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Abstract: This paper presents a detailed analysis of dynamic properties and accuracy issues of
the torque-producing stator current control loop for vector-controlled induction motor drives. In
this paper, a necessary mathematical description of vector control of an induction motor is shown
with respect to the x-axis and y-axis current control in the rotating reference frame. A derivation
of a steady-state error for the torque-producing stator current control scheme with and without a
decoupling algorithm is described. The presented derivation and dynamic behavior of both these
schemes were extensively tested in the MATLAB-SIMULINK software, considering different values
for the moment of inertia. This solution was implemented in a DSC-based induction motor drive
using a voltage source inverter to obtain experimental results. Moreover, the advantages of using the
presented decoupling block for compensation of the problem are discussed at the end of the paper.

Keywords: induction motor; steady-state current error; torque current component; variable speed
drive; vector control

1. Introduction

Electrical drives, the main objective of which is a system utilization of electrical
machines for electromechanical energy conversion and for control of this transformation,
comprise a very important sector of electrical engineering.

At present, variable speed electrical drives with induction motors belong to an industry
standard. These drives use two basic techniques to control the magnetic flux and torque:
vector control and direct torque control [1–5].

For supplying of induction motors, frequency converters with different types of
structures and control methods are used [6,7].

In general, it is well known that a current control loop of DC or AC drives operates
with a steady-state error during the rotor speed transient states, even when proportional
integral (PI) current controllers are used [8]. This error is a problematic issue, especially
for fast torque (current) control or time-optimal position control methods, because in these
cases, the real motor torque is less than a reference value (steady-state error). This topic is
important in the field of traction applications or robotics. In these cases, it is necessary to
find methods to suppress the current control error.

Sensorless drives, sensor fault tolerant control and applications of artificial intelligence
belong to the top topics in the field of sophisticated control methods for electrical controlled
drives. In these cases, the vector control algorithm is mostly used as a basic control
method [9–15]. This is the reason why it is important to suppress the aforementioned
current control steady-state error, to reach the best possible performance of the drive.
Equations for the elimination of the coupling between the flux- and torque-producing
stator current components are very often used for vector-controlled induction motor drives.
The aforementioned coupling occurs in the voltage equations expressed in the rotating
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reference frame [x, y] oriented on the rotor flux space vector. It is well known from the
literature [16–20] that the decoupling equations are important for independent control of
the stator current space vector components. Moreover, the coupling can deteriorate the
current responses in the high-speed range if it is not well compensated [20].

A comparative study of two decoupling control methods, based on the theory of
differential geometry and the conventional vector control, is shown in [21]. In this case, the
decoupling between the flux linkage subsystem and the rotor speed subsystem is investi-
gated in different drive operations. A new state equation of an induction motor is proposed
in [22] for easy design of the decoupling system. A robust decoupling current controller
is presented in [18] and is based on an internal model control method. In [17], a similar
decoupling controller was investigated with the goal to be more robust to the parameter
variation. Two additional PI controllers in the coupling paths are used in [19,20]. If an out-
put voltage vector of the current controllers is greater than the maximum inverter voltage,
it is decreased by a reducing technique called overmodulation. In [20], the overmodulation
technique is improved for better torque transient response. All mentioned references are
focused on the important issues of the coupling, but this paper deals with the problems
concerning the steady-state error of the torque-producing stator current control during the
rotor speed changes. The proposed decoupling equations eliminate the steady-state current
error. In the paper, a detailed and comprehensive analysis of the problem is presented,
including a mathematical description of how the current error can be calculated.

This paper is organized as follows. Sections 2 and 3 deal with the mathematical model
of a vector-controlled induction motor and used control structure. Section 4 focuses on
the analysis and compensation of the current control error. Simulation and experimental
results are shown in Sections 5 and 6, respectively. Finally, conclusions are presented in
Section 7.

