The higher the correlation, the easier it is to obtain ideal migration results. By directly
calling the trained network framework and migrating it to its own data set, the model
can achieve the desired effect in a relatively short training time, fundamentally solving
the problem of insufficient training data. At the same time, the software and hardware
environment required for transfer learning is more relaxed. The pre-training model is a
deep learning framework trained by predecessors using massive data, and pre-training is
a way of transfer learning. Instead of training the network from scratch, a scene-similar
pre-trained model is chosen to solve the problem, which greatly reduces the training time.
In this study, the AlexNet classical network was selected as the pre-training model based
on transfer learning. Since the data set used to train the model was small and the data had
relatively simple shallow features such as prominent spikes, the network architecture was
completely preserved, save for the output layer. The last SoftMax layer and the classified
output layer were modified as the fully connected layer with response number 1 and the
regression layer, thereby converting the classification network into a regression network.
The AlexNet network architecture is shown in Figure 2 [22].
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3. Results

The performance of the method used in this study was verified by the urban substation
noise recorded and the corresponding subjective evaluation results of a previous study [12].
These urban substation noise samples were recorded using a PULSE data acquisition
system (Bruel & Kjaer type 3050-A-060, Nærum, Denmark) and microphones (Bruel &
Kjaer type 4189-A-021, Nærum, Denmark). Noise measurement points were arranged
mainly near substation plant boundaries and residential areas to reflect the impact on
residents and pedestrians. In order to make the data more diverse and to reflect the impact
of noise on the staff in the substation, a number of measurement points were also arranged
within the substation plant. A total of 17 measurement points were arranged, and three
time periods were selected: 2:00 to 3:00, 9:00 to 10:00, and 20:00 to 22:00. Across the
measurement points and time periods, a total of 51 noise samples with a duration of 5 s
were collected. From these samples, 43 samples were randomly selected to participate
in the training process of the network model and the remaining 8 samples were used to
verify the reliability of the network model. Given that the number of samples was too
small, each noise sample was divided into multiple segments of 1 s, so that each recorded
noise signal was divided into five non-overlapping noise samples; a total of 215 noise
sample segments were obtained. Each sample had the same subjective evaluation score
(due to the substation noise being steady-state). Three segments of each noise sample
were classified as the training set, and the remaining two segments were classified as the
test set, so the ratio of the training set to the test set in the dataset was 3:2. Each noise
sample was converted into the corresponding frequency spectrum to obtain its frequency
characteristics using a MATLAB 2020b (MathWorks, USA). All the calculated frequency
spectra were saved as color pictures of the same size. The pictures were used as the input
of the convolutional neural network (the pixels of each sample were set to 227 × 227, which
is consistent with the input layer size of the AlexNet network). Part of the input spectra
is shown in Figure 3. As can be seen in Figure 3, the noise energy of these samples was
concentrated at the integer multiple frequency of 100 Hz within 1000 Hz, and pure tones
were very prominent. The subjective evaluation score of each sound sample was used as
the output of the convolutional neural network.
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In this study, a single GPU of Nvidia GeForce 940MX was used to run the MATLAB
2020b environment, and the built-in stochastic gradient descent method (SGDM) with a
first-order momentum solver was utilized. For the learning rate, it is usually necessary to
set a learning rate lower than that of the general training model when performing fine-
tuning training. In this model, it was more appropriate to set the initial learning rate to
0.0001. The mini-batch size is usually set to a power of two, which can make the GPU
perform better [25]. In this study, the mini-batch size was set to 4, 8, 16, and 32, separately.
The total number of iterations was set to 90 epochs (the process of training the complete
data set once on the neural network was one epoch).

In this study, the root mean square error (RMSE) and loss were selected to evaluate the
quality of the prediction results, and loss is the square of RMSE. The smaller the RMSE or
the loss function, the better the quality of the model. The calculation formula of RMSE was

RMSE =

√
1
n

n

∑
k=1

(tk − yk)
2 (1)

where n denotes the number of training samples, and tk and yk denote the target output
and the forecast output of the training samples, respectively.

Based on the aforementioned settings of the network model parameters, the spectrum
diagrams of urban substation noise were input into the model for training. Ten trials were
conducted for each experiment to reduce the impact of randomness. During the training
period, the changing curves of the average RMSE and loss of the training set and the test
set in each epoch, with different mini-batch size values, are shown in Figure 4 (taken as the
average of ten trials). As shown in Figure 4, as the number of iterations increased, the RMSE
and loss of the training set and the test set generally decreased. After 90 epochs, all data
sets had reached convergence, and the RMSE of all test sets was not higher than 0.355, and
the loss was not higher than 0.067, which indicates that the convolutional neural network
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based on AlexNet transfer learning can achieve high accuracy when used to predict the
noise annoyance of urban substations.

The errors between the subjective score values and the predicted values of the eight
verification samples not involved in the modeling, when the mini-batch size was 4, 8, 16,
and 32, are shown in Figure 5. As shown in Figure 5, when the mini-batch size values
were different, although the convolutional neural network model had various errors for
verification samples, the trend of prediction errors was the same. At the same time, when
the mini-batch size was four, the prediction error was the smallest, and the accuracy of the
convolutional neural network model was the highest, so the mini-batch size selected was
four.
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4. Discussion

The multiple linear regression model established in a prior study [12] was used
to predict the annoyance level of the eight verification noise samples, and the results
were compared with the subjective evaluation results. The multiple linear regression
model is based on the least squares method, which takes the objective parameters that
are highly correlated with the subjective evaluation results as independent variables, and
the subjective annoyance level as dependent variables. Using multiple linear stepwise
regression, the independent variables are introduced into the regression model one by one
according to the significance of their influence on the dependent variables, and the original
independent variables that become irrelevant to the model due to the introduction of new
variables are deleted. Therefore, the final regression model only includes variables that ha
a significant impact on the dependent variable. The multiple linear regression model is
shown in Formula (2).

P = −3.354 + 0.035L600 + 0.089LA (2)

where P, L600, and LA denote subjective annoyance, the 600 Hz AWSPL, and the total
AWSPL, respectively.

The comparison of the prediction errors of the two models is shown in Figure 6. As
shown in Figure 6, the prediction errors of the multiple linear regression model for the
noise annoyance of urban substations are between 1% and 9%, but the prediction errors of
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the convolutional neural network model are between 2% and 7%. Using the latter model, a
relatively ideal and robust result was obtained.
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The mean absolute error and the sum of squared errors of the prediction errors of the
two models are shown in Table 1. The calculation formulas for the mean absolute error
(MAE) and the sum of squared errors (SSE) are, respectively:

MAE =
1
n

n

∑
k=1
|(tk − yk)| (3)

SSE =
n

∑
k=1

(tk − yk)
2 (4)

where n denotes the number of verification noise samples and tk and yk denote the target
output and the forecast output of the verification noise samples, respectively.

Table 1. The statistical values of the prediction error of the two models.

Statistic Convolutional Neural Network Multiple Linear Regression

MAE 0.132 0.299
SSE 0.978 4.960

As shown in Table 1, the MAE and the SSE of the convolutional neural network model
are significantly lower than those of the multiple linear regression model, indicating that
the convolutional neural network model has higher prediction accuracy.

5. Conclusions

This paper presents a convolutional neural network model for noise annoyance pre-
diction, based on AlexNet transfer learning, to predict the noise annoyance level of urban
substations. The frequency spectra of the noise samples were taken as the input for the
model and the sample features were automatically extracted during the training process.
The subjective evaluation results were the output of the model. The epoch was fixed, and
the mini-batch size was set to 4, 8, 16, and 32, separately. Finally, all the data sets were
converged. The root mean square errors of all test sets were not higher than 0.355, and
the losses were not higher than 0.067. Compared to the prediction results of the well-
established multiple linear regression model, the convolutional neural network model
has higher prediction accuracy and robustness, with the prediction error falling between
2% and 7%. Thus, the network comprehensively reflects the objective metrics affecting
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subjective perception, and more accurately describes the subjective perception of urban
substation noise on human ears. Nevertheless, in future studies, it would be worthwhile to
explore different methods that exhibit high prediction accuracy in other application fields,
such as multilayer perceptron neural networks [26,27], to predict the noise annoyance level
of urban substations.
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