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Abstract: Gas accidents threaten the safety of underground coal mining, which are always accompa-
nied by abnormal gas concentration trend. The purpose of this paper is to improve the prediction
accuracy of gas concentration so as to prevent gas accidents and improve the level of coal mine safety
management. Combining the LSTM model with the LightGBM model, the LSTM-LightGBM model is
proposed with variable weight combination method based on residual assignment, which considers
not only the time subsequence feature of data, but also the nonlinear characteristics of data. Dur-
ing the data preprocessing, the optimal parameters of gas concentration prediction are determined
through the analysis of the Pearson correlation coefficients of different sensor data. The experimental
results demonstrate that the mean absolute errors of LSTM-LighGBM, LSTM and LightGBM are
1.94%, 2.19% and 2.77%, respectively. The accuracy of LSTM-LightGBM variable weight combination
model is better than that of the two above models, respectively. In this way, this study provides a
novel idea and method for gas accident prevention based on gas concentration prediction.

Keywords: coal mine safety; LSTM; LightGBM; LSTM-LightGBM variable weight combination; gas
concentration prediction

1. Introduction

Energy is the engine of economic development and the lifeblood of national econ-
omy [1]. Coal is crucial with respect to the energy strategy of China, which is also caused
by the feature of resource distribution in China, but also it determines that the solution to
energy problems should depend on coal. For a long time, safety has always been one of the
important issues during the process of coal mining. Gas accidents are a particularly serious
problem. Through the investigation and analysis of coal mine gas accidents, it is found
that not accurately grasping the law of gas concentration changes is the main reason for
gas accidents [2]. Thus, if the inner rules can be explored and the gas concentration can be
predicted relatively accurately [3], it will be of great importance to reduce the occurrence of
gas accidents.

So far, many domestic and foreign scholars have conducted a great amount of research
on gas concentration prediction [4]. Normally, gas concentration prediction methods can be
broadly divided into two categories, one of which is using gas geomathematical modeling
methods, and the other of which is based on machine learning methods. However, since
the change of gas concentration is not a simple static process, and there are highly complex
nonlinear relationship among its the influencing factors, it is still a great challenge for the
current gas concentration prediction models to predict gas concentration accurately and
efficiently [5].

The prediction of gas concentration using the gas geomathematical model requires
detailed measurements of multidimensional attributes of the geological environment sur-
rounding the mine and the underground environment, such as mining depth, permeability
of coal seam, stability of coal seam and thickness of the coal seam. Wang et al. [6] con-
structed the gas concentration prediction equation based on one-dimensional regression
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analysis. Zhang et al. [7] established the multivariate prediction model of gas concentration
using the actual measured parameters of gas gushing from the mined area. Lu et al. [8]
combined the gas gushing characteristics and gas gushing mechanism to construct a mathe-
matical model of gas geology. However, based on the kind of methods for gas concentration
prediction, it is not easy to obtain necessary input data, and not possible to achieve real-
time prediction. Furthermore, in the process of model building, the prediction equation
needs to be adjusted artificially based on experience, and it lacks the consideration of gas
concentration time-series correlation.

As machine learning becomes more and more widely used in many fields, machine
learning algorithms have been applied to gas concentration prediction. The previous studies
focusing on prediction of gas concentration are mainly based on single factor, historical gas
data or conventional single machine learning models such as the recurrent neural network
(RNN) [9], eXtreme gradient boosting (XGBoost) model [10], the random forest model
(RF) [11], backpropagation (BP) neural network [12] and long short-term memory (LSTM)
network [13]. These algorithms have been used to predict the gas concentration in the
short term. A comparison between the prediction values of gas concentration in several
machine learning models demonstrated that LSTM network has a better generalization
ability, and it can deal with nonlinear time sequence data on the basis of solving the
defect of traditional recurrent neural network [14]. The light gradient boosting machine
(LightGBM) [15] operates faster and it is accurate compared with that of XGBoost in the
multiple benchmarks and public data set test. To further improve the precision of gas
prediction, a few researchers have attempted to predict the gas concentration by combining
several single machine learning models. Xun et al. [16] constructed a CNN-LSTM model.
Lin et al. [17] combined PSO-BP neural network to predict the gas content of coral beds.
Wen et al. [18] developed a BP neural network model based on Gray theory. Xu et al. [19]
developed a IGSA-BP combination prediction model that had a better prediction accuracy
than that of the single machine learning model. Zhang et al. [20] constructed a prediction
model based on a combination of wavelet noise reduction and LSTM. Han et al. [21]
constructed a gas concentration residual correction model based on Markov model and Gray
neural network. However, majority of the combination models place the first prediction
results into another model for the secondary prediction or sum up the prediction results of
the two models to utilize the average value. Combination models that adopt this strategy
do not “integrate” two single-machine models; this also results in their prediction accuracy
still not meeting the needs of underground coal mine safety production.