2. Mathematical Model of Vector-Controlled Induction Motor

The vector control of an induction motor is based on the separation of the stator current
space vector into two perpendicular components, flux producing iSx and torque producing
iSy. The components define the magnetization and torque of an induction motor [4].

The x-axis of the [x, y] rotating reference frame is determined by the position of
the rotor flux space vector ΨR or magnetizing current space vector im, respectively, (see
Figure 1).
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The induction motor model can be described in the different complex reference frames
(see Figure 1).
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The following voltage equations can be derived for the components of the stator
voltage space vector expressed in the [x, y] rotating reference frame:

uSx = RSiSx + σLS
diSx
dt
−ωimσLSiSy + (1− σ)LS

dim
dt

, (1)

uSy = RSiSy + σLS
diSy

dt
+ ωim[σLSiSx + (1− σ)LSim]. (2)

The following equations can be defined for the induction motor torque and other
variables corresponding to Figure 1:

tE =
3
2

p
Lh
LR

ΨRiSy =
3
2

p
L2

h
LR

imiSy, (3)

tE − tL = Jt
dΩm

dt
, (4)

pΩm =
dε

dt
, (5)

im + TR
dim

dt
= iSx, (6)

ω2 = ω1 −ωm = ω1 − pΩm =
iSy

imTR
, (7)

ω1 = ωim +
dδ

dt
=

dξ

dt
, (8)

ωim =
dγ

dt
, (9)

ξ = γ + δ, (10)

TS =
LS
RS

, (11)

TR =
LR
RR

, (12)

ΨR = Lhim. (13)

It is possible to obtain the following equations for the stator current components
from the voltage Equations (1) and (2). After the Laplace transformation and by neglect-
ing changes of the magnetizing current, the relations for the stator current space vector
components in the x-axis and y-axis can be defined as:

iSx =
1

RS

1
(1 + sσTS)

[
uSx + ωimσLSiSy

]
, (14)

iSy =
1

RS

1
(1 + sσTS)

[uSy −ωim(σLSiSx + (1− σ)LSim)]. (15)

Members in square brackets in (14) and (15), respectively, represent undesirable
coupling between the x and y components.

The stator current control scheme of the vector-controlled induction motor drive
without decoupling block (see Figure 2) can be drawn on the basis of Equations (14)
and (15).

Figure 2 shows the obvious coupling between the flux current component iSx and the
torque current component iSy according to Equations (14) and (15).

The control scheme shows the current control of both current components without
decoupling. Sections 4–6 deal with the torque-producing stator current control only, i.e.,
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the influence of the flux-producing stator current iSx to the torque-producing stator current
iSy only.
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Figure 2. Stator current control scheme of vector-controlled induction motor without decou-
pling block.

To cancel the coupling between the current space vector components, a decoupling
block is used. It can be implemented as members that are added to the outputs of the
current controllers in the individual axes using the following equations:

ukx = −ωim σLS iSy, (16)

uky = ωim[σLS iSx + (1− σ) LSim]. (17)

For the analysis of the decoupling influence in Sections 4–6, the steady-state in terms
of excitation is considered (im = iSx). In this case, it is possible to derive the following
Equations (18) and (19) using Equations (15) and (17):

iSy =
1

RS

1
(1 + sσTS)

[
uSy −ωimLSim

]
, (18)

uky = ωimLSim. (19)

3. Control Structure of Induction Motor Drive

The control structure of the vector-controlled induction motor drive is shown in
Figure 3. The control structure uses the space vectors expressed in the rotating reference
frame oriented on the rotor magnetic flux. The current control loops are designed as
subordinate loops of the speed and flux (magnetizing current) control.

The estimation of the magnetizing current im and orienting quantities sinγ and cosγ
is carried out using the so-called current model of an induction motor (see block Motor
model in Figure 3). This model uses the rotor angle ε and the rotor time constant TR
for the estimation of the stator current space vector components in the [α, β] stationary
reference frame.
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The orienting angle γ is used for the Park transformation of the complex space vector
components from the [α, β] stationary reference frame to the [x, y] rotating reference frame
(see block e− jγ in Figure 3) and for the reverse transformation (see block ejγ in Figure 3).

