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Abstract: The power demand on the electric grid varies according to the time of the day following
users’ needs and so does the cost of electricity supply because the electricity mix is formed using
different generators of varying capacities. Demand response (DR) is the modification of the consump-
tion load curve following a signal from the electricity provider; it is mostly used for peak clipping.
By reducing the short-term mismatch between generation and consumption, it helps to integrate
intermittent renewables and new low-carbon technologies such as energy storage, electric vehicles,
and power-to-gas. The present work is a literature survey based on the following keywords: demand
response, demand technology, potential, power, and power dispatch, which aims to provide a sum-
mary of the state of the art regarding the potential for demand response implementation. Literature
is either related to potential assessment or to implementation; less focus is given on non-dispatchable
DR than on dispatchable DR. There is a great untapped potential for power demand reallocation
in all sectors. Incentivizing users to participate in demand response programs is crucial, as well as
education campaigns and smart meters penetration. The barriers to demand response are mostly the
investment costs in the absence of an adequate pricing scheme.

Keywords: demand response; load scheduling; renewable energy integration; peak shaving; smart
grid; energy management system

1. Introduction

“Demand response (DR) is a tariff or program established to motivate changes in
electric use by end-use customers in response to changes in the price of electricity over
time, or to give incentive payments designed to induce lower electricity use at times of
high market prices or when grid reliability is jeopardized” [1]. The measures taken on the
demand side (demand-side management, DSM) aim to reduce the peak load and shift the
load to a time frame when the demand is lower. DR plans offer numerous advantages to the
electric grid, the electricity provider, the industry and services, and to the consumers. The
main advantage is the reduction of the peak-to-average ratio (PAR) and the avoidance of
additional investments in power generation, supply, and distribution systems for peaking,
thus reducing the costs on the power supply side [2]. The demand response strategy aiming
to reduce peak-time consumption is called peak clipping; reducing the peak consumption
also decreases emissions and the overall energy consumption. Demand response also
alleviates the pressure on the electricity grid and on the utility companies. The grid also
becomes more reliable; in case of a sudden surge in load or an emergency, the electricity
price would be less likely to dramatically increase. Consumers can choose demand response
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procedures that suit them in order to reduce their electricity bills. Demand response is
significantly limited by societal, technical, economical, and legislative barriers [3]. Most
of the programs in place only concern large industrial consumers while households and
commercials are slowly being integrated [4]. Power systems face reliability issues, lower
efficiencies, energy losses, and high emissions [1]. Under a traditional flat rate price of
electricity, there is no incentive to change the consumption pattern while power generation
costs vary throughout the day. Consequently, the mismatch between the retail price and
the wholesale price reduces the overall efficiency. Demand response can reduce the need
for operating expensive peaking generators through rescheduling of the energy usage
to off-peak periods [5]. The same power management plan applied for the peak load
can be used to balance the supply and demand in order to provide more stability and
reduce the fluctuations in demand. DSM can regulate the energy consumption of the smart
environment in order to significantly reduce energy wastage, peak load demand, and the
corresponding monetary costs [6]. DSM strategies involve energy efficiency (EE) measures
as well as DR strategies. They aim to reduce energy wastage to the minimum during
operation, manufacturing, or servicing, thus bringing appreciable financial gains. The
main difference when implementing a DR strategy is that the demand pattern is modified
according to the electricity price signals or according to the state of the grid.

The present study is a review of publications within the field of demand response
according to several keywords. Recent findings concerning the DR potential in all sectors
are reported. The current limitations and the future evolution of demand response are
also mentioned. Finally, the interaction between demand response and technologies such
as artificial intelligence (AI), internet of things (IoT), blockchain, product–service system
(PSS), and big data is also elaborated. The second section of this paper gives a summary
of the literature focused on DR potential estimation and also describes the research on
optimization of demand response procedures. The third section describes the research
trend within the different aspects of demand response. The fourth section points out areas
for further research.

2. Literature Review

According to Tranfield [7], system literature review (SLR) is a reproducible, structural,
transparent, and thorough selection procedure. Therefore, the SLR method was used to
select 81 research papers published between 2010 and 2020.

In a first search phase, a list of keywords such as demand response, demand techniques,
potential, electricity supply, and power dispatch was entered. To remove biases as much as
possible and extend the scope, major online libraries were included, for instance: Science
Direct, Engineering-Village, and Web of Science. The search results were refined to include
articles and conference proceedings. The publication date ranged from 1 January 2010 to
31 December 2020. The keyword “demand response” generated 56,532 matches; adding
the important keyword “potential” reduced the number of matches to 8942 and when the
scope was further reduced by adding the keyword “electric”, 1458 articles remained. By
tuning with different keywords such as “manage”, “schedule”, and “control”, it yielded
120, 242, and 612 articles, respectively. Using a combination of “manage”, “schedule”, and
“control + optimize” (120 + 242 + 57), a total of 419 articles remained; which were all read
to write the present review. The focus was on journal papers and conference proceedings
while aiming to discover all the published material in the field. Although the search
included three different libraries, most of the matches came from Web of Science. Among
the 419 articles we came across, only the publications with more significant contributions
based on potential and application were kept to form the core discussion of this review.
Finally, 81 studies were selected and are cited in the present work.

2.1. State of the Art of DR Participation Methods

DR programs usually rely on a mechanism incentivizing the consumer to reduce
consumption in order to limit peak load. When the client takes part in demand response,
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there are mainly three methods to change electricity consumption: (1) reducing the load and
the energy consumption, (2) shifting the electricity consumption to a different time frame,
(3) limiting the reliance on the grid by using auxiliary power sources. For example, (1) by
reducing the lighting, ventilation, and air conditioning/heating intensity as a peak shaving
strategy; (2) operation of home appliances and industrial processes can be postponed
to night or to a period in between peaks in order to profit from less expensive tariffs;
(3) strategies involving auxiliary solar panels and batteries, wind or hydro turbines, or
recollection of waste heat (from furnaces) for generating electricity. All these means can
reduce or even remove the need for the grid during the demand response period. The
clients can be categorized according to Siano [8] as:

• Large commercial firms and industries (CI);
• Small commercial firms and industries (CI);
• Households dwellings;
• Personal electric vehicles (PEV);
• PEV fleets.

Large CI customers usually involved in manufacturing processes can invest in tech-
nology allowing to accurately control the loads and thus have the opportunity to become
involved in wholesale or retail electricity markets. The load in commercial facilities is
mostly that of heating, ventilation, and air-conditioning (HVAC), which can be used for
DR. Residential customers have small loads from home appliances and HVAC; they can be
involved in direct load control (DLC) programs. However, motivation for investment in
energy management systems is low; this tendency is likely to change with the introduction
of advanced metering infrastructure (AMI) and building automation systems. Electric
vehicle penetration is a challenge for the grid and the utility as uncontrolled charging can
damage equipment and cause voltage problems. On the other hand, when the charging is
aggregated and controlled, the PEV fleets can be seen as mobile batteries and thus present
a great opportunity for load shifting. Up to now, there have been relatively few studies on
the potential of the electric load modulation. Müller and Möst [9] analyzed the possibility
and flexibility of DR integration into the German renewable energy sources (RES) system.
The results show that DR reduces the curtailment of renewables (35–77% in their model)
and reduces the need for storage and backup generators. On the other hand, the benefits of
DR are mostly seen for shorter term fluctuations because extended periods of surplus or
shortage require storage or backup. According to Müller and Möst, the time slot is critical
when assessing DR capacity; in the case of Germany with a DR potential reaching 23–30%
of the total consumption, only 5–8% can be curtailed during the peak period. Ali et al. [10]
investigated the potential of DR for indoor temperature regulation throughout the seasons
in households. Their simulation results showed that there is huge potential for reducing
energy consumption from the HVAC system load. Rotger-Griful et al. [11] did experiments
on a 12-story apartment building where they investigated the demand response potential
for ventilation purpose under the northern European climate. Their results showed that
when 796 residential buildings of similar size to the test building are aggregated, the power
consumption can be reduced by 1.57 MW (about 2%) during the 6 p.m.–7 p.m. time slot.

Samad et al. [12] investigated some DR applications in the industry, for instance,
an aluminum manufacturing plant where the load is adjusted according to the market.
Through installation of an energy management system (EMS), the electric load is controlled
using a load control (LCPD) system. The benefits from implementing DR were reported as
USD 700,000. Amy’s Kitchen, a company in California, US, took part in PG and E’s (Pacific
Gas and Electric Company, San Francisco, California, USA) automated demand response
(ADR) program which transmits price and reliability information to large commercial firms
and industries. The power companies use openADR to inform one day ahead the users
concerning the DR events schedules. EMS activates the preprogrammed DR strategy, for
example, turning off certain freezers and battery chargers as well as raising the temperature
of the freezers and refrigerators.
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2.2. DR Research Fields

Within the scope of DR research, 81 papers published over the last 10 years (2010
to 2020) were reviewed. The literature on DR potential can be categorized as shown in
Figure 1:

Figure 1. Architecture of the different areas of DR potential studies.

The demand response potential can be split into two categories: assessment and
implementation. In potential assessment category, literature can be further characterized by
their assessment methods, focus, and decisive parameters. In the implementation category,
literature can be characterized by types of contributions, models, and sectors. In general,
each article is subcategorized into more than one group; an Excel table was used to keep
track of the matches. This analysis is useful to describe the trend of demand response
research and highlight areas that may have received less attention. Literature on DR is
very extensive and includes various domains such as: societal concerns and incentivizing
mechanisms, mathematical modeling for load scheduling optimization, AI for automated
DR under 5G telecommunications framework, network voltage control, appliances control,
etc. The present paper focuses on reviewing DR potential related research rather than on
more technical aspects of DR.

2.3. Potential Assessment

Potential assessment is the basis of a demand response plan and the first step for
promoting demand response. DR potential assessment is very important for maximizing
the benefits of DR. Potential assessment related studies estimate how much the peak
load can be reduced; peak load reduction is the most important contribution of DR as
it allows for reducing the need for expensive peaking plants. According to the statistics
from the US-based independent system operators’ regional transmission organizations
(ISO/RTO) [13], the reduction of peak demand through DR ranges from 1.4% to 4.1%.
For instance, implementing DR reduces the summer peak, and in 2008, the largest peak
reduction reached 38 GW. The Federal Energy Regulatory Commission (FERC) [14] stated
that in 2019 the peak load could be reduced from 38 to 188 GW, representing 4% to 20%
of the peak value. It is worth noticing that if DR is fully deployed, the load reduction
equals the estimated electricity consumption increase for the next ten years. In the US,
potential assessment-related studies are often focused on ancillary services provided by
DR participants and on energy management for load shedding and scheduling. The key
parameters for increasing the potential and participation are the electricity pricing schemes,
rewarding incentives, and ability to schedule the load.

2.3.1. Potential Implementation

Forty-three of the 81 papers selected mentioned different models for implementation.
The present work sorted the publications from the last decade and it appears that the model-
related studies can be split into three categories: potential assessment methods, potential
implementation models, and load models. Studies focusing on potential implementation
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describe actual or hypothetical implementation of DR in the different sectors and report
results from collected or modeled data, then draw conclusions. Those studies highlight
the difficulties to overcome and the costs for unleashing full DR potential. Studies mostly
focus either on dispatchable DR allowing maximum flexibility or on non-dispatchable DR
for low flexibility applications.