Considering the drawbacks of the abovementioned studies, in this paper, the historical
data of this survey site was selected as the time sequence factor, and the historical data
of other survey sites at the working face was selected as a spatial topological factor, and
these were combined. An analysis of the correlation between the attribute data and gas
concentration is used to define the attribute requirements of the input data. According
to the data time sequence and nonlinear characteristics, the variable weight combination
model [22] of the LSTM network and the LightGBM model was developed to dynamically
predict the gas concentration for the next 10 h. The model conquers the difficulty in obtain-
ing data and inability to predict in real time by traditional gas geomathematical models
and improves the accuracy of gas concentration prediction using the improved variable
weight combination method of residual weighting. The prediction of gas concentration
change trend can be as an important reference for safety management in coal mines to take
measures such as gas extraction, water misting, boosting wind speed and other methods in
time to ensure a better prevention of gas accidents.

2. Date Source

Since coal is the main source of energy in China, the safety problems related to coal
mining have attracted significant attention. A large volume of gas gush is generated in
the working face of the gas mine during the process of the production. By referring to the
pre-decessor’s data collection scale when predicting the gas concentration, [23,24] in this
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study, 10,000 sets of data were collected from 11 different survey sites at the working face
of a coal mine in Shanxi Province from 19 March 2021 to 24 March 2021. The description of
data attribute is shown in Table 1.

Table 1. Data attribute description of each measuring point at a working face.

Measurement Point
Name

Measurement Point
Description Index Max Value Min Value

MGas Mixed methane
concentration in air entry % CH4 0.7 0

EGas Methane concentration of
back air in air inlet drift % CH4 0.7 0

Gas1
Methane concentration in
the downwind side of the

tunnel
% CH4 0.79 0.16

Gas2 Methane concentration in
working face of air entry % CH4 0.4 0

YCO1
Concentration of carbon

monoxide in the downwind
side of tunnel drilling

ppm 6 0

YCO2

Concentration of carbon
monoxide at the head of the
belt conveyor in the air inlet

lane

ppm 6 0

WS Back air speed in air entry m/s 1.2 0.2

FC Dust on working face of air
entry mg/m3 0 0

ET Back air temperature in air
entry

◦C 13.3 10.8

GD Mixed instantaneous flow
in air inlet pipeline m3 19.29 0

SM
Smoke on the downwind

side of the head of the belt
driven into the air entry

mg/m3 0 0

2.1. Missing Data Processing

Due to various force majeure factors in the data collection, transmission and storage
scenarios, some data can be missing. Missing data can cause serious impediments to
subsequent data correlation analysis and the construction of gas concentration prediction
models. In addition to reducing the validity of the data, it can also lead to inaccuracies
in the overall data analysis task and produce incorrect analysis results. Hence, this paper
adopts the average method to fill in the missing data. The data filling equation is given
as follows:

x̃ =

n
∑

i=1
xi

n
(1)

In the above formula, x̃ represents the missing data series,
n
∑

i=1
xi represents the total of

all data in the data set and n represents the number of nonmissing data in the data set.