The reference flux-producing stator current iSxRef is determined by the PI controller of
the magnetizing current, which processes control error between the reference value imRef
and actual value of the magnetizing current im. The magnetizing current is estimated in the
block Motor model (see Figure 3).

The reference magnetizing current imRef is constant (nominal) in the operating range
from 0 rpm to the nominal speed ΩmN. The reference magnetizing current imRef decreases
for the higher speeds (field weakening mode) according to the following relation:

imRe f = imN
ΩmN
Ωm

. (20)

In Figure 3, there is the following description of the blocks:
FC—Frequency Converter; CS—Current Sensor; PWM—Pulse Width Modulation; PS—

Position Sensor; ES—Evaluation of Speed; IM—Induction Motor; DEC—Decoupling block.
The reference torque-producing stator current iSyRef is determined by the PI

speed controller.
Both components of the stator current space vector are then controlled in the subor-

dinate current control loops. The voltage components ukx and uky are evaluated in the
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decoupling block DEC according to Equations (16) and (17). They are added to the outputs
of the current controllers to suppress the coupling between the x-axis and y-axis.

4. Steady-State Error of Torque-Producing Stator Current Control

For the steady-state error analysis of the torque-producing stator current control, an
induction motor drive in a laboratory of the Department of Electronics, VSB—Technical
University of Ostrava is considered. The induction motor parameters (type P 112 M04) are
shown in Table 1.

Table 1. Induction motor parameters.

Parameter Value

Rated power
Rated torque

2.7 kW
19 Nm

Rated speed 1360 rpm
Rated stator voltage 400/230 V
Rated stator current 7.51 A

Rated stator magnetic flux 0.877 Wb
Number of pole pairs 2

Stator resistance 2.10 Ω
Rotor resistance 2.51 Ω

Stator inductance 0.137 H
Rotor inductance 0.137 H

Rotor time constant 54.6 ms
Moment of inertia 0.013 kgm2

The induction motor is coupled mechanically with a DC machine (type MB 112 S-T)
that has the following parameters: PN = 1.5 kW, JDCM = 0.022 kgm2. The total moment of
inertia including mechanical coupling is Jt = 0.043 kgm2.

The induction motor is powered by a frequency converter with a voltage source
inverter. The DC link voltage Ud = 540 V.

The control of the frequency converter output voltage is based on the sinusoidal
pulse-width modulation using a sawtooth voltage with frequency fp = 2 kHz and amplitude
Upmax = ±10 V.

The frequency converter gain is defined as KFC = (1/2)·Ud/Upmax = (1/2)·540/10 = 27
and the frequency converter time constant is defined as TFC = 1/(2·fp) = 1/(2·2000) =
0.00025 s = 0.25 ms. The frequency converter transfer function called FFC is treated as a
first-order transfer function.

The torque-producing stator current control structure can be created using the follow-
ing transfer functions:

FCS—current sensor transfer function, current sensor gain KCS = 1 V/A, time constant
TCS = 0.5 ms. FCS is treated as a first-order transfer function.

FCCy—torque-producing stator current controller transfer function, current controller
gain KCCy = 0.4, time constant TCCy = 8 ms.

FSS—speed sensor transfer function. An incremental sensor IRC 120/1024 is used to
measure the rotor speed and position with the four times multiplication of the output pulses.
In this case, the number of pulses per one revolution is 4096. The used sampling period
for speed evaluation is Tv = 5 ms, so the speed sensor time constant is TSS = Tv/2 = 2.5 ms.
The speed sensor gain KSS is assumed to be equal to 1.