In potential assessment methods, Heitkoetter et al. [15] used a model for load-shifting
potential to calculate in each area the load-shifting cost curve and also assessed the po-
tential of 401 administrative districts in Germany. For each district, the median of the
cumulated load increase of all technologies is 25 MW through avoidance of curtailment.
Moreover, using a model to calculate the load-shifting cost curve, Xu et al. [16] proposed
a distributed generation system coupling electricity storage for an industrial park. Their
demand response model is based on the day-ahead real-time pricing DARTP. The customer
can rearrange consumption for the next 24 h accordingly; the model is based on a price
elasticity matrix (PEM). According to their results when comparing the DARTP model and
a model without DR, the overall costs were reduced by 3% and 16.7%. Bego et al. [17]
used an approximation method to obtain the optimum solution and carried out a numeri-
cal study to demonstrate the efficiency of their method using a non-linear mathematical
model that can minimize the electricity consumption costs as well as the hidden costs of
not attaining the production targets. Among the implementation model references, Cui
et al. [18] proposed two virtual electricity generation plants models: one virtual power
plant (VPP) based on time restriction and incentive demand response IBDR-VPP and one
based on probabilistic CBDR-VPP, and created an optimized model based on a bi-level
code. The upper level represents the coordination of operations for maximum profits. The
lower level simulates the day-ahead market clearing process done by a regular system
operator. Their model describes how public utility companies that participate in an ad-
vanced electricity market can maximize profits. Parizy et al. [19] proposed a new demand
response technique aiming to lower the PAR and the retail price of electricity and at the
same time without taking away from the comfort of the end users. This method relies
on one-way data communication to protect the secrecy of the users. Their model uses a
hopping scheme to plan consumption for the equipment with flexible schedule. It does not
need individual consumption of the appliances, thus reducing the communication between
the control center and the consumer, which saves significant bandwidth costs. Ghazvini
et al. [20] proposed a calculation method for a power management system applied to smart
homes which follows a demand response algorithm regulating household expenses. They
gave simulation results for different electricity prices and demand response algorithms.
The average power costs of the households decreased from 29.5% to 31.5%. De Angelis
et al. [21] developed a model based on mixed integer linear programming that finds the
best solution according to the real-time power and heat constraints. It can operate not only
under static conditions but also under dynamic conditions and therefore keeps continuity
in the task and thermal comfort in between the regulation periods. Measured data were
used to perform computer modeling and their results proved the efficiency and robustness
of the method.

Li et al. [22] used a research method based on an electric load model and built a
mathematical model that describes in detail the electricity demand and the consumption
mode giving the load curve of the residential sector in Singapore. They proposed a kind of
demand response management (DRM) plan and built a benchmark for testing their home
SG and assessed the peak load reduction from DRM. They demonstrated the efficiency of
DRM plans. Tang and Wang [23] developed a model predictor control (MPC) method using
the predicted value from the model. For a sudden DR event, it optimizes the operating
system of the refrigerators and air conditioners. The water cooler of the air conditioning
system is partially shut down to provide the grid with means to reduce consumption in case
of emergencies. The results show that the MPC method can efficiently perform optimum
control of two refrigerators between DR events and demonstrate power consumption
reduction together with a relatively comfortable indoor environment.
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2.3.2. Focus

When attempting to categorize research related to demand response, and because each
study focuses more or less on a different aspect around which revolves the argumentation,
five main keywords stand out: demand response, ancillary services, power management,
load, and others. “Energy Management” can be linked to 41% of the literature, “Load” to
34%, “Ancillary Services” to 19%, and “Others” to 6%, as shown in Table 1.

Table 1. Keyword architecture within the selected demand response literature.

Energy Management Load Ancillary Services Others

41% 34% 19% 6%

Management of
generation and
consumption

Electric power on the
grid, real-time power

on the system
Ensure secure and
stable operation of
the power system,

guarantee the
electricity supply

while maintaining
constant voltage and

frequency

Research work not
relevant to the

previous categories

In the different demand response keyword categories, Ghazvini et al. [20] gave an
incentive program for households taking part in demand response and used it as an input
in their household (home) energy management system (HEMS) model. Then they gave
simulation results for different tariffs and DR procedures to demonstrate the role and
efficiency of the HEMS. Qayyum et al. [24] used mixed integer non-linear programming
(MINLP) to schedule the appliances (based on real load patterns) for a mid-size home
under time-of-use (TOU) pricing within a microgrid configuration with a grid connection
and a 3 kW solar PV system. In this configuration, surplus electricity generation can be
sold to the grid. They considered a minimized peak load and a minimized electricity
cost configuration, which were successful in doing so. Aalami et al. [25] focused on
interruptible/curtailable services (I/C) and capacity market programs (CAP). They used
the 2007 Iranian grid peak day-load curve for their simulation work. With the concourse of
a strategy success index, they compared the simulation results from different scenarios to
determine the priority order between those. Bego et al. [17] designed a demand response
procedure for manufacturing industries using a mathematical model based on a mixed
integer non-linear programming method aiming to reduce electric bills to the minimum
and to minimize potential costs ensuing from production not reaching the target.

Concerning research related to ancillary services, Brown et al. [26] reviewed the role
played by demand response in six wholesale electricity markets within Australia’s National
Electricity Market (NEM). They proposed that to trigger DR, full transparency of the
electricity price should be established so that consumers would modulate their energy
expenditures accordingly. Price-responsive loads are economically sounder; however,
investment in real-time telemetering equipment is needed. They mentioned that in terms of
ancillary services, load curtailment yields lower response time to a surge than generators.
This highlighted the fact that within the capacity markets, the DR participants are paid to be
available for load curtailment in case of emergencies. Shoreh et al. [27] describe the ancillary
services programs through which industries partake in DR. Indeed, participation in DR
can be done through the energy market or the ancillary services market. Spinning reserve
and regulation are the main ancillary services; regulation is the near real-time continuous
balancing of load and generation which requires frequent and accurate dispatch. While
in the energy market, only load curtailment during peak periods is of interest. Load
curtailment gives a quicker response than starting up or even ramping up a thermal power
plant. Loads that can be cycled on and off quickly, such as smelters, water heaters, heat
pumps, dual-fuel boilers, pumping stations and air compressors, refrigerated warehouses,



Energies 2022, 15, 863 7 of 30

freezers, air conditioners, and hot water reservoirs, can all provide ancillary services.
Spinning reserve is the portion of the generation capacity that is unloaded but synchronized
to the grid and that can be dispatched within 10 min; the non-spinning reserve is the
capacity that can be synchronized and ramped up within 10 min. Shoreh et al. cited that
processes involving larger loads, such as aluminum and chloralkali electrolysis, cement
mills, wood pulp production, and electric arc furnaces, were shown to be able to provide
50% of the non-spinning reserve of the global balancing market in 2020. Spinning reserves
can be provided by smelters. Industrial participants can earn rewards when providing
spinning reserve by curtailing their load; one of the first countries to involve the industrial
loads in ancillary services was the UK. Shoreh et al. also gave a detailed list of the industrial
processes where DR has been implemented. Valdes et al. [28] compared the energy policy
of Germany and Chile in order to assess the potential and challenges of demand response
applied to productive industry and gave directions for promoting demand response in
Chile. They mentioned that industrial DSM is both cost effective and easy to implement.
As a matter of fact, the German government has been promoting industrial DSM since
2015 within the Electricity Market 2.0 scheme. Policies required for triggering DSM can be
listed as voluntary (energy efficiency certifications, use of new technologies), regulatory
(obligations to meet standards), financial (loans and subsidies), or market based. Regarding
the policies in the EU, they cited the Third Electricity Package and Smart Meters Operation
Act, which focus on smart meter penetration of 80% by 2020 by requiring their use for
facilities consuming more than 6000 kWh yearly. They concluded that the key lies in
combining DR with energy efficiency (EE) policies because reducing consumption is simpler,
more cost-effective, and requires less investments than DR. Regarding Chile, a regulatory
framework including incentives and obligations must be created to trigger EE reforms and
participation of the demand-side in the balance-market. They also mentioned that demand-
side flexibility is important for reaching higher penetration rates of intermittent renewables.
Considering Chile, they highlighted the fact that the transmission and distribution networks
need to be expanded to allow renewable electricity dispatch from zones where there is
surplus to those in deficit; storage facilities owned by third parties are also a requirement
and thus will allow development of future business models. Karlsen et al. [29] presented
a method relying on energy costs that provides information to public utility companies
and users. Their work assesses the incentive given by different dynamic pricing schemes.
They produced a thorough and complete analysis allowing the end users, public utilities,
and policy makers to solve the problems of demand-side management. This involves deep
renovation of old buildings, especially in terms of insulation regarding electric heating.
Martin et al. [30] mentioned that real-time pricing is the most efficient pricing structure
for demand response programs and therefore used it in their simulations. They used the
software IDA-ICE to model the HVAC demand response of one floor of an educational
office building. An algorithm controls the space heating and ventilation according to the
room temperature, CO2 concentration, and electricity price signals. Their DR algorithm
brings more thermal comfort (21 ◦C, 50% of the occupied time) and electricity savings than
setting a constant room temperature of 20 ◦C.

In the energy management category, Hu and Xiao [31] proposed a new DR control
method based on a model meant to automatically control residential inverter air condition-
ing units according to the day-ahead electricity price compared to the baseline scenario.
This model-based optimized control system can still provide thermal comfort and reduce
the overall consumption costs during a DR event and reduce the peak consumption. Amrol-
lahi and Bathaee [2] investigated the ability of DR programming for optimizing microgrids.
To optimize the components size, they used a DR program for a wind and solar electricity
supply which can provide better matching between the consumption and generation pro-
files. DR utilization reduces the need for power electronic units on the microgrid and thus
decreases the equipment costs. Ren et al. [32] presented a HEMS based on price forecasting
and aiming to reduce the electricity bills. The system is composed of a price forecasting
model, a load planning algorithm, and an energy consumption monitor. Olsen et al. [33]



Energies 2022, 15, 863 8 of 30

carried out an analysis of a cement factory to assess the possibility for demand response
implementation, load reduction or shifting, and increasing energy efficiency. Results show
that DR is a great asset for cement factories, which are very energy intensive. Indeed, the
large grinding mills have a significant demand response potential because they involve
non-continuous processes that can be interrupted. The example of a cement plant following
incentives from public utilities to modify its electricity consumption was also given.

In the load category, Klaassen et al. [34] analyzed the potential of scheduling washing
machines and showed the evolution of the load with time. They obtained the support of
many households concerning flexible utilization of the washing machines and advice on
which design functions could boost the flexibility. Rieger et al. [35] used the generation
and consumption data from 201 households in Texas for the year 2014. They used a load
scheduling calculator to support the two-part pricing plans: real-time retail price and
capacity-pricing. The results showed that aggregate DR can bring more savings than
individual DR. Toriti et al. [36] investigated Europe’s single person households. They
used the HETUS database to obtain the usage time schedules in order to build a usage
curve and to determine the peak for single person households. Finally, they displayed the
difference in the usage rates of 15 European countries. Alimohammadisagvand et al. [37]
used the dynamic building simulation software IDA Indoor Climate and Energy together
with their DR-control algorithm in the case of a Finnish two-story detached house. They
aimed to minimize both the electricity consumption of the heating system and costs while
maintaining high levels of thermal comfort. The heating system includes a heat pump and
a hot water storage tank which delivers heat in the rooms through the floor; a ventilation
system with heat recovery is also included. The inputs of the control algorithm are the
hourly electricity price, the minimum indoor temperature, the outdoor temperature, the
domestic hot water (DHW) temperature, the building thermal characteristics, and the
HVAC system characteristics. When the electricity price and the minimum temperature set
points are above a certain threshold, the heating system is turned off. They concluded that
energy savings and cost savings of around 11% can be achieved.

2.3.3. Key Parameters

The decisive parameters of demand response can be listed as load schedule, tariff,
incentives, and others. From a thorough review of the last 10 years of demand response
research, narrowed to 81 publications, 42 papers (33%) listed load schedule as a key
parameter. The research papers having electricity price as a decisive parameter represent
24% of the references (31 articles). Twenty-three papers stipulated incentives as a key
parameter, representing 18%. Sixteen papers (13%) listed implementation potential and
barriers. Seventeen papers were listed in the “others” category, representing 13%. Figure 2
shows the distribution of the decisive parameters mentioned in the selected literature.
References often list several decisive parameters; therefore, the number of occurrences
exceeds the number of references.