2.2. Normalization Process

In order to eliminate the impact of the dimensionality between the gas multiparameter
time series, it is necessary to perform data normalization. Following data normalization of
the raw data, the indicators are in the same order of magnitude and suitable for compre-
hensive comparative evaluation. Meanwhile, normalization provides a certain degree of
numerical comparability of features among different dimensions. The original time series x
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is normalized by applying min–max normalization. The normalization formula is given
as follows:

x∗ = x− xmin

xmax − xmin
(2)

where x* is the normalized value, xmax, xmin are the maximum and minimum values of the
sample data respectively.

2.3. Feature Selection

After the data have been preprocessed, it is necessary to select meaningful features
to input into the machine learning algorithms and models for training. Generally, feature
selection is divided into the following two main steps:

2.3.1. Correlation Analysis

In order to fulfill the requirements of gas concentration prediction and to strengthen
the situational awareness and extrapolation capability of the prediction model, in this paper,
we use the Pearson correlation coefficient to describe the degree of correlation between gas
concentration at the working face and its impact factors. The equation is given as follows:

ρX,Y =
cov(X, Y)

σXσY
(3)

In the above equation, ρX,Y represent the Pearson correlation coefficient of two con-
tinuous variables X, Y, cov(X, Y) represents the covariance between them, and σX and σY
represent the standard deviations of the variables X and Y.

2.3.2. Eliminate Redundant Features

Using the Pearson correlation coefficient to obtain the weights of each feature, the
features with weights less than a threshold value are eliminated. Afterward, the mutual
information is calculated for the features in the remaining data set two by two. Mutual
information refers to the extent of information shared between two features. If the value
of mutual information is greater than the threshold, the feature with the smaller weight is
considered redundant and is removed. The equation for calculating mutual information is
given as follows:

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(4)

In the above formula, p(x,y) is the joint probability distribution function of X and Y,
and p(X) and p(Y) are the marginal probability density functions of X and Y.

3. Materials and Methods
3.1. LightGBM

XGBoost should be defined before explaining about LightGBM [25], XGBoost is an
improved boosting algorithm of the gradient boosting decision tree (GBDT), which is GBDT
in essence, but it strives to maximize the speed and efficiency. Conventional GBDT adopts
classification and regression tree (CART) as the base classifier, and XGBoost supports
the multiple base classifiers to compensate for the shortcoming in the accuracy of single
CART prediction. However, the disadvantages associated to XGBoost are that it stores
feature sorting results, which occupy a massive amount of memory, and it severely affects
cache optimization.

Compared with that of XGBoost, LightGBM [26] is a relatively new tree-based gradient
boosting variant. It adopts the histogram algorithm to ensure that an algorithm utilizes less
memory and has a low computational cost. Layer-by-layer growth is a conventional method
used for tree based combination (including XGBoost) growth decision trees. LightGBM is
different from that of XGBoost, as it does not utilize the conventional decision tree growth
strategy and it introduces leaf-by-leaf growth strategy. In contrast to layer-by-layer growth,
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leaf-by-leaf growth strategy converges faster and consumes lesser memory. Layer-by-layer
growth strategy and leaf-by-leaf growth strategy are shown in Figure 1.
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3.2. LSTM

LSTM [27] consists of a set of cyclic subnetworks named according to the memory
blocks. Each memory block consists one or multiple self-connected memory cells and
three gating units: input gate, output gate, and forget gate. Similar to that of the recurrent
neural network (RNN), the hidden unit is horizontally connected back to the hidden unit.
However, the hidden unit of RNN is replaced by the memory cell with gating function.
The diagram of LSTM structure of a single cell is shown in Figure 2.

ft = σ(w f · [ht−1, xt] + b f ) (5)

it = σ(wi · [ht−1, xt] + bi) (6)

C̃t = tan h(wc · [ht−1, xt] + bc) (7)

Ct = ft × Ct−1 + it ∗ C̃t (8)

Ot = σ(wo · [ht−1, xt] + bo) (9)

ht = Ot × tan h(Ct) (10)
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In the above formula, ƒt represents the forget gate. It is used to control whether or
not to filter the hidden cellular state of the upper layer in the LSTM. it represents the
input gate, C̃t is the cell state at the previous moment, Ct is the cell state at the present
moment, Ot represents the output gate, xt and ht represent the input and output at the
current moment and σ and tanh represent the sigmoid function and hyperbolic tangent
function, respectively. The forget gate, input gate, output gate and the weight matrix of
the cell state are represented by wf, wi, wo and wc respectively. bf, bi, bo and bc represent the
offset vector of the forget gate, input gate, output gate and cell state, respectively.