For the analysis, the nominal excitation of the induction motor in steady-state is
considered (magnetizing current Im = 6 A). This corresponds to the condition im = iSx and
the validity of Equations (18) and (19). The influence of the load torque TL, slip angular
frequency Ω2 and time derivative of the load angle δ are neglected.
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4.1. Torque-Producing Stator Current Control Structure without Decoupling Block

The torque-producing stator current control structures without the decoupling block
are shown in Figures 4 and 5.
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The transfer function FMy represents the induction motor transfer function in the
y-axis:

FMy =
Ωm

USy
=

1/(pLS Im)

(1 + sTm + s2TmσTS)
(21)

The term Tm in the transfer function FMy can be regarded as the mechanical time
constant. It is calculated for the total moment of inertia Jt = 0.043 kgm2, using the motor
parameters (see Table 1), by the following equation:

Tm = 2 JtRS LR
3p2L2

h LS I2
m
=

= 2 ·0.043·2.1·0.137
3·22·0.1292·0.137·62 = 0.0251 s

(22)

The term σTs in the transfer function FMy can be regarded as the electromagnetic
time constant:

σTS =

(
1− L2

h
LS LR

)
LS
RS

=

=
(

1− 0.1292

0.137·0.137

)
0.137
2.1 = 0.00802 s

(23)
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From Figure 5, the transfer function of the open control loop for the torque-producing
stator current is defined by the following equation:

F0 =
UIy

UIyRe f−UIy
= FCCyFFCFMy

sJt LR
(3/2)pL2

h Im
FCS =

= KCCy
(1+sTCCy)

sTCCy

KFC
(1+sTFC)

1/(pLS Im)
(1+sTm+s2TmsTS)

·
· s Jt LR
(3/2)pL2

h Im

KCS
(1+sTCS)

=

= K0
(1+sTCCy)

(1+sTFC)(1+sTm+s2TmsTs)(1+sTCS)

(24)

where the open loop gain K0 is calculated by:

K0 =
KCCyKFC Jt LRKCS

TCCy(3/2)p2L2
h LS I2

m
=

= 0.4·27·0.043·0.137·1
0.008·(3/2)·22·0.1292·0.137·62 = 16.15

(25)

The steady-state current control error can be calculated according to the
following equation:

∆UIy∞ = lim
s→0

(
s 1
(1+F0)

UIyRe f
s

)
=

= 1
1+K0

UIyRe f =
1

1+16.15 UIyRe f = 0.0583 UIyRe f
(26)

which represents the steady-state current control error 5.83% of the reference torque-
producing stator current for the considered parameters, although the PI controller is
used. The main reason for the error is the back electromotive force (EMF) changes caused
by the rotor speed transient-states (see Figures 4 and 5, respectively). Finally, this is
the disadvantage of the torque-producing stator current control structure without the
decoupling block. The first one is the well-known coupling between the current space
vector components (see Section 3). The current control error increases with the lower
moment of inertia (see Equation (26)).

4.2. Torque-Producing Stator Current Control Structure with Decoupling Block

The torque-producing stator current control structures with decoupling block are
shown in Figures 6 and 7.
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Figure 6. Torque-producing stator current control structure with decoupling block.
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Figure 7. Adjusted torque-producing stator current control structure with decoupling block.

From Figures 6 and 7, the transfer function of the open control loop with the decoupling
block is defined by the following equation:

F0 =
UIy

∆UIy
=

UIy
UIyRe f−UIy

=

= FCCy
FFC FMy(

1−
FFC FMy FSS pLS Im

KSSKFC

) s Jt LR
(3/2)pL2

h Im
FCS =

= KCCy
(1+sTCCy)

sTCCy
·

·
KFC

(1+sTFC)
1/(pLS Im)

(1+sTm+s2TmσTS)(
1− KFC

(1+sTFC)
1/(pLS Im)

(1+sTm+s2TmσTS)
KSS

(1+sTSS)
pLS Im

KSSKFC

) ·
· s Jt LR
(3/2)pL2

h Im

KCS
(1+sTCS)

(27)

The steady-state current control error is defined as follows:

∆UIy∞ = lim
s→0

(
s

1
(1 + F0)

UIyRe f

s

)
= 0 (28)

In this case, it is evident that the steady-state current error is zero during the rotor
speed transient-states.

5. Simulation Results

Models of the presented stator current control structures (Figures 4 and 6) were created
in the simulation software MATLAB-Simulink.

The actual and reference torque-producing stator currents iSy and iSyRef obtained from
the control structure without the decoupling block are presented in Figure 8a,b and with
the decoupling block in Figure 9a,b. The simulation results confirm the derived steady-
state current control errors mentioned in Section 4 for the situation of the rotor speed
transient-states (acceleration of the drive).

In the case of the control structure with the decoupling block, the steady-state error is
equal to zero (see Figure 9a,b) which corresponds to (28).
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Figure 8. Simulation results: reference (green) and actual (blue) torque-producing stator current
without decoupling; (a) total moment of inertia Jt = 0.043 kgm2 (including DC machine), steady-state
value of torque-producing stator current is 5.65 A; (b) total moment of inertia Jt = JM = 0.013 kgm2

(induction motor only), steady-state value of torque-producing stator current is 4.98 A.
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Figure 9. Simulation results: reference (green) and actual (blue) torque-producing stator current with
decoupling; (a) total moment of inertia Jt = 0.043 kgm2 (including DC machine), steady-state value of
torque-producing stator current is 6 A; (b) total moment of inertia Jt = JM = 0.013 kgm2 (induction
motor only), steady-state value of torque-producing stator current is 6 A.

In the control structure without the decoupling block, the steady-state error for the
total moment of inertia Jt = 0.043 kgm2 is equal to 100·(6–5.65)/6 = 5.83% (see Figure 8a),
which numerically corresponds to the result in accordance with (26). The steady-state error
for the total moment of inertia Jt = Jm = 0.013 kgm2 is equal to 100·(6–4.98)/6 = 17 % (see
Figure 8b), which also numerically corresponds to the result in accordance with (29). For
this reduced moment of inertia, it is possible to calculate (according to (25)) the open loop
gain K0 = 4.88 against to the original value K0 = 16.15. In this case, the steady-state current
control error is defined by the following Equation (29) using Equation (26):

∆UIy∞ = 1
1+K0

UIyRe f =

= 1
1+4.88 UIyRe f = 0.170 UIyRe f

(29)

In Figure 10a,b, the actual rotor speeds are shown for acceleration of the AC drive
with the torque-producing stator currents according to Figures 8 and 9. It is evident
that the vector-controlled AC drive with the decoupling block provides better
dynamic performance.
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Figure 10. Simulation results: (a) actual rotor speed for torque-producing stator current without
decoupling according to Figure 8a (blue) and with decoupling according to Figure 9a (green), total
moment of inertia Jt = 0.043 kgm2 (including DC machine); (b) actual rotor speed for torque-producing
stator current without decoupling according to Figure 8b (blue) and with decoupling according to
Figure 9b (green), total moment of inertia Jt = 0.013 kgm2 (induction motor only).

6. Experimental Results

The presented control structures are experimentally tested on a laboratory stand to
verify the theoretical assumptions and the simulation results of the steady-state torque-
producing stator current error during acceleration or deceleration of the drive. The labo-
ratory stand consists of the induction motor fed by a voltage source inverter and a Texas
Instruments Digital Signal Controller TMS320F28335 based control system.

The same induction motor parameters are used in the simulation stage and the ex-
perimental testing (see Table 1). The vector control method, including the decoupling
algorithm, is implemented in the DSC control system with the sampling frequency of 50 µs.

Figure 11a,b shows the experimental results during the acceleration of the IM drive
from 0 to 500 rpm and reversal to −500 rpm without the decoupling block (Figure 11a) and
with the decoupling algorithm (Figure 11b). The IM drive is not subjected to load.
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Figure 11. Experimental results: acceleration from 0 to 500 rpm and reversal, actual rotor speed (light
blue), the reference (dark blue) and actual (pink) torque-producing stator current, total moment of
inertia of Jt = JM = 0.013 kgm2 (induction motor only), current scale 2 A/div, speed scale 400 rpm/div,
time scale 200 ms/div; (a) without decoupling; (b) with decoupling.
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Figure 12a,b shows the experimental results in detail during the acceleration of the IM
drive from 0 to 500 rpm without the decoupling block (Figure 12a) and with the decoupling
algorithm (Figure 12b).
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blue), the reference (dark blue) and actual (pink) torque-producing stator current, total moment of
inertia of Jt = JM = 0.013 kgm2 (induction motor only), current scale 1 A/div, speed scale 400 rpm/div,
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The mentioned steady-state error of the torque-producing stator current control is
presented in Figures 11a and 12a. The reference torque-producing stator current is 6 A, but
the real average value of the torque-producing stator current is 5.2 A.

From Figures 11b and 12b, it is evident that the reference and actual steady-state
torque-producing stator currents are almost the same, both 6 A. In this case, the control
algorithm uses the decoupling block.

The presented experimental results demonstrate better dynamic performance of the
control structure with the decoupling algorithm because of a higher torque-producing
stator current during the transients of the rotor speed. In this case the acceleration time
from 0 to 500 rpm is shorter by about 20 ms.

7. Conclusions

This paper presents that the steady-state error of the torque-producing stator current
of the vector-controlled induction motor drive during the rotor speed transient-states can be
eliminated using the presented correction decoupling algorithm. The fact was theoretically
derived in (28) and confirmed by the simulation and experimental testing.

In the case of the vector control of the induction motor without the decoupling block,
the mentioned current error depends on many drive parameters, see (26) and (25), for ex-
ample, on the frequency converter gain, controller parameters, motor parameters, moment
of inertia, magnetizing current etc. In the field weakening region of the drive, it is necessary
to take into account the decreasing of the magnetizing current.

The experiment results confirmed the theoretical assumptions and the results from
the simulation stage. If the decoupling algorithm is not used and the moment of inertia is
0.013 kgm2, the steady-state torque-producing stator current during the drive acceleration
is 4.98 A for the simulation and 5.2 A for the real laboratory model of the drive instead of
the reference value equal to 6 A. If the presented decoupling algorithm is used in the vector
control structure, the steady-state current error is equal to zero for both the simulation and
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the experiment too. Of course, the presented decoupling block ensures independent control
of the stator current space vector components.

This topic is important in the field of traction applications or robotics. In these cases, it
is necessary to find methods to suppress the torque-producing stator current control error.

The above mentioned facts about the steady-state current control error caused by
the back EMF changes can be applied with some modifications in other vector-controlled
AC drives.
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Nomenclature

FCCx x-axis stator current controller transfer function
FCCy y-axis stator current controller transfer function
FFC frequency converter transfer function
FCS current sensor transfer function
im magnetizing current
im magnetizing current vector
iSx, iSy stator current space vector components expressed in [x, y] rotating reference frame
Jt total moment of inertia
Lh magnetizing inductance
LR, LS rotor and stator inductance
p number of pole pairs
RR, RS rotor and stator resistance
tE electromagnetic induction motor torque
tL load torque
TR, TS rotor and stator time constant
uSx, uSy stator voltage space vector components expressed in [x, y] rotating reference frame
ε rotor position angle
γ orienting angle
δ load angle
σ total leakage constant
ΨR rotor magnetic flux
ΨR rotor magnetic flux vector
Ω1 angular speed of stator current
Ωim angular speed of magnetizing current
Ωm electrical rotor angular speed
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