In the load schedule category, Heitkoetter et al. [15] determined the load-shifting
potential and the related costs for 401 districts in Germany and stated that demand response
through load shifting can reduce the curtailment of renewable energy in periods when
renewable generation exceeds demand. They disclosed their data and Python source code
used to determine the regional load-shifting potentials in Germany. They modeled load
shifting as an electricity storage operation and listed in detail the potentials and load-
shifting costs for different home appliances, power-to-heat, cooling, ventilation, electric
vehicles, and power-to-gas that includes power-to-hydrogen and power-to-methane plants
and various industrial processes. Their results were appended to a map of Germany giving
a spatial distribution of the load increase potential that could be used in case of surplus
renewable energy generation. Results show that the greatest potential is for electric heating,
followed by home appliances, and lastly, industry and services consumption load. In
most cases, load-shifting technological costs are lower than the average subsidy costs for
curtailment of renewable energies, therefore incentivizing the government to invest in load-
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shifting technologies. Pereira et al. [38] proposed a new type of demand response model for
smart grids that is based on the fuzzy subtractive clustering method. It can automatically
reduce the load of home appliances. Hence, at peak load times, the utilization is reduced
accordingly, thus stabilizing the electricity supply. Rodriguez et al. [39] introduced a new
tool for analyzing cost efficiency of DR strategies implementation. The ultimate objective
is to reduce the impact of intermittency of renewable generation sources on the grid.
Finally, they shared and discussed the results of their dynamic modeling and showed the
potential and benefits of demand response algorithms in the paper manufacturing industry.
Yi et al. [40] built a multiobjective robust scheduling DR model considering renewable
energy uncertainties that aims to provide the lowest operation costs and highest renewable
energy utilization while maintaining power balance. The inputs of the model are the
external power output, renewable energy output, load demand, and DR output. The
constraints are system power balance, renewable energy, and demand response output.
Their results show that DR can effectively smooth fluctuations in renewable energy supply
and consequently increase the utilization rate of renewables. Amrollahi and Bathaee [2]
used an approach in which the flexible load can be suppressed or shifted in order to reduce
or eliminate the mismatch between electricity supply and electricity consumption. This
allows for optimizing the power units on the grid, thus reducing the related costs. This kind
of demand response algorithm will not reduce the overall consumption but only the usage
time. DR implementation reduced the peak consumption by 36.8%, and the consumption
load factor increased by 57.9%.

Figure 2. Distribution of decisive parameters within the references.

Among the literature listing the tariff as a decisive parameter, Good [41] used a de-
mand response model considering behavior economics. He investigated how the energy
costs and the time necessary for thermal comfort of inhabitants influence the peak electricity
price offered by the grid operator. The purchaser of demand response (electric company)
should promote and advertise for DR participation which is a prosocial behavior. Yalcin
et al. [42] investigated the case of water transfer stations and showed that through DR
control, electricity usage and electricity bills could be reduced. Electricity fees were lowered
by 58% resulting from a better system design that is more efficient with less energy wastage.
Nilson et al. [43] detailed the different opinions of the households concerning demand re-
sponse strategies and how the incentives could increase the participation of the consumers.
Their results show that compared to environmental incentives, price incentives are the
most appropriate because it is the most efficient strategy to support the flexibility of the
demand. Tahir et al. [44] showed the necessity for demand side management and estimated
the reforms in the demand response strategies to be made by the electricity department
to promote demand response planning. Tahir et al. mentioned that DR development in
Asia is far behind Europe or the US; they described the DR programs and the pilot projects
in place in China. According to them, the barriers to DR implementation are having a
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centralized electrical system, lack of education programs, low difference between peak and
valley prices, few incentives, no return on investment for companies taking part in DR,
limited availability of smart metering infrastructure for communication with the utility
company, and absence of automated load control installations for smart homes. Among
their propositions to overcome these barriers, they believe that aggregators could have a
major impact as those would serve as mediators between the utility companies and the
consumers by informing consumers on the DR benefits and giving detailed load shedding
estimations to utilities. With the increased availability in small-scale local intermittent
RE generation and the gradual transition towards a smart grid, the numbers of small
capacity prosumers increases. These need to be aggregated to reach minimum capacity for
market bidding. In other words, prosumer participation in the electricity market relies on
aggregators. Both flexibility and generation can be traded on the market. Consequently,
aggregators, by increasing the market exposure of prosumers contribute to reaching cli-
mate change mitigation objectives. They will officially (according to the EU electricity
directive [45]) be new independent stakeholders in the European electricity markets.

In the research work category focusing on incentives, Cobelo et al. [46] detailed a
project in Spain, relying on economic rewarding of participating users aiming to change
the consumption habits of small and medium size companies in order to control the peak
load. Sharifi et al. [47] proposed a demand response model based on economic theory and
mathematical methods, following TOU pricing. To increase their profits, the consumers
can shift a part of their consumption from a period where the electricity price is peaking to
a period in between peaks. Apart from reducing the flaws of DR models based on price
elasticity, the proposed model includes the possibility of different responses from different
types of consumers having different flexibility levels. Märkle-Huß et al. [48] used the
measured data from the Austrian and German electricity markets to determine the effect of
demand response on the electricity spot market price and on the load. The results show
how the price fluctuations harm the users with non-flexible systems. Being able to shift 25%
of the load could have saved 500 million Euros, which represents 6% of the local electricity
market. Pricing schemes incentivize the user to voluntarily participate in demand response.
Eid et al. [49] described the different billing methods used for this purpose: DLC requiring
demand control, real-time-pricing, critical-peak-pricing, peak-time-rebates and time-of-use
pricing requiring smart metering and price display. Peak-time-rebates schemes also require
the baseline consumption curve. DLC is easier to implement as it gives the user no freedom
concerning the interruptions; participants are rewarded for their participation in the form
of an electricity bill discount. Kohlhepp et al. [50] mentioned that when the participants
allocate their HEMS/HVAC for fast system balancing during very short duration events
(seconds), not enough value can be given using the aforementioned pricing methods and
thus contractual incentives should be used instead. Indeed, if the flexibility allocated to the
grid by the participant cannot be significantly monetized, then there is no incentive for the
demand side to engage in DR. Jayantilal and Shah [51] summarized the load management
techniques on the supply and demand side for non-linear load. In order to bring more
energy savings, they investigated replacement of equipment and power factor corrections
(PFC) techniques. They also proposed using automated control of the demand and advised
that more research should be performed on load management strategies of the customers.

2.4. Potential Implementation

Demand response has been vastly adopted around the globe; load clipping measures
have already been established in many countries. Several researchers have investigated
demand response implementation focusing on the contributions of DR and on the type
of users. The following section describes the literature on demand response potential
implementation and the state of the art.
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2.4.1. Contributions

The research contributions can be classified as models, implementation, barriers,
potentials, and costs. As described in Figure 3, most of the literature is focused on models
and the works on costs and barriers are limited.

Figure 3. Areas of contributions within the selected demand response literature.

Within the DR model contributions, Xu et al. [16] proposed a model for the electricity
supply of an industrial park making the most of distributed generation and electricity
storage. Compared to standard DARTP demand response models and models not including
demand response, the present method reduces the costs by 3% and 16.7%. Märkle-Huss [48]
used measured data from the German–Austrian electricity market to calculate the effect
of demand response on the electricity spot market and on the load. Their results show
that in 2014, 25% of the load could have been shifted to save 100 million USD. Müller
et al. [52] investigated the results of large scale deployment of demand response for more
than three hundred dwellings equipped with heat pumps. Based on the meter data and the
outdoor temperature measurements, an automatic flexible electricity consumption program
was built with thermal expansion valve heat pumps that can be throttled to reduce the
overall load by 40% to 65%. The load reductions can be aggregated with a median absolute
percentage error of below 7%. The results show how to quantify and predict the system’s
demand response potential. Bui et al. [53] proposed an EMS for multimicro grids (MMG)
based on a multiagent system (MAS) and thus avoiding unnecessary trades with the public
electricity grid, hence reducing the costs of operating microgrids and multimicrogrids. Yao
et al. [54] proposed a real-time charging plan coordinating charging of electric vehicles
incorporating a demand response program in a design parking lot where two kinds of DR
programs are implemented while meeting the necessary charging level for the EV. They
mentioned that more savings could be achieved by increasing the electric vehicle car fleet.

Concerning contributions related to barriers, Taipower Engineering [55] performed an
inquiry on the consumption of its larger customers in order to know their characteristics
and understand how they individually control the peak loads and finally for learning
about their desire to participate in demand response programs. Stede et al. [56] analyzed
the role of aggregators (intermediates between the electricity market and the participants)
in promoting demand response in the industry. Their results show that the core role
of an aggregator is to promote knowledge on demand response potential and support
implementation within key participants. Valdes et al. [28] investigated the case of Germany
and Chile where they reviewed and compared the respective energy policies. They laid out
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the difficulties for the manufacturing industry to unleash its demand response potential.
Eid et al. [49] mentioned that installing smart meters, in-home devices, and other DR-
related equipment is expensive and requires an investment; ideally the investment costs
should be split between the actors benefiting from DR along the supply chain. They also
mentioned that instead of valley filling, another peak could be created in valley hours.
This can become a concern since the industrial sector in Europe accounts for a third of the
European electricity consumption; therefore, large implementation of demand response will
impact the entire electricity system. Moreover, since coal generation is less expensive and
more emission intensive than gas generation, load shifting can induce higher greenhouse
gas emissions. This is precisely another reason for the implementation of a carbon tax.
Shoreh et al. [27] mentioned that the main barrier to demand response in the industry is
that processes are interdependent and often require very precise timing; thus, interruptions
could cause failure to reach the production objectives. Moreover, due to the significant
consumption of manufacturing plants, battery-based storage systems are not economically
feasible. Shoreh et al. listed some of the main barriers to DR in the industrial sector: lack of
implementation of time-based rates, weak incentives, reduced electricity sales lowering
the revenue of the utility companies, lack of aggregators, and no standard communication
platform between DR participants, utilities, and wholesale markets.

Regarding the research on potential, Vuelvas and Ruiz [57] gave an analysis on
the Cournot competition between generators (considering thermal and hydro) when an
incentive-based demand response plan is in place where users curtail their demand upon re-
quest. Each generator aims to maximize its profit by anticipating the resulting market price;
thermal generation costs are modeled with a quadratic function while hydropower genera-
tion costs are considered fixed. The profit of each generator, which is the difference between
the generation costs and the electricity selling price, becomes an optimization problem.
The Karush–Kuhn–Tucker conditions for all electricity generators must be solved simul-
taneously to resolve this interrelated optimization problem and find the Nash–Cournot
equilibrium. They assessed the potential costs (profit reductions) of implementing DR and
concluded that IBDR can reduce consumption in a cost-effective fashion.

2.4.2. Models

Demand response is basically split into two kinds: dispatchable demand response
and non-dispatchable demand response. The selected 81 references published during the
period 2010–2020 can be sorted into 80% dispatchable demand response and 20% non-
dispatchable demand response related. To explain this tendency, dispatchable electric
demand is easier for modeling and for carrying out experimental studies. In dispatchable
DR, the user surrenders control of some of his consumption load to the electricity provider
in exchange of a reward for participation (DLC). In non-dispatchable DR, the user is
provided with electricity prices signals and is free to choose to curtail his load or not. In
this case, consumers react to prices and disregard the system’s state.

Concerning dispatchable demand response, Aalami et al. [25] proposed interrupt-
ible/curtailable services; thus, the users can be charged according to their own usage and
obtain discounts or waivers if agreeing to reducing the load in case of sudden demand
response events. In capacity market planning, the clients guarantee to provide the agreed
upon load reduction in case of a sudden demand response event. If the clients fail to meet
the terms, a penalty is given. Torriti et al. [58] proposed a few incentives to make users
lower their consumption. For instance, in Spain, since 1988, around 200 users that have
demand exceeding 5 MW benefit from a special price. The electricity supplier can request
for 45 min up to 12 h of reduced demand depending on the different individual discounts
of the users. In Italy “Interruptible Programmes” is designed for large companies; the
participants must lower consumption to the preset values. In 2007, the amount of subsidies
was set at 150,000 EUR/MW/year and every tenth interruption, 3000 EUR/MW were
given as compensation. Deng et al. [5] inquired about the prerequisites of establishing
a smart grid. The conditions under consideration for building the model are the user’s
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consumption habits and load-shifting rules. It is important to notice that the mathematical
problem can be expressed in several separate blocks: maximum usage, minimum costs,
price forecasting, renewables, and storage. The main objective of this method is to schedule
the usages times. Gils [59] specially focused on time usability and geographic distribution
of flexible loads using the data collected from industrial production and electric consump-
tion. Together with temperature-related periodic load curve, they estimated the amount of
hours per year where load can be increased or reduced. The dispatchability is expressed by
planning the electricity consumption reductions. Ozturk et al. [60] used decision making
to support a system advising the optimum operating time for home appliances in order
to allow consumers to save energy. The flexibility depends on the user’s lifestyle. The
potential schedule of operation of the home appliances is predicted and thus the aggregator
is able to predict the client’s demand.