3.2.1. Activation Function

The sigmoid function is used as the activation function for the forgetting, input and
output gates in the LSTM. The tanh function is used as the activation function when
generating candidate memories. Both are saturated functions. If a nonsaturated activation
function is used, the past and present memory blocks will be superimposed all the time,
resulting in memory misalignment and making it difficult to achieve the gating effect [28].

Sigmoid is a commonly used activation function in gating structures. It compresses the
values to between 0 and 1, which can help update and forget information. In fact, sigmoid
activation function is the common choice for almost all modern neural network modules
in gating.

Tanh activation function is used to generate candidate memories. This is due to
the fact that tanh function has a larger gradient than the sigmoid function, which makes
the model converge faster. Likewise, if a nonsaturated activation function is used to
generate the candidate memory, it is likely that the output values may explode or the
gradient may disappear. Hence, in this paper, we choose tanh activation function as the
activation function.

3.2.2. Overfitting

High fit is a key sign of a good model. However, in the process of model fitting, if
the pursuit of high R-squared is pursued, it is likely that some of the characteristics of the
training sample itself will be taken as general properties that all potential samples will have.
As a result, this can lead to a reduction in the generalization performance of the model.
This phenomenon is called “overfitting” in machine learning and cannot be completely
avoided in model training. All we can do is “reduce the risk”, and currently, there are
several ways to prevent model overfitting:

1. Data enhancement: Employing more data for model training helps to better identify
signals and avoid identifying noise as signals.

2. Pretermination: Pretermination prevents overfitting by stopping the iteration of the
model before it converges on the training data set.

3. Regularization: Regularization refers to the process of optimizing the objective func-
tion or cost function by adding a regular term after the objective function or cost
function, typically L1 regular or L2 regular, etc.

4. Dropout: Dropout is implemented by randomly “removing” the hidden units from
the neural network after the model training has started.

In order to prevent overfitting of the LSTM model in this paper, pretermination and
the addition of a dropout layer are used. First, by recording the best validation accuracy so
far during the training process, when after five consecutive iterations, no better validation
accuracy is produced, then we can terminate the model early by default. Furthermore, we
add a dropout layer to the model to reduce the complex coadaptation between neurons.
Once the hidden layer neurons are randomly removed, the fully connected network is
sparse, which can effectively reduce the synergistic effect of different features and enhance
the generalization ability of the model. Due to the addition of the dropout layer, the model
has a certain randomness in prediction, so the 10 predictions of the LSTM model are taken
and averaged as the final prediction result.
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3.3. Grid Search Algorithm

A reasonable set of model parameters is the basis for building a good model, and
the impact of hyperparameters on the effectiveness of the model is crucial. The grid
search algorithm refers to an exhaustive list of parameter values. By combining the values
determined by the range of values for each parameter and the search step, a “grid“ is
generated by listing all possible results. Subsequently, the combinations are used to train
the model, and an optimal combination of parameters is returned after all combinations
have been tried.

3.4. Improved Variable Weight Combination Model

During the gas concentration prediction performed by the conventional combination
model, different models are adopted to predict the gas concentration with the same working
face. The appropriate weights are assigned to the prediction values, and then combined.
The combined prediction model can reduce the effect of random factors of the single
forecasting model and effectively improve the prediction precision.

In this study, LSTM-LightGBM equal weight combination model, LSTM-LightGBM
residual weight combination model, and improved LSTM-LightGBM variable weight
combination model were developed.

3.4.1. Development of Single Machine Learning Model

Ensuring the prediction accuracy and performance of single machine learning model
is the basis of determining the combination model—specifically, based on previous research
and parameter comparison between LSTM neural network models. Using the grid search
algorithm mentioned in Section 3.3 for hyperparameter search optimization of the LSTM
model, it is determined that the search range of the first layer cell count is from 20 to
200 with a search step of 20, the search range of the second layer cell count is from 10 to
100 with a search step of 20 and the number of iterations is set to 10 to 40 with a search
step of 10. The layer of the network model was set to 2. The activation probability of the
dropout layer was set to 0.2, the number of the unit in the first layer was set to 100, the
number of units in the second layer was set to 50 and the activation function was set to
Tanh. The optimization algorithm adopted the Adam algorithm, and the iteration number
was set to 20 times.

Grid search algorithm [29] was used to optimize the superparameter of LightGBM
model. The final parameters of the model were set as: max _depth = 6, learning _rate = 0.2,
n _estimators = 180, subsample = 0.6, colsample _by tree = 0.85, silent = True.

3.4.2. Weighing of the Residual Combination Model

It is a common method to provide a single model a proper weight to develop the
combination model under the condition that the accuracy of the single machine learning
model remains the same. This can improve the accuracy of the model [30]. The most
extensively used weighting method is equivalent weighting. In general, the method of
equivalent weighting is simple, and it has a good universality and participation. However,
it does not reflect the importance that the model attaches to the prediction results of different
single models, and it is possible that the determined weight is considerably different from
that of the actual importance of the prediction results. The residual weighting combination
model is expressed as:

h(xt) =
m

∑
i=1

ωi(t− 1) fi(xt) (11)

ωi(t−1) =
1

ϕi(t−1)
m
∑

i=1

1
ϕi(t−1)

(12)



Energies 2022, 15, 827 8 of 17

m

∑
i=1

ωi(t− 1) = 1, ωi(t− 1) ≥ 0 (13)

where wi(t − 1) is the weight of the ith model at the moment of t − 1, ƒi(xt) is the prediction
value of the ith model, h(xt) is the prediction value of combination model, ϕi(t − 1) is the
square sum of the predictive errors of ith model at the moment of t − 1. The central idea of
residuals weighting is to assign the weight to describe the importance of the model based
on the error between the prediction value and the real value.

3.4.3. Weighting of Improved Variable Weight Combination Model

Compared with that of the conventional prediction method, there are a few improve-
ments in data input dimension in this study. Conventional gas concentration prediction
models only adopt the single dimension input model. The improved algorithm proposed
in this study adopts multidimension input method based on data correlation analysis. It
reveals the constraint of the single dimension input model, and it provides a theoretical
basis to explore the relationship between other compounds and gas concentration.

LSTM-LightGBM variable weight combination model was developed using the im-
proved variable weight combination method based on residual weight. The residual
weighting model was improved based on weight of the moments obtained in Formula (12),
and the optimal m value was calculated. The average of the weights of the first m moment
was used for the initial weighting. The expression for the initial weighting is:

ωj(t) =
1
m

m

∑
k=1

ωi(t− k) (m = 6), (14)

After gaining the weight of the models from Formulas (12) and (14), the absolute value
of the error between the predicted value and the true value of each combination model at
the moment of t is calculated as δi,t and δj,t.

δi,t =
m

∑
i=1

ωi(t) fi(xt)− f̂ (xt) (15)

δj,t =
m

∑
i=1

ωj(t) f j(xt)− f̂ (xt) (16)

The values of δi,t and δj,t, are compared. If δi,t < δj,t, the new weight wj(t) of the
combination model will replace the previous weight wi(t). Otherwise, the previous weight
will remain unchanged.

3.5. Construction Flow of Prediction Model

The construction flow of the prediction model is shown in Figure 3. The main processes
include data preprocessing, prediction of the single machine learning model, construction
of the variable weight combination prediction model and the evaluation and analysis of
the model prediction [31].