Concerning research on non-dispatchable demand response, Amrollahi and Bathaee [2]
investigated the case of a microgrid during a shortage of dispatchable energy sources and
when only non-dispatchable renewables (wind and solar) are present, aiming to meet
the energy demand. In order to reduce the mismatch between the electricity supply and
demand, the load is reduced or shifted in time. This allows optimization of the size of the
units and to reduce the related costs. Chuan and Ukil [61] built load profiles for housings of
different sizes in Singapore and validated them with meter data from pilot housings in the
campus of NTU. Bitaraf and Rahman [62] also argue that the curtailment of excess wind
power generation can be mitigated by increasing the flexibility of the system either using
storage or demand response. They propose that demand response should be scheduled
such that the resulting rebound peaks match high wind generation. In their model, they
considered a direct load control program with a grid having 20% wind power generation
and the remainder met with thermal power plants. Their results showed that an overall
10% implementation of DR reduces the wind energy curtailment by 11%; when scheduling
compressed air energy storage and demand response, they concluded in a 40% reduction
in wind energy curtailment. Dehnavi and Abdi [63] proposed a new optimized demand
response procedure based on power transfer distribution factors (PTDFs), available transfer
capability (ATC), and dynamic DC optimal power flow (DCOPF). This procedure improves
the load curve.

2.4.3. Demand Response within the Different Sectors

When sorting the literature on demand response according to the respective sectors as
shown in Figure 4, 58 of the 81 selected publications relate to the residential sector, 38 of
the 81 selected publications relate to the industrial sector, and 17 papers within the selected
literature were linked to the service sector. Some studies include several sectors in their
analysis and that is why the total number of contributions over all the sectors exceeds the
number of references.

In the residential sector section, Torstensson and Wallin [64] investigated the demand
response potential of Swedish households. The household dwellings were categorized into
apartments and single family house or townhouses. It appears that economic incentives
as well as consideration from the environment are the motivating forces for the consumer
crowd. They highlighted that to develop an even more flexible load for households, more
services are needed for increased convenience. Pereira et al. [38] proposed a novel kind of
demand response model based on a fuzzy clustering algorithm. One principle of the model
is that the consumer has control over load management; the load capacity is computed from
the user’s appliances. The procedure can instantaneously reduce the load by controlling the
home appliances to stabilize with the electricity supply. It strives to bring economic profits
while considering the load shape and the need for consumption. Good [41] investigated
how behavior economics can improve demand response models when demand is high
for energy services that can be reduced (thermal comfort); they investigated how would
the energy prices or the dependence on thermal comfort influence the peak price of the
electricity system operator. Including behavioral economics in their demand response
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model, Nilsson et al. [43] proposed an interdisciplinary assessment framework. Taking
into account the different reactions of the households to demand response strategies, this
procedure was tested in 2017 within 136 Swedish households, showing the efficiency of
demand response. The authors stated that environmental incentives are necessary to
increase consumer participation. Singaravelan and Kowsalya [65] designed a minimum
cost maximum power (MCMP) algorithm for an energy management system that can
schedule home appliances efficiently in order to reduce costs and peak consumption.
The algorithm does not take into account the proportion of load already shifted when
scheduling equipment and also does not infringe on the comfort of users. Paterakis
et al. [66] developed a MILP (mixed integer linear programing) model of a HEMS for
scheduling appliances such as dishwashers, washing machines, electric water heaters, and
air conditioners, and takes into account electric vehicle charge and discharge (vehicle-
to-home) together with solar panels and battery-based electricity storage system charge
and discharge (ESS-to-home). The inputs of the model are the 24 h day-ahead hourly
electricity price, the ambient temperature, the cold water temperature, the EV arrival
and departure time, and the duty cycle of the dishwasher and washing machine. The
purpose of the model is to allocate the maximum load during the time frame where the
price is the lowest, thus minimizing power costs. Consequently, when many users use
the same HEMS, a high power peak may occur during those time frames. Therefore, a
power limitation scheme is put in place to prevent overload. Shakeri et al. [67] studied
a HEMS model for switching appliances between battery supply and grid supply using
smart plugs and considering price information inputs; the supply side includes the grid,
solar panels, and batteries. Batteries charge during off-peak periods or when solar power
is available. The goal is to minimize electricity consumption costs. The purpose of the
battery usage is to provide more comfort while relying less on the grid. They used a
thermal model of the building and also models for the state of charge of the batteries, solar
panels, and the appliances. Every time an appliance is turned on, the algorithm checks
the electricity price and makes the decision to connect the appliance on the grid or on the
battery if the latter is available. The results of their simulations showed that for a two-
person household with 26 appliances, costs savings reach 20% and the electricity demand
from the grid is also reduced owing to the solar panels. Hussain et al. [68] performed a
thorough review of six DR research papers focused on the residential sector and gave a
summary in terms of scheduler type, electricity pricing schemes, optimization problem
type, renewables, uncertainties, communication requirements, forecasting techniques,
and appliance types. These studies aim to optimize household scheduling using linear
and non-linear programming; the objective is to reduce the electricity bills as well as the
consumption peak-to-average ratio. The constraints are based on user comfort, appliance
usage, windows, renewable energy generation, battery storage, and avoidance of rebound
peaks during the off-peak period. The homes are equipped with smart meters allowing
usage of price forecasting tools, which are then used to schedule consumption; some
appliances are interruptible and some are not. Some studies show costs savings of 24% to
44% and a peak-to-average ratio reduction of 38% while another study showed that solar PV
and battery storage could provide 50% of the household consumption. Jordehi [69] sorted
the DR optimization algorithms into two families, as shown in Table 2. Their review work
describes in detail the mathematical models used in DR. Demand response optimization
problems typically relate to consumption being shut down or turned on in different time
slots and therefore involves binary decision variables. Hence, mixed-integer linear or
non-linear programming may be used for finding optimum solutions. With increasing
numbers of decision variables, metaheuristic algorithms can obtain near optimal solutions
in a reduced amount of time while oftentimes finding optimum solutions would require
unpractical computing power. The ones that have been applied to DR are listed in Table 2;
among them PSO is the most popular. However, Jordehi concluded that the current research
effort in mathematical modeling of DR programs is insufficient as uncertainties, comfort,
and emissions need to be properly accounted for.
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Figure 4. Selected literature on demand response categorized by sectors.

Table 2. Classification of DR optimization algorithms according to [69].

Classic Algorithms Metaheuristic Algorithms

Linear Programming (LP) Particle swarm optimization (PSO)

Non-linear Programming (NLP)
Genetic algorithm (GA)

Simulated annealing algorithm (SA)
Teaching learning-based optimization (TLBO)

In the industrial sector, Yalcin et al. [42] in their effort to reduce the electricity costs of a
water transfer station through a DR plan realized that by pumping only at the appropriate
times, the power can be reduced to 60% of the initial consumption, resulting in significant
profits especially when the demand rises in summer. Vuelvas and Ruiz [57] proposed
a novel demand response model based on incentives; they presented an analysis of the
Cournot competition between generators when incentive-based demand response is in
place. They proposed a new consumption curve customized to the client’s preferences that
can be used to predict the short-term consumption and set the wholesale price. This helps
the grid operator to develop its operating system by integrating demand response into the
electricity market. Pang et al. [70] gave an assessment on the load-shifting potential and
realistic demand response potential for the manufacturing industry in the western part of
Inner Mongolia. Based on the local industry load curve, they conducted interviews and
investigated the potential of demand response using quantitative statistics. Starke et al. [71]
quantified the potential for load flexibility in the industry according to the geographical
location. Their results show that in the US, the industry can provide more than 12 GW
available for load flexibility. Liu et al. [72] highlighted the great demand response capability
of data centers; indeed, those are automated and the equipment is constantly monitored but
most importantly, the workload can be scheduled to be completed any time before a given
deadline (hours to days). Workload could even be scheduled to match local renewable
power generation. Liu et al. developed two algorithms for datacenters participating in
coincident peak pricing programs aiming to shift load to minimize the electricity costs. They
modeled the power supply as a microgrid composed of the public grid, backup generators,
and solar panels. The backup generators are mostly fueled by diesel or natural gas, thus
resulting in high emissions and indicating their use should be minimized. The power
demand was modeled considering flexible batch workloads and non-flexible interactive
workloads and also considering the cooling power demand using different cooling methods.
Their Algorithm 1 minimizes costs based on coincident peak warnings predictions and
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their Algorithm 2 minimizes the worst-case cost. The algorithms provide 40% cost savings
compared to the strategies already in place.

In the service sector, Gils [59] focused on the time availability and geographical
distribution of flexible loads such as air conditioning, LED lighting, etc. Periodic and
outside temperature-related load curves were considered in order to estimate the amount
of load that could be reduced or added for each hour of the year. This analysis determined
the demand response potential in all the consumption subsectors. Put all together, in
a year, at every hour, 61 GW of load could be shed for peak shaving and 68 GW of
load could be added for valley filling. Hui et al. [73] investigated the implication of the
5G telecommunication network and more generally the use of telecommunications in
demand response applications and reviewed questions such as network safety, user’s
privacy, and reliability. They investigated the strengths of 5G in demand response and
the related future implementation projects. To conclude, they listed the compulsory steps
needed for 5G implementation in demand response. Dranka and Ferreira [74] performed
a literature review on the methods for assessment of the different categories of demand
response potentials. They also proposed a novel user-friendly and step-by-step theoretical
framework that determines the demand response potentials. They aimed to create a
structural approach providing consensus among potential estimations. Aryandoust and
Lilliestam [75] mentioned that because of the net-zero carbon pledges in Germany by 2050,
80% of the electricity generation will be met with renewables and, for the most part, from
wind and solar. They highlight the challenges of using demand response in a grid relying
almost entirely on renewable generation as load can be only reconnected when there is
excess generation, which could not be the case for extended periods of time. Consequently,
they built a model where the various estimated loads are shifted from periods of lack
of generation to excess generation, taking into account the constraints of load-shifting
duration of the various consumers. Because the load cannot be shifted for extended periods
of time, they concluded that DR is only useful for short-term balancing of the power system
in a 100% renewable energy mix.

3. Evolution of DR Potential

After reviewing and categorizing 81 research articles published during the period
2010–2020, the number of articles sorted by publication year is plotted in Figure 5. The
present work presents a cross-analysis on the categorizing of the references and thus
revealed the trend of research on demand response potential.

Figure 5. Selected publications sorted by publication year.
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3.1. Trend of Implementation Sectors

The models used in the literature can be characterized as potential assessment methods,
implementation, and electric load models. The following subsections describe the literature
on these subcategories. Ten years of selected research publications on demand response is
summarized in Figure 6:

Figure 6. Distribution of the selected literature on demand response.

Most of the studies focus on modeling; the remainder is more evenly distributed into
implementation, barriers, potential, and costs. Nilsson et al. [43] investigated the efficiency
of demand response and how environmental incentives could raise the consumer’s partici-
pation rate. Demand response implementation in 136 Swedish households in the year 2017
was tested. This gave field data for one year of Swedish DR. This research work covers
barriers, implementation and modeling. It also gives advice on DR applied research and
DR limitations. The future trends include technologies such as the IoT and the cloud. Hui
et al. [73] explored the use of 5G communication networks and the role of telecommunica-
tions in demand response applications. Barbierato et al. [76] argue that demand response
can act as a VPP which is a cost-effective way of managing the grid. They proposed a
framework of three layers, namely: an advance multimetering infrastructure, an energy
aggregation platform, and a real-time simulator. This is in order to manage the grid in
real-time or to test the different DR policies in smart grids. They concluded that the main
barrier to DR is the lack of regulatory framework and incentives.

Radenković [77] investigated the willingness of the consumers to participate in the new
business models brought by demand response on the electricity market. The collected data
allow for understanding the degree of acceptance of the users and help to design upgraded
business strategies. They developed an internet-based DR business model suitable for
developing countries where demand response has to be packaged as an ancillary service
in order to be sold on both the wholesale and retail markets. First, an IoT infrastructure
is needed for communication between the aggregator and the consumers; Wi-Fi enabled
microcontroller devices have to be inserted into the power sockets (smart plugs) to give the
aggregator control of the user’s consumption. Different business models can be created
depending on the consumers priorities (environmental protection, new technologies, or
lower electricity bills). Surveys showed that consumer have more trust in government-
owned companies and thus a local distribution system operator (DSO) company should
take the role of the aggregator.
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3.2. Present State of the Keywords and Future Trend

After sorting 10 years of research papers in the field of DR, the keywords on DR
potential can be listed as energy management, load, and ancillary services as Figure 7. Some
publications can involve several keywords in the same study. In the energy management
category, most references proposed DR models; some are related to usage and potential.
However, the literature on barriers and costs is scarce. The work giving a contribution on
costs is that of Olsen et al. [33], which is an inquiry of the system in place for load shedding
and shifting in a cement factory. Gholian et al. [78] built a model for energy intensive
industries such as steel mills and gave solutions under smart pricing conditions for the
control of the industrial sector’s load. Solutions under day-ahead pricing, time-of-use
pricing, and peak pricing have been presented. It appears that future research could be
oriented toward the costs and barriers involved in energy management.