(1) Data preprocessing: Data preprocessing is an important link before data modeling,
which fundamentally determines the quality of the data work and the output value.
The data in this study was obtained from the working face of a coal mine in Shanxi
Province. The data is relatively complete. Therefore, the data are directly normalized.
The data attribute and the data correlation are considered and the suitable data from
the data set is selected for the model training.

(2) Development of single machine learning model: After the data set is divided according
to the scale of the training set:verification set:testing set = 7:2:1, the LSTM model and
LightGBM model are trained by the data of the training set, and the data of verification
set is used to adjust the parameters and monitor if the model has been fitted. The data
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of the test set are placed into two models, respectively, and the prediction results of
the single machine learning model are obtained.

(3) Development of improved variable weight combination model. The weight of each
single machine learning model is determined by the improved weighting method
shown in Section 3.4.3 to ensure that the improved prediction model can be obtained.

(4) Model evaluation analysis: According to the indexes of the model evaluation, the pre-
diction ability of the improved model was compared and the change in the prediction
effect of the model is analyzed.
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3.6. Evaluation Index

The mean absolute percentage error (MAPE) is not applicable because the actual value
of the data used in this study includes zero. Therefore, the evaluation index used in this
study is root mean square error (RMSE) and mean absolute error (MAE). The formula is
as follows:

RMSE =

√√√√ 1
m

m

∑
i=1

(ŷi − ypre)
2

(17)

MAE =
1
m

m

∑
i=1

∣∣(ŷi − ypre)
∣∣ (18)

In the formula, m is the number of samples, ŷi is the true value, ypre is the forecast
results. The actual value will be closer to the predicted value if the value of the loss function
is smaller, and this ensures a higher accuracy of the model prediction.

When there is a certain amount of error in the prediction, the value of the root mean
square error will also be larger, so the root mean square error is used to characterize the
degree of dispersion of the error value. As the error values of the mean absolute error are
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absolutized, there is no situation where the positive and negative errors in the mean error
cancel each other out. Thus, the mean absolute error can better reflect the actual situation
of the prediction errors.

4. Results
4.1. Prediction Factor Analysis

There are multiple transformations and interactions between the gas mixture and
other compounds at different measuring points [32]. Therefore, the correlation between the
concentration of the gas mixture and other compounds is analyzed.

In statistics, the Pearson product–moment correlation coefficient (PPMMC) [33] is used
to measure the correlation between variables. To avoid experimental uncertainties, data
from three different coal mines were selected for correlation analysis, and the visualization
of the correlation between the mixed gas concentration and the data was determined using
heat diagram.

As shown in Figure 4, the “FC” data in this working face are zero, and a correlation
with the mixed gas concentration was absent. There is a strong correlation between
“EGas”, “Gas1”, “Gas2” and the mixed gas. However, by calculating the values of mutual
information between “EGas”, “Gas1” and “Gas2”, we found that “EGas“ has the largest
mutual information value and is greater than the threshold value, so it can be considered
that “Gas1” and “Gas2” are redundant features; thus,“Gas1 “and “Gas2” are not used as
input data.
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The four variables “EGas, WS, ET and GD” were selected as the input of the prediction
model, and the correlation analysis between the input variables and the mixed gas concen-
tration is shown in Figure 5. According to previous experiments conducted on methane
adsorption, an increase in temperature can reduce the gas adsorption capacity and it can
effectively promote the rapid desorption and diffusion. Meanwhile, the activity of the
methane molecule increases, which promotes the pore expansion of coal bodies, particularly
of the small gaps. This significantly improves the methane diffusion of coal bodies. The
diffusion coefficient dynamically changes with an increase in the temperature. In this study,
the least squares method was used for fitting, as shown in Figure 5a. A positive correlation
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between the concentration of mixed gas and the ambient temperature was observed, which
revealed the mechanism of the dynamic process of gas diffusion proposed by Liu [34] et al.
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between mixed methane concentration and back air methane concentration; (c) Scatter plot of
correlation between the concentration of mixed methane and the instantaneous flow of pipeline; (d)
Scatter plot of correlation between mixed methane concentration and working velocity and back air.

In this study, the back air methane concentration and mixed methane concentration
exhibited a stronger correlation. The back air pipe is mainly used to receive the air flow
after cleaning the working face, and a large volume of gas will be produced during the
process of production at the mine working face. At the working face, the main gas sources
are the falling coal gas emission and coal wall gas. Different gas sources follow different
rules of gas emission [35].

4.1.1. Law of Falling Coal Gas Emission

The coal body will crack during the process of mining, causing a change in gas
occurrence conditions. A large volume of gas changes into a free state from the adsorption
state, and it might enter into the tunnel with the air flow. The volume of falling coal gas
emission is closely related to falling coal, the falling coal fragmentation, the content of coal
seam gas and residual gas. The intensity of coal falling gas emission is shown in Formulae
(19) and (20).

q1 =
q10

(1 + t)α (19)

Q1 =
∫ T

0
q1θMdt (20)

In the function, q1 represents the emission intensity per weight of falling coal gas at
unit time of t + 1, unit is m3/(min.t). q10 represents the intensity of gas emission at initial
moment of falling coals with the unit of m3/(min.t). t represents the exposure time of
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falling coals with the unit of min. α is the attenuation coefficient, Q1 is the absolute gas
emission from falling coals in the process of mining with the unit of m3/min. M represents
the mining weight per unit time with the unit of t/min. θ is the degree of fragmentation.

4.1.2. Law of Coal Gas Emission of in Working Face

The gas released from the coal enters the air stream through the surface of the coal
wall according to Duthie’s law and the law of diffusion. During the process of continuous
mining, fresh coal wall is constantly exposed, mining pressure constantly changes, and the
gas pressure balance state near the working face changes. A large volume of gas flow out
along the coal cracks and pores gushing lane, the gushing intensity of the coal wall gas is
shown in Formulas (21) and (22).

q2 =
q20

(1 + t)β
(21)

Q2 =
∫ T

0
q2Hvdt (22)

In this function, q2 represents gas emission intensity of back coal wall at the time of t +
1 with the unit of m3/(min.m2). The q20 is gas emission intensity at the initial moment of
coal wall with the unit of m3/(min.m2). t is the exposure time of coal wall, with the unit of
min. β is the attenuation coefficient, Q2 is absolute emissions of coal wall gas in the process
of mining with the unit of m3/min. H is the thickness of coal mining layer with the unit of
m. v is the cutting speed of coal mining machine with the unit of m/min.

After entering the lane from the above gas source, methane will form a mixture of gas
and air with uneven concentration, and the mixture will migrate by concentration diffusion
and convection mixing in the airflow. After fresh air flow passes through the working
face of mines, partial methane gas in the mining face is diluted and carried. Therefore,
the methane concentration in the back air can accurately reflect the change in the methane
concentration in the mining face.

4.2. Model Prediction Analysis and Comparison

To verify the accuracy of the improved LSTM-LightGBM, the LSTM, LightGBM, XG-
Boost, LSTM-LightGBM (Equivalent weighting) and LSTM-LightGBM (Residual weight)
were selected for comparative experiments. The errors of the different models were com-
pared as shown in Figure 6.

From the figure above, it can be observed that the prediction accuracy of the variable
weight combination model is higher than that of the single machine learning model and
the conventional combination weighting model. The comparison between the values of
MAE and RMSE of the models is shown in Table 2.

Table 2. Comparison between evaluation indexes of each model.

Model MAE RMSE

LSTM 0.0219 0.0306
LightGBM 0.0277 0.0377
XGBoost 0.0253 0.0352

LSTM-LightGBM (Equivalent
weighting) 0.0214 0.0276

LSTM-LightGBM (Residual
weighting) 0.0201 0.0279

LSTM-LightGBM (Variable
weight combination) 0.0194 0.0261
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The MAE and RMSE values of LSTM model were the average value of the LSTM
model which were trained ten times. After the analysis, the MAE and RMSE values of
the improved LSTM-LightGBM variable weight combination model were increased by
3.5% and 6.5%, respectively, compared with that of the LSTM-LightGBM residual weight
combination model, and by 11.4% and 14.7%, respectively compared with that of the LSTM-
LightGBM single machine learning model. The improved variable weight combination
method has a higher prediction accuracy.

4.3. Model Universality Analysis

During the selection of study area, strong local features were observed at different
working faces of the coal mine at different locations. To verify the universality of the
algorithm, the prediction and analysis of gas concentration were performed in different
coal mines. The coal mines selected were Mine A in Shanxi, Mine B in Guizhou, and Mine
C in Anhui.

It can be observed from Figure 7 that the prediction error of the modified variable
weight combination model is smaller than that of the conventional model, and the increase
in Mine A is the most obvious. MAE value increased by 18.5% and 29.2%, respectively,
compared with that of the LSTM model and the LightGBM model. RMSE increased
by 22.9% and 30.4%, respectively, compared with the LSTM model and the LightGBM
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model. Therefore, the prediction results of the improved variable weight combination
model with three different coal mine gas concentrations demonstrated that the prediction
accuracy was improved. This demonstrates the universality of the improved variable
weight combination model.
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5. Discussion

In this study, a variable weight combination model was developed by adopting
the methane concentration, wind speed, ambient temperature, gas drainage, and the
historical data of mixed gas. Working faces of different mines were selected to predict the
gas concentration in the future 10 h. In the improved LSTM-LightGBM variable weight
combination model, the MAE value and RMSE value were 0.0194 and 0.0261, respectively.
These values were smaller than that of the prediction values of 0.0224 and 0.0317 obtained
in the ARIMA model proposed by Zhang et al. [36] and the 0.0207 and 0.0303 of S-GRU
model proposed by Chang et al. [37]. This was because an LSTM neural network with
better time sequence prediction and the LightGBM model with better performance in the
nonlinear model were predicted in the form of variable weight combination. It considered
the time sequence feature of the data and the nonlinear feature of data. For analysis
and comparison result of the gas concentration, the improved LSTM-LightGBM variable
weight combination model was better than that of the conventional LSTM-LightGBM
equivalent weight assignment model and LSTM-LightGBM residual weight assignment
model. Considering the difference in prediction error between the LSTM network and
the LightGBM model at different moments, the combination model adopted different
weights for the prediction values at different moments to combine the advantages of both
the models.
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In this study, data from coal mine at several locations were selected to explore the
performance of the regional model. Additionally, downhole temperature, wind speed and
methane gas were selected as prediction factors to determine the effect of factors for gas
concentration prediction [38]. To improve the prediction accuracy of gas concentration,
suitable factors such as weather and ground surface temperature, depth of coal seam,
inclination of coal bed, top and bottom lithology of coal bed should be considered in
the future.

6. Conclusions

Based on LSTM and LightGBM model with the variable weight combination model,
the prediction method of gas concentration was improved. In this model, the time sequence
feature and the nonlinear relationship between the input feature and gas concentration
were considered. By the data pre-processing and feature selection, it makes the model
converge faster and avoids the degradation of prediction accuracy due to redundant
features. Sigmoid function is selected for the activation function of the gate structure of the
LSTM model. Tanh activation function is selected to generate candidate memories. These
gates increase the convergence speed of the model. Moreover, they guarantee that the model
does not suffer from the problem of exploding output values and vanishing gradients. In
comparison to traditional single machine learning gas concentration prediction models,
LSTM models have a higher prediction accuracy.

Compared with that of single machine learning model and other conventional combi-
nation weighting models, the prediction result of the variable weight combination model
was closer to that of the real value with a small error. It provides better prediction accuracy,
and high reliability. It can give a reference for gas accidents prevention and promote the
safety of coal mines.

This study focused on the prediction and analysis of gas concentration using the
underground attribute information only including temperature, wind speed, methane
gas. Nevertheless, the change of gas concentration is affected by complex factors and
conditions [39]. In future research, it is important for us to consider more comprehensive
factors of gas concentration, such as roof pressure, minging depth, inclination angle of coal
seam and ground weather information.
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