Figure 7. Distribution of keywords within the selected demand response literature.

Within the load category, cost and barrier related studies are fewer than modeling,
implementation, and potential related articles. Compared to the energy management
category, the tendency is similar. In the DR literature outside of energy management and
load, the contributions are not strongly related to modeling, implementation, barriers,
potential, and costs. For instance, Neves and Silva [79] compared three different demand
response strategies aiming to bring flexibility to the energy system at the least cost. This
in the case of Corvo Island (Portugal, small isolated island in the Atlantic Ocean) where
the electricity demand is mostly for the residential sector (144 households) and the supply
mostly comes from diesel generators and renewable microgeneration. They built models
using MatLab for economic dispatch and electrification of domestic hot water, aiming
to minimize generation and dispatch costs. They used a linear programming optimized
demand response strategy aiming to satisfy hot water needs in a day with low solar
radiation. Bossmann and Eser [80] argue that with the future grid being dominated by
intermittent renewables, DR is important to smooth the transition and gradual penetration
increase. They reviewed 117 publications on DR measures models; they categorized the
studies into pricing schemes, electricity systems/markets, specific end-uses, and control
strategies. They realized that DR control strategies related studies were scarce and that
most of the literature is related to the US or Europe. They also highlighted the need
for broader models including demand response, storage, grid expansion and flexible
generation capacities; this in order to determine the optimal mix of flexibility options.

Vivekananthan et al. [81] highlighted that most studies ignored feeder voltage issues.
Hence, they proposed an incentive-based DR procedure achieving peak shaving and also
improving the feeder voltage profile. Customers are rewarded daily for their participation
in the program. They also performed a case study where 30 houses were connected to a
feeder. Network peaks were shaved and voltage violations were avoided.

Firouzmakan et al. [82] proposed an energy management system for a microgrid
including renewables, micro-CHP (combined heat and power) units, and electricity storage
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that can implement demand response programs. Their algorithm capability was analyzed
through simulation of a three-feeder microgrid resulting in lower natural gas consumption
when in an islanding mode. Ghasemi and Enayatzare [83] proposed a management frame-
work for an isolated smart microgrid involving wind and solar generation, incentive-based
demand response, and pumped hydro storage. The optimization framework has forecasted
generation and estimated hourly demand data as an input and outputs the scheduling of
the pumped hydro storage unit and the operation costs which are to be minimized. Results
showed that pumped storage is more efficient than demand response, although the whole
system performs significantly better when demand response is added to storage.

3.3. Development of DR Considerations

Currently, the research on the different DR assessment methods listed the main con-
cerns as load schedule, pricing, and incentives as shown in Figure 8.

Figure 8. Distribution of the demand response key considerations within the selected references.

In the load schedule category, Heitkoetter et al. [15] determined the demand response
potential of 401 German administrative districts and calculated the load-shifting cost
curve. Cui et al. [18] created a two-level optimized model describing how public utility
companies participating in advanced electricity markets can maximize profits. The upper
level represents the coordination and the maximum profits. The lower level simulates the
day-ahead market clearing. Derakhshan et al. [84] used the methods based on teaching
learning-based optimization and shuffled frog leaping algorithms in order to propose an
optimized model aiming to reduce the costs of consumption scheduling on smart grids.
The results show that using demand response codes can reduce the costs and allow for
more efficient use of the technology.

In the pricing category, Setlhaolo et al. [85] investigated residential demand response
using scheduling of home appliances in order to minimize electricity consumption costs and
obtain related rewards. Based on time-of-use pricing, they built a mixed integer non-linear
optimization model. The optimal solution is a tradeoff between comfort and minimum
costs; savings of 25% could be reached. Taipower [55] built a user database detailing the
load characteristics as well as the electricity bills. Using averaging methods, a model of the
daily load of each type of user was made.

In the incentive category, Hu and Xiao [31] proposed a model-based novel DR control
procedure for residential inverter air conditioners that can automatically and in the most
optimum way align their consumption according to the day-ahead price. Compared to the
baseline scenario, the model-based control procedure can reduce the costs of consuming
electricity during DR events or during peak periods while still providing enough thermal
comfort. Rieger et al. [35] used the consumption and production data of 201 households in
Austin (Texas) for the year 2014. They used a type of load scheduling algorithm supporting
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both real-time retail pricing and capacity pricing. The results show that DR coordination
between households can bring more savings than individual DR.

3.4. Development of the Types of DR

Demand response can be split into dispatchable DR and non-dispatchable DR. Figure 9
shows the selected research work over the last ten years sorted according to key parameters;
some studies involve several key parameters and keywords into their scope.

Figure 9. Distribution of the selected references according to the different areas of demand response.

According to Figure 9, the research on dispatchable DR is evenly distributed among
the different subsections. For non-dispatchable DR, the research on DR costs and barriers
is scarce. Olsen et al. [33] focused on the costs from non-dispatchable DR applied to a
cement plant’s kiln. He inquired about the equipment, operation limitations, and the
amount of energy needed for the manufacturing process. He elaborated on cement plants
changing their consumption habits following incentives from public utility companies.
Pang et al. [70] investigated the case of the secondary sector in the western part of Inner
Mongolia. They listed the barriers to load shifting and estimated the realizable potential.
More research on costs and barriers in the field of non-dispatchable DR is needed to fill
the gap.

3.5. Trend of DR Research by Sectors

Demand response is implemented in the residential, industrial, and service sec-
tors. Figure 10 summarizes a cross-analysis of the last 10 years of selected demand
response literature.

In the residential sector, most research focuses on modeling, implementation, and
potential. Research articles falling in that category depict home appliances (water heaters,
washing machines, electric vehicles) contributions to DR events. Moreover, they elaborate
on modeling, forecasting, and control of equipment to assist with DR events. Studies also
elaborate on how to actively influence DR-related incentives. On the other hand, in the
residential sector, the contributions related to costs are only of 2% of the selected literature.
Singaravelan and Kowsalya [65] used a MCMP algorithm to schedule home appliances.
They compared their procedure and the currently available methods and it showed that
without impairing on thermal comfort of the user while achieving tasks at a 100% rate,
the consumption costs and the peak demand were reduced to the optimum level. Future
research could be oriented towards costs in order to fill the gap in the residential sector
DR area.
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Figure 10. Selected literature distribution by sectors.

In the industrial sector, because of the production costs concerns, the DR research
contributions are evenly distributed. The future research could also be focused on the
obstacles and costs of DR. Finally, regarding research of DR in the service sector, in a similar
fashion with the residential sector, contributions on costs are scarce. Moreover, the research
on barriers is much fewer than in the residential and industrial sectors (with only 5%). The
future research trend could be focused on barriers and costs.

3.6. DR Research in the Different Continents and Related Contributions
3.6.1. Trend of Demand Response Research in Europe

The demand response research according to geographic areas can be split into five
subcategories: Europe, Asia, Americas, other regions, and “independent of location”. The
contributions of each subcategory were arranged into subsections. The trend of research
in Europe is shown in Table 3. Accordingly, the DR research contributions in Europe are
mostly about models, followed by DR potential, obstacles, others, and implementation. It is
worth noticing that in the last 10 years most European DR research did not investigate costs.
We can speculate that the electricity generation technology is more advanced in Europe
and therefore research on costs was not prioritized compared to other subcategories.

Table 3. Trend of research on demand response in Europe.

Contributions Models Implementation Barriers Potential Costs Others

Number of publications 17 8 10 12 0 9

European research on DR use in industrial and residential sectors is mostly focusing
on modeling and forecasting, assisted by studies on DR potential and barriers as shown
in Table 3. The main barriers to DR implementation in Europe are the lack of incentives
and the lack of consumer awareness. Advertisement campaigns together with the gradual
penetration of smart meters shall contribute to the wide spreading of DR. Research works on
actual implementation of models are few. If the DR research based on models could be put in
practice through experiments or on-site data collection, it would bring a greater contribution
to the architecture of smart grids for the residential, industrial, and service sectors.
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3.6.2. Research Trend on Demand Response in Asia

After having sorted the literature of this subcategory, the research trend in Asia is
summarized in Table 4. Compared to the European subcategory, there has been less DR
research work in Asia. Moreover, the contributions on barriers and potentials are much
less than within European DR research. After survey, most research works come from
China, which has been promoting SG and green energy in the recent years. The research
contributions are evenly distributed between modeling, DR implementation, potential, and
other DR subcategories. More articles are on DR models, implementation, and potential.
Therefore, in Asia, research on costs should be considered. Apart from eastern Asia,
implementation of DR in Southeast Asia is very limited. Cost-related DR research in
Southeast Asia would contribute significantly to the development of DR in this region. The
main barrier to DR implementation in Asia is the low return on investment probability due
to the electricity pricing scheme.

Table 4. Trend of research on demand response in Asia.

Contributions Models Implementation Barriers Potential Costs Others

Number of publications 10 7 3 7 0 7

3.6.3. Research Trend of Demand Response in the Americas

After sorting research works into subcategories, Table 5 summarizes the trend of
research in the Americas. It shows that the DR research in the Americas is distributed
into modeling, implementation, potential, and costs. After analysis it appears that North
America (Canada and the US) have mature DR technology and the resulting research is
mostly about DR models, potential, and implementation. South America (Chile)’s DR
technology is relatively underdeveloped and the research is mostly focused on overcoming
the technological costs. In the future, research in North America will keep focusing on
modeling and implementation and could also produce costs and barriers related studies.
South American research could follow the North American direction and explore DR
modeling and implementation technologies in order to overcome local limitations.

Table 5. Trend of research on demand response in the Americas.

Contributions Models Implementation Barriers Potential Costs Others

Number of publications 11 9 3 6 6 1

3.6.4. Research Trend of Works on Other Regions and Studies Independent of Location

After sorting the literature in this subcategory, the research trend in the “other regions”
and in the “independent of location” subcategories are summarized in Tables 6 and 7.
The DR research contributions in the “other regions” category are evenly distributed
among the main topics. After a survey of the contributions, it appears that because of the
vastness of the coverage, the research focus is similar. However, there are few presently
available publications on modeling and implementation. Future research could focus
on considering the different characteristics of each region when building models and
analyzing practical implementation. The research independent to location focuses on
modeling, implementation, and potential. Research works without specific location cannot
produce accurate cost analysis because of the lack of credibility ensuing from not setting an
implementation background. The future trend of DR research independent of location is to
keep carrying out modeling, DR implementation, and potential analyses.
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Table 6. Trend of research on demand response in other regions.

Contributions Models Implementation Barriers Potential Costs Others

Number of publications 2 3 2 4 1 6

Table 7. Research works independent of location.

Contributions Models Implementation Barriers Potential Costs Others

Number of publications 10 7 1 6 0 4

4. Future Evolution of DR Potential

The present section discusses the observations made in Sections 2 and 3 and their
implications in order to determine the future research opportunities and trend in the
field of demand response. With the gradual penetration of smart meters and smart plugs
and the popularity of mobile apps, and with increasing shares of intermittent renewables
and electric vehicles, demand response will play a larger role for balancing short term
fluctuations on the grid. Information and communication technologies (ICTs) contribute to
upgrading the grid into a smart grid through two-way communication between consumers
and providers. The smart grid is more stable and includes more renewables because it
allows for efficient demand side management. The share of demand response and other
flexibility measures will continue to grow in the future electricity grid; this is especially
true with the growth of net-zero pledges. The aggregators will play an increasingly larger
role as they give prosumers and smaller DR participants exposure to the electricity market,
as depicted in Figure 11.

Figure 11. Aggregators’ key role in the future electricity network.

4.1. Artificial Intelligence Assisted Strategies

Research is ongoing on algorithms aiming to increase the DR consumption-shifting ca-
pability and simultaneously accounting for different users’ demand or even connecting the
industrial, service, and residential sectors together. Within the same sector, the consump-
tion from different users can be aggregated to increase the DR load-shifting capacity and
obtain more rewards from the grid operators. The research scope includes the aggregation
framework, single/multiuser DR algorithms and also the additional regulations needed
when increasing the numbers of DR participants. Those are a few topics that researchers
could explore in the future. Machine learning (ML) algorithms being part of AI show
tremendous potential for DR applications. Reinforcement learning (RL) algorithms can
learn from user feedback and consumptions patterns to enhance user satisfactions; optimal
solutions are found through an iterative (training) process. Vázquez-Canteli and Nagy [86]
described in detail publications focusing on RL in DR applications (HVAC, DHW, smart
appliances, EV charging) and reported that Q-learning is the most common RL method
used because of its simplicity. They also indicated that multiagent systems RL is still a
theoretical field because RL algorithms were first designed for a single agent interacting
with its environment. Indeed, DR applications require coordination of numerous inter-
dependent agents simultaneously having an impact on the demand. Hence, the learning
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complexity increases accordingly. Thus, more research and field testing are needed on
multiagent scenarios when electricity prices vary with the demand. AI is mostly used
for load forecasting and automatic scheduling, which are highly complex tasks. ML can
be used for load control thus automating the decision-making process. Antonopoulos
et al. [87] conducted an intensive review of 160 papers related to ML/AI technologies
applied to demand response; they gave a detailed description of the different AI techniques
and algorithms that can be used for the different demand response strategies. Most of the
studies they reviewed are related to the residential sector. AI can give a forecast of the
generation and consumption curves involving uncertainty, automatically scheduling the
devices while interacting with the consumer according to the real-time data, and therefore
improving the stability and efficiency of the power system. The amount of data that will
be generated by the massive deployment of smart meters will have to be managed using
AI. Ensemble learning techniques, which consist of a prediction model built by combining
several simpler base models, can give higher accuracy load forecasts than the base models.

4.2. DR Influence on the Smart Grid and Big Data

On the grid there are increasingly more users using demand response procedures. With
the arrival of 5G network and 5G internet, DR can make use of new telecommunication
technologies to control the demand side and to provide SG monitoring. Available DR
methods require for the users’ knowledge and approval because of various consumers’
habits. This overall situation creates a significant barrier to DR. Future research could have
a 5G network as a starting point to investigate the interaction between 5G architecture
and demand response in order to find an optimum consumption curve that does not
significantly impact the user’s lifestyle. This would provide lower electricity usage costs
while providing more comfort to the users. Esnaola-Gonzalez and Diez [88] mentioned in
2016 that the electricity consumption share of the residential sector was 17% in the European
Union (EU). This highlights the untapped DR potential in the residential sector all over
Europe, which is exactly what the RESPOND H2020 (integrated demand response solution
towards energy positive neighborhoods) project targets. Funded by the H2020 program
from the EU, RESPOND is being tested at three different pilot sites: Aarhus (Denmark),
the Aran Islands (Ireland), and in Madrid (Spain). These sites have different characteristics
such as climate, type of building, energy systems, and form of ownership. The key point
contributing in the success of DR programs in the residential sector is user engagement
resulting from the interaction with the end-user. This can be carried out using a mobile app.
The RESPOND mobile app provides information such as humidity levels, temperature,
appliance and window states (on and off, open or closed), and electricity consumption.
As a result, a large amount of IoT data will be generated by the meters, sensors, actuators,
and other devices, which then requires efficient management, storage, and querying. For
instance, the use of smart plugs devices not only allows monitoring, but also on and off
switching. Esnaola-Gonzalez and Diez detailed the procedure used by the RESPOND
mobile app where building data are represented using semantic technologies and IoT data
are stored in time series databases.

4.3. DR Role in Sustainable Electricity

The recent years have witnessed fast electric consumption increase, societal and
environmental problems linked to the shrinkage of available natural resources. Therefore,
there is a need for a sustainable electricity grid. Most countries have pledged to massively
increase the share of intermittent renewables in their electricity mix; therefore, energy
management is the foundation of a sustainable grid where DR has a major role to play.
DR development has been hindered by technological, economical, and societal factors.
The current research state on sustainable microgrids has not yet brought solution to the
dilemma between economic profit and societal concerns, which would also require that
both the consumers and electric companies benefit. To promote the development of low
carbon communities, it is necessary to explore the interaction between the energy system
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and its beneficiaries and to strive for an energy management plan closer to the communities.
At the same time, there is an intricate relationship between carbon pricing, DR, electric
consumption, and the generated profits. The researchers could start focusing on demand
response procedures for microgrids with multiple generators incorporating carbon pricing,
DR strategies, electricity/heat networks, and storage systems.

4.4. DR within Product–Service System

Following the rise of 5G networks, edge computing architectures will retrieve great
amount of consumption data and this might generate added value for the service providers.
The consumption data from home appliance systems during DR events can be reused
in the product–service systems. It is worth noticing that current DR and PSS research
are carried out independently from each other. When DR is implemented under 5G
architecture or PSS is done based on consumption data, future research will involve both
fields. Kusumaningdyah et al. [89] argue that the energy market should be redesigned for
renewable energy in order to efficiently balance demand and supply and create alternative
revenues. Indeed, the main problem is that if wind and solar generation are peaking at the
same time, the electricity generated must be sold at the same time in the absence of storage;
this competition decreases the profitability of each generation technology. In their work,
they evaluated the influence of including renewable energy into energy product–service
systems (Re-EPSS). Within such framework, consumers buy services instead of products
and thus the provider would have the control and management over the appliances. This
would ensure maximized demand-side flexibility; however the consumers no longer own
the appliances, which in itself is a barrier to EPSS development as society is rooted in
product ownership. EPSS compared to EPOS (energy and product-oriented systems) makes
more sense when considering the heating demand: consumers would pay for the service
of maintaining the temperature above a certain minimum value instead of paying for the
electricity fueling the heaters. Kusumaningdyah et al. created a Re-EPSS in retail electricity
markets using a simulation-based design (SBD) framework; they analyzed the situations
yielding the worst results in order to provide a more conservative approach allowing for
uncertainties. Their market simulation involves an electricity generator and retailer, an
appliance producer, and 100 households needing food preservation, heating and cooling,
and laundry services. Consumers can choose to remain with the EPOS or to switch to the
EPSS and choose between lower costs, better performance, or lower emission schemes.
Those two systems compete in the market; retailers in both EPOS and EPSS aim to maximize
profit from investing in renewable energy, although in the former they rely on electricity
sales and in the latter on servicing. They concluded that not only EPSS boosts investments
in solar PV and battery storage, but also more revenue is generated compared to EPOS.
The main barrier to EPSS is the low number of alternative-seeking consumers due to the
cognitive bias which is threefold: loss-aversion bias, status quo bias, and social proof.

4.5. Energy Consumption Feedback Using DR and Blockchain

With the emergence of small scale prosumers and electric vehicles, peer to peer
distributed energy trading (P2P DET) will become more dominant as utility companies’ in-
volvement will decrease. When prosumers have surplus generation, they can sell electricity
to the utility grid or to other consumers. Blockchain can provide privacy and security for
the transactions in the future energy trading platforms. Because users are identified with
cryptographic keys instead of their names, transactions are anonymous. The electricity
generation and consumption can be thus traded on the blockchain. The blockchain can be
used in zones without delegation of authority for creating decentralized energy trading
platforms, as the blockchain technology can make abstraction of the need for banks when
performing commercial exchanges. Those platforms can promote the collective aggregation
of DR; thus, load and electricity generation contribute to build an energy community.
Indeed, the blockchain seems more appropriate for use in a secondary energy market.
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The blockchain is seen as a kind of integration technology that can support many AI and
internet programs and mostly support decentralized organizations and microgrids.

Researchers can direct their future work towards elaborating solutions to societal
and environmental problems while still providing economic profits in sustainable smart
microgrid applications. Moreover, they could investigate most optimum DR scheduling
for manufacturers; blockchain network settings and maximization of the demand, which
is in order to build a more transparent and traceable relationship between energy sources
and energy use. The blockchain energy market could be organized using different cryp-
tocurrencies. On the other hand, it is important to consider the political factors and the
volatility involved when using cryptocurrencies in the financial markets, to avoid shocks
in the electricity market.

5. Conclusions

On the electricity grid, balance between generation and consumption must be main-
tained at all times while limiting power fluctuations causing grid stability issues. Demand
response allows reduction of peak loads by shifting or reducing consumption upon notifica-
tion from the grid operator. Demand response is either incentive-based, where participants
surrender control of some of their load to the grid operator, or price-based, where partici-
pants react to electricity price signals; several dynamic pricing schemes are used. Real-time
pricing is the most efficient structure; however, for fast balancing DR, contractual incen-
tives in terms of dispatchable DR (direct load control) are more beneficial for the users.
DR improves grid reliability and reduces the need for peaking plants often relying on
natural gas. Moreover, because of the added demand-side flexibility, DR enables higher
intermittent renewables and electric vehicles penetration rates because it contributes in
the short term to align electricity generation and consumption. Moreover, it reduces the
curtailment of renewables by allowing consumption load to be shifted to high generation
periods. However, for power generation fluctuations over longer time frames, electricity
storage is highly necessary. Furthermore, the DR potential is also dependent on the time
slot. When smart meters allowing two-way communication between utility companies and
consumers are set in place, demand response will become a major actor in the smart grid
of the future. Policies are already in effect for massive deployment of smart meters, smart
plugs, and mobile apps for wide spreading of DR and DSM. The present work reviewed
literature on demand response related research published during the 2010–2020 period.
Based on a combination of strategic keywords, 81 publications were selected to write this
review. Most studies relate to DR models and load scheduling and few elaborate on costs
and barriers. The key parameters are load scheduling capacity, tariffing, incentives, and
implementation potential and barriers. Most studies describe optimization of the demand
response procedure in order to reduce the electricity bills under different pricing schemes
without significantly impairing user comfort. Most publications covered the residential
sector because of the significant aggregated demand response potential of home appli-
ances and HVAC systems, and also because of the relative flexibility of home appliances.
Unleashing the potential of the residential sector must be done through aggregators so
that individual smaller capacities can be aggregated and duly monetized in the electricity
market. The barrier to implementation of DR in the residential sector is customer awareness
and investment costs, while information campaigns and government incentives will help,
introduction of EPSS could be a real game changer. Implementation within the industrial
sector is of strategic importance because industrial DR yields lower response time in case
of a surge than ramping up peaking generators. Electricity-intensive non-continuous pro-
cesses have a tremendous DR potential. However, industrial DR must rely on rewarding
incentives owing to the production losses that could result from load shifting because
processes require precise timing. In addition, investments are also needed for installation of
demand response compatible equipment and infrastructure. Indeed, the principal obstacle
to DR in the industrial sector is the non-return on investment risk owing to a lack of tailored
incentives. A major concern is also the fact that in countries where baseload generation
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comes from coal-fired power plants without carbon capture and storage, which is more
emission intensive than peaking gas-fired power plants: valley filling could in certain cases
actually result in more emissions; rebound peaks could also occur. Therefore, implementing
a carbon tax is also necessary. It is also important to highlight the fact that energy efficiency
measures for reducing consumption must be implemented as they require less investment
costs than DR. Indeed, electric heating, which has tremendous DR potential, should be
considered simultaneously with renovation of the buildings in terms of insulation. While
few studies disclose actual DR field data, there is an obvious gap in the literature concerning
costs and barriers and generally speaking concerning non-dispatchable DR. Additionally,
the service sector and ancillary services are mentioned less in the literature. The future
trend of DR research is leaning towards ML algorithms, including 5G communication
networks and eventually technologies such as the blockchain.

Author Contributions: Conceptualization, H.-W.H. and M.-Y.L.; methodology, H.-W.H. and M.-C.C.;
validation, E.B. and H.-W.H.; formal analysis, E.B.; investigation, E.B. and C.-Y.W.; resources, M.-Y.L.
and C.-Y.W.; data curation, E.B. and H.-W.H.; writing—original draft preparation, E.B. and H.-W.H.;
writing—review and editing, E.B.; visualization, E.B. and C.-Y.W.; supervision, H.-W.H. and M.-C.C.;
project administration, H.-W.H.; funding acquisition, H.-W.H. and M.-Y.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Academia Sinica (Contract No. AS-SS-110-07-2) and Bureau
of Energy (Grant 109-A0102) of the Republic of China, Taiwan for its financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. US Department of Energy, Office of Electricity. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving

Them; Report to the United States Congress; US Department of Energy, Office of Electricity: Washington, DC, USA, 2006.
2. Amrollahi, M.H.; Bathaee, S.M.T. Techno-economic optimization of hybrid photovoltaic/wind generation together with energy

storage system in a stand-alone micro-grid subjected to demand response. Appl. Energy 2017, 202, 66–77. [CrossRef]
3. Zhang, X.; Hug, G.; Kolter, J.Z.; Harjunkoski, I. Model predictive control of industrial loads and energy storage for demand

response. In Proceedings of the IEEE Power and Energy Society General Meeting (PESGM 2016), Boston, MA, USA, 17–21 July
2016; pp. 1–5.

4. Yang, P.; Chavali, P.; Nehorai, A. Parallel autonomous optimization of demand response with renewable distributed generators.
In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan,
Taiwan, 5–8 November 2012; pp. 55–60.

5. Deng, R.; Yang, Z.; Chow, M.Y.; Chen, J. A survey on demand response in smart grids: Mathematical models and approaches.
IEEE Trans. Ind. Inform. 2015, 11, 570–582. [CrossRef]

6. Werminski, S.; Jarnut, M.; Benysek, G.; Bojarski, J. Demand side management using DADR automation in the peak load reduction.
Renew. Sustain. Energy Rev. 2017, 67, 998–1007. [CrossRef]

7. Tranfield, D.; Denyen, D.; Palminder, S. Towards a Methodology for Developing Evidence-Informed Management Knowledge by
Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [CrossRef]

8. Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [CrossRef]
9. Müller, T.; Möst, D. Demand response potential: Available when needed? Energy Policy 2018, 115, 181–198. [CrossRef]
10. Ali, M.; Safdarian, A.; Lehtonen, M. Demand response potential of residential HVAC loads considering users preferences. In

Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–6.
11. Rotger-Griful, S.; Jacobsen, R.H.; Nguyen, D.; Sørensen, G. Demand response potential of ventilation systems in residential

buildings. Energy Build. 2016, 121, 1–10. [CrossRef]
12. Samad, T.; Kiliccote, S. Smart grid technologies and applications for the industrial sector. Comput. Chem. Eng. 2012, 47, 76–84.

[CrossRef]
13. Federal Energy Regulatory Commission. Available online: https://www.ferc.gov (accessed on 23 March 2021).
14. Kathan, D. Assessment of Demand Response and Advanced Metering; Federal Energy Regulatory Commission: Washington, DC,

USA, 2009.

http://doi.org/10.1016/j.apenergy.2017.05.116
http://doi.org/10.1109/TII.2015.2414719
http://doi.org/10.1016/j.rser.2016.09.049
http://doi.org/10.1111/1467-8551.00375
http://doi.org/10.1016/j.rser.2013.10.022
http://doi.org/10.1016/j.enpol.2017.12.025
http://doi.org/10.1016/j.enbuild.2016.03.061
http://doi.org/10.1016/j.compchemeng.2012.07.006
https://www.ferc.gov


Energies 2022, 15, 863 28 of 30

15. Heitkoetter, W.; Schyska, B.U.; Schmidt, D.; Medjroubi, W.; Vogt, T.; Agert, C. Assessment of the regionalised demand response
potential in Germany using an open source tool and dataset. Adv. Appl. Energy 2020, 1, 100001. [CrossRef]

16. Xu, W.; Zhou, D.; Huang, X.; Lou, B.; Liu, D. Optimal allocation of power supply systems in industrial parks considering
multi-energy complementarity and demand response. Appl. Energy 2020, 275, 115407. [CrossRef]

17. Bego, A.; Li, L.; Sun, Z. Identification of reservation capacity in critical peak pricing electricity demand response program for
sustainable manufacturing systems. Int. J. Energy Res. 2014, 38, 728–736. [CrossRef]

18. Cui, H.; Li, F.; Hu, Q.; Bai, L.; Fang, X. Day-ahead coordinated operation of utility-scale electricity and natural gas networks
considering demand response based virtual power plants. Appl. Energy 2016, 176, 183–195. [CrossRef]

19. Parizy, E.S.; Bahrami, H.R.; Choi, S. A low complexity and secure demand response technique for peak load reduction. IEEE
Trans. Smart Grid 2018, 10, 3259–3268. [CrossRef]

20. Ghazvini, M.A.F.; Soares, J.; Abrishambaf, O.; Castro, R.; Vale, Z. Demand response implementation in smart households. Energy
Build. 2017, 143, 129–148. [CrossRef]

21. De Angelis, F.; Boaro, M.; Fuselli, D.; Squartini, S.; Piazza, F.; Wei, Q. Optimal home energy management under dynamic electrical
and thermal constraints. IEEE Trans. Ind. Inform. 2012, 9, 1518–1527. [CrossRef]

22. Li, W.T.; Yuen, C.; Hassan, N.U.; Tushar, W.; Wen, C.K.; Wood, K.L.; Liu, X. Demand response management for residential smart
grid: From theory to practice. IEEE Access 2015, 3, 2431–2440. [CrossRef]

23. Tang, R.; Wang, S. Model predictive control for thermal energy storage and thermal comfort optimization of building demand
response in smart grids. Appl. Energy 2019, 242, 873–882. [CrossRef]

24. Qayyum, F.A.; Naeem, M.; Khwaja, A.S.; Anpalagan, A.; Guan, L.; Venkatesh, B. Appliance scheduling optimization in smart
home networks. IEEE Access 2015, 3, 2176–2190. [CrossRef]

25. Aalami, H.A.; Moghaddam, M.P.; Yousefi, G.R. Demand response modeling considering interruptible/curtailable loads and
capacity market programs. Appl. Energy 2010, 87, 243–250. [CrossRef]

26. Brown, T.; Newell, S.A.; Oates, D.L.; Spees, K. International Review of Demand Response Mechanisms; The Brattle Group: London,
UK, 2015.

27. Shoreh, M.H.; Siano, P.; Shafie-khah, M.; Loia, V.; Catalão, J.P. A survey of industrial applications of Demand Response. Electr.
Power Syst. Res. 2016, 141, 31–49. [CrossRef]

28. Valdes, J.; González, A.B.P.; Camargo, L.R.; Fenández, M.V.; Macia, Y.M.; Dorner, W. Industry, flexibility, and demand response:
Applying German energy transition lessons in Chile. Energy Res. Soc. Sci. 2019, 54, 12–25. [CrossRef]

29. Karlsen, S.S.; Hamdy, M.; Attia, S. Methodology to assess business models of dynamic pricing tariffs in all-electric houses. Energy
Build. 2020, 207, 109586. [CrossRef]

30. Martin, K.; Jokisalo, J.; Kosonen, R.; Alimohammadisagvand, B. Demand response of space heating and ventilation—Impact on
indoor environmental quality. In Proceedings of the Roomvent & Ventilation 2018, Espoo, Finland, 2–5 June 2018; pp. 121–162.

31. Hu, M.; Xiao, F. Price-responsive model-based optimal demand response control of inverter air conditioners using genetic
algorithm. Appl. Energy 2018, 219, 151–164. [CrossRef]

32. Ren, D.; Li, H.; Ji, Y. Home energy management system for the residential load control based on the price prediction. In
Proceedings of the IEEE Online Conference on Green Communications, Online, 26–29 September 2011; pp. 1–6.

33. Olsen, D.; Goli, S.; Faulkner, D.; McKane, A. Opportunities for Energy Efficiency and Demand Response in the California Cement
Industry. PIER Industrial/Agricultural/Water End-Use Energy Efficiency Program; eScholarship Open Access Publications; Lawrence
Berkeley National Laboratory, University of California: Berkeley, CA, USA, 2010.

34. Klaassen, E.A.M.; Kobus, C.B.A.; Frunt, J.; Slootweg, J.G. Responsiveness of residential electricity demand to dynamic tariffs:
Experiences from a large field test in the Netherlands. Appl. Energy 2016, 183, 1065–1074. [CrossRef]

35. Rieger, A.; Thummert, R.; Fridgen, G.; Kahlen, M.; Ketter, W. Estimating the benefits of cooperation in a residential microgrid: A
data-driven approach. Appl. Energy 2016, 180, 130–141. [CrossRef]

36. Torriti, J. Demand Side Management for the European Supergrid: Occupancy variances of European single-person households.
Energy Policy 2012, 44, 199–206. [CrossRef]

37. Alimohammadisagvand, B.; Jokisalo, J.; Sirén, K. The potential of predictive control in minimizing the electricity cost in a
heat-pump heated residential house. In Proceedings of the 3rd IBPSA-England Conference Building Simulation & Optimization,
Newcastle, UK, 12–14 September 2016.

38. Pereira, R.; Fagundes, A.; Melício, R.; Mendes, V.M.F.; Figueiredo, J.; Martins, J.; Quadrado, J.C. A fuzzy clustering approach to a
demand response model. Int. J. Electr. Power Energy Syst. 2016, 81, 184–192. [CrossRef]

39. Rodríguez-García, J.; Alvarez-Bel, C.; Carbonell-Carretero, J.F.; Alcázar-Ortega, M.; Peñalvo-López, E. A novel tool for the
evaluation and assessment of demand response activities in the industrial sector. Energy 2016, 113, 1136–1146. [CrossRef]

40. Yi, W.; Zhang, Y.; Zhao, Z.; Huang, Y. Multiobjective robust scheduling for smart distribution grids: Considering renewable
energy and demand response uncertainty. IEEE Access 2018, 6, 45715–45724. [CrossRef]

41. Good, N. Using behavioural economic theory in modelling of demand response. Appl. Energy 2019, 239, 107–116. [CrossRef]
42. Yalcin, Y.; Yigit, K.; Acarkan, B. Energy management of water transfer stations by using demand response programs. In

Proceedings of the 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey,
25–27 October 2018; pp. 1–5.

http://doi.org/10.1016/j.adapen.2020.100001
http://doi.org/10.1016/j.apenergy.2020.115407
http://doi.org/10.1002/er.3077
http://doi.org/10.1016/j.apenergy.2016.05.007
http://doi.org/10.1109/TSG.2018.2822729
http://doi.org/10.1016/j.enbuild.2017.03.020
http://doi.org/10.1109/TII.2012.2230637
http://doi.org/10.1109/ACCESS.2015.2503379
http://doi.org/10.1016/j.apenergy.2019.03.038
http://doi.org/10.1109/ACCESS.2015.2496117
http://doi.org/10.1016/j.apenergy.2009.05.041
http://doi.org/10.1016/j.epsr.2016.07.008
http://doi.org/10.1016/j.erss.2019.03.003
http://doi.org/10.1016/j.enbuild.2019.109586
http://doi.org/10.1016/j.apenergy.2018.03.036
http://doi.org/10.1016/j.apenergy.2016.09.051
http://doi.org/10.1016/j.apenergy.2016.07.105
http://doi.org/10.1016/j.enpol.2012.01.039
http://doi.org/10.1016/j.ijepes.2016.02.032
http://doi.org/10.1016/j.energy.2016.07.146
http://doi.org/10.1109/ACCESS.2018.2865598
http://doi.org/10.1016/j.apenergy.2019.01.158


Energies 2022, 15, 863 29 of 30

43. Nilsson, A.; Lazarevic, D.; Brandt, N.; Kordas, O. Household responsiveness to residential demand response strategies: Results
and policy implications from a Swedish field study. Energy Policy 2018, 122, 273–286. [CrossRef]

44. Tahir, M.F.; Chen, H.; Khan, A.; Javed, M.S.; Cheema, K.M.; Laraik, N.A. Significance of demand response in light of current pilot
projects in China and devising a problem solution for future advancements. Technol. Soc. 2020, 63, 101374. [CrossRef]

45. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market
for Electricity and Amending Directive 2012/27/EU (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/
dir/2019/944/oj (accessed on 12 January 2022).

46. Cobelo, I.; Rodriguez, J.E.; Boyra, M.; Anduaga, J.; Castellanos, A. Economical and technical viability of demand response in
the Spanish power system: The “OPTIGES” project. In Proceedings of the CIRED Seminar 2008: SmartGrids for Distribution,
Frankfurt, Germany, 23–24 June 2008; pp. 1–4.

47. Sharifi, R.; Fathi, S.H.; Anvari-Moghaddam, A.; Guerrero, J.M.; Vahidinasab, V. An economic customer-oriented demand response
model in electricity markets. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon,
France, 19–22 February 2018; pp. 1149–1153.

48. Märkle-Huß, J.; Feuerriegel, S.; Neumann, D. Large-scale demand response and its implications for spot prices, load and policies:
Insights from the German-Austrian electricity market. Appl. Energy 2018, 210, 1290–1298. [CrossRef]

49. Eid, C.; Koliou, E.; Valles, M.; Reneses, J.; Hakvoort, R. Time-based pricing and electricity demand response: Existing barriers and
next steps. Util. Policy 2016, 40, 15–25. [CrossRef]

50. Kohlhepp, P.; Harb, H.; Wolisz, H.; Waczowicz, S.; Müller, D.; Hagenmeyer, V. Large-scale grid integration of residential thermal
energy storages as demand-side flexibility resource: A review of international field studies. Renew. Sustain. Energy Rev. 2019, 101,
527–547. [CrossRef]

51. Jayantilal, P.H.; Shah, N.E.H.A. A review on electrical energy management techniques for supply and consumer side in industries.
Int. J. Sci. Eng. Technol. Res. 2014, 3, 550–556.

52. Müller, F.L.; Jansen, B. Large-scale demonstration of precise demand response provided by residential heat pumps. Appl. Energy
2019, 239, 836–845. [CrossRef]

53. Bui, V.H.; Hussain, A.; Kim, H.M. A multiagent-based hierarchical energy management strategy for multi-microgrids considering
adjustable power and demand response. IEEE Trans. Smart Grid 2016, 9, 1323–1333. [CrossRef]

54. Yao, L.; Lim, W.H.; Tsai, T.S. A real-time charging scheme for demand response in electric vehicle parking station. IEEE Trans.
Smart Grid 2016, 8, 52–62. [CrossRef]

55. Yang, S.C. The Survey of Characteristic of Participants in Demand Response; Taiwan Power Research Institute: Taipei, China, 2019.
56. Stede, J.; Arnold, K.; Dufter, C.; Holtz, G.; von Roon, S.; Richstein, J.C. The role of aggregators in facilitating industrial demand

response: Evidence from Germany. Energy Policy 2020, 147, 111893. [CrossRef]
57. Vuelvas, J.; Ruiz, F. A novel incentive-based demand response model for Cournot competition in electricity markets. Energy Syst.

2019, 10, 95–112. [CrossRef]
58. Torriti, J.; Hassan, M.G.; Leach, M. Demand response experience in Europe: Policies, programmes and implementation. Energy

2010, 35, 1575–1583. [CrossRef]
59. Gils, H.C. Assessment of the theoretical demand response potential in Europe. Energy 2014, 67, 1–18. [CrossRef]
60. Ozturk, Y.; Senthilkumar, D.; Kumar, S.; Lee, G. An intelligent home energy management system to improve demand response.

IEEE Trans. Smart Grid 2013, 4, 694–701. [CrossRef]
61. Chuan, L.; Ukil, A. Modeling and validation of electrical load profiling in residential buildings in Singapore. IEEE Trans. Power

Syst. 2014, 30, 2800–2809. [CrossRef]
62. Bitaraf, H.; Rahman, S. Reducing curtailed wind energy through energy storage and demand response. IEEE Trans. Sustain.

Energy 2017, 9, 228–236. [CrossRef]
63. Dehnavi, E.; Abdi, H. Determining optimal buses for implementing demand response as an effective congestion management

method. IEEE Trans. Ind. Inform. 2016, 32, 1537–1544. [CrossRef]
64. Torstensson, D.; Wallin, F. Potential and barriers for demand response at household customers. Energy Procedia 2015, 75, 1189–1196.

[CrossRef]
65. Singaravelan, A.; Kowsalya, M. A novel minimum cost maximum power algorithm for future smart home energy management. J.

Adv. Res. 2017, 8, 731–741. [CrossRef]
66. Paterakis, N.G.; Erdinc, O.; Bakirtzis, A.G.; Catalão, J.P. Optimal household appliances scheduling under day-ahead pricing and

load-shaping demand response strategies. IEEE Trans. Ind. Inform. 2015, 11, 1509–1519. [CrossRef]
67. Shakeri, M.; Shayestegan, M.; Abunima, H.; Reza, S.S.; Akhtaruzzaman, M.; Alamoud, A.R.M.; Amin, N. An intelligent system

architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy Build. 2017, 138,
154–164. [CrossRef]

68. Hussain, I.; Mohsin, S.; Basit, A.; Khan, Z.A.; Qasim, U.; Javaid, N. A Review on Demand Response: Pricing, Optimization, and
Appliance Scheduling. Procedia Comput. Sci. 2015, 52, 843–850. [CrossRef]

69. Jordehi, A.R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 2019, 103, 308–319.
[CrossRef]

70. Pang, Y.; He, Y.; Jiao, J.; Cai, H. Power load demand response potential of secondary sectors in China: The case of western Inner
Mongolia. Energy 2020, 192, 116669. [CrossRef]

http://doi.org/10.1016/j.enpol.2018.07.044
http://doi.org/10.1016/j.techsoc.2020.101374
https://eur-lex.europa.eu/eli/dir/2019/944/oj
https://eur-lex.europa.eu/eli/dir/2019/944/oj
http://doi.org/10.1016/j.apenergy.2017.08.039
http://doi.org/10.1016/j.jup.2016.04.001
http://doi.org/10.1016/j.rser.2018.09.045
http://doi.org/10.1016/j.apenergy.2019.01.202
http://doi.org/10.1109/TSG.2016.2585671
http://doi.org/10.1109/TSG.2016.2582749
http://doi.org/10.1016/j.enpol.2020.111893
http://doi.org/10.1007/s12667-018-0271-2
http://doi.org/10.1016/j.energy.2009.05.021
http://doi.org/10.1016/j.energy.2014.02.019
http://doi.org/10.1109/TSG.2012.2235088
http://doi.org/10.1109/TPWRS.2014.2367509
http://doi.org/10.1109/TSTE.2017.2724546
http://doi.org/10.1109/TPWRS.2016.2587843
http://doi.org/10.1016/j.egypro.2015.07.570
http://doi.org/10.1016/j.jare.2017.10.001
http://doi.org/10.1109/TII.2015.2438534
http://doi.org/10.1016/j.enbuild.2016.12.026
http://doi.org/10.1016/j.procs.2015.05.141
http://doi.org/10.1016/j.rser.2018.12.054
http://doi.org/10.1016/j.energy.2019.116669


Energies 2022, 15, 863 30 of 30

71. Starke, M.R.; Alkadi, N.E.; Letto, D.; Johnson, B.; Dowling, K.; George, R.; Khan, S. Demand-Side Response from Industrial Loads;
Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2013.

72. Liu, Z.; Wierman, A.; Chen, Y.; Razon, B.; Chen, N. Data center demand response: Avoiding the coincident peak via workload
shifting and local generation. Perform. Eval. 2013, 70, 770–791. [CrossRef]

73. Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A
survey on application potential. Appl. Energy 2020, 257, 113972. [CrossRef]

74. Dranka, G.G.; Ferreira, P. Review and assessment of the different categories of demand response potentials. Energy 2019, 179,
280–294. [CrossRef]

75. Aryandoust, A.; Lilliestam, J. The potential and usefulness of demand response to provide electricity system services. Appl.
Energy 2017, 204, 749–766. [CrossRef]

76. Barbierato, L.; Estebsari, A.; Pons, E.; Pau, M.; Salassa, F.; Ghirardi, M.; Patti, E. A distributed IoT infrastructure to test and deploy
real-time demand response in smart grids. IEEE Internet Things J. 2018, 6, 1136–1146. [CrossRef]

77. Radenković, M.; Bogdanović, Z.; Despotović-Zrakić, M.; Labus, A.; Lazarević, S. Assessing consumer readiness for participation
in IoT-based demand response business models. Technol. Forecast. Soc. Chang. 2020, 150, 119715. [CrossRef]

78. Gholian, A.; Mohsenian-Rad, H.; Hua, Y. Optimal industrial load control in smart grid. IEEE Trans. Smart Grid 2015, 7, 2305–2316.
[CrossRef]

79. Neves, D.; Silva, C.A. Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage
backup with genetic algorithms. Energy 2015, 82, 436–445. [CrossRef]

80. Bossmann, T.; Eser, E.J. Model-based assessment of demand-response measures—A comprehensive literature review. Renew.
Sustain. Energy Rev. 2016, 57, 1637–1656. [CrossRef]

81. Vivekananthan, C.; Mishra, Y.; Ledwich, G.; Li, F. Demand response for residential appliances via customer reward scheme. IEEE
Trans. Smart Grid 2014, 5, 809–820. [CrossRef]

82. Firouzmakan, P.; Hooshmand, R.A.; Bornapour, M.; Khodabakhshian, A. A comprehensive stochastic energy management system
of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renew.
Sustain. Energy Rev. 2019, 108, 335–368. [CrossRef]

83. Ghasemi, A.; Enayatzare, M. Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit
and demand response. Renew. Energy 2018, 123, 460–474. [CrossRef]

84. Derakhshan, G.; Shayanfar, H.A.; Kazemi, A. The optimization of demand response programs in smart grids. IEEE Trans. Ind.
Inform. 2016, 94, 295–306. [CrossRef]

85. Setlhaolo, D.; Xia, X.; Zhang, J. Optimal scheduling of household appliances for demand response. Electr. Power Syst. Res. 2014,
116, 24–28. [CrossRef]

86. Vázquez-Canteli, J.R.; Nagy, Z. Reinforcement learning for demand response: A review of algorithms and modeling techniques.
Appl. Energy 2019, 235, 1072–1089. [CrossRef]

87. Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial
intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy Rev.
2020, 130, 109899. [CrossRef]

88. Esnaola-Gonzalez, I.; Diez, F.J. Integrating Building and IoT data in Demand Response solutions. In Proceedings of the 7th Linked
Data in Architecture and Construction Workshop, Lisbon, Portugal, 19–21 June 2019.

89. Kusumaningdyah, W.; Tezuka, T.; McLellan, B.C. Investigating Preconditions for Sustainable Renewable Energy Product–Service
Systems in Retail Electricity Markets. Energies 2021, 14, 1877. [CrossRef]

http://doi.org/10.1016/j.peva.2013.08.014
http://doi.org/10.1016/j.apenergy.2019.113972
http://doi.org/10.1016/j.energy.2019.05.009
http://doi.org/10.1016/j.apenergy.2017.07.034
http://doi.org/10.1109/JIOT.2018.2867511
http://doi.org/10.1016/j.techfore.2019.119715
http://doi.org/10.1109/TSG.2015.2468577
http://doi.org/10.1016/j.energy.2015.01.054
http://doi.org/10.1016/j.rser.2015.12.031
http://doi.org/10.1109/TSG.2014.2298514
http://doi.org/10.1016/j.rser.2019.04.001
http://doi.org/10.1016/j.renene.2018.02.072
http://doi.org/10.1016/j.enpol.2016.04.009
http://doi.org/10.1016/j.epsr.2014.04.012
http://doi.org/10.1016/j.apenergy.2018.11.002
http://doi.org/10.1016/j.rser.2020.109899
http://doi.org/10.3390/en14071877

	Introduction 
	Literature Review 
	State of the Art of DR Participation Methods 
	DR Research Fields 
	Potential Assessment 
	Potential Implementation 
	Focus 
	Key Parameters 

	Potential Implementation 
	Contributions 
	Models 
	Demand Response within the Different Sectors 


	Evolution of DR Potential 
	Trend of Implementation Sectors 
	Present State of the Keywords and Future Trend 
	Development of DR Considerations 
	Development of the Types of DR 
	Trend of DR Research by Sectors 
	DR Research in the Different Continents and Related Contributions 
	Trend of Demand Response Research in Europe 
	Research Trend on Demand Response in Asia 
	Research Trend of Demand Response in the Americas 
	Research Trend of Works on Other Regions and Studies Independent of Location 


	Future Evolution of DR Potential 
	Artificial Intelligence Assisted Strategies 
	DR Influence on the Smart Grid and Big Data 
	DR Role in Sustainable Electricity 
	DR within Product–Service System 
	Energy Consumption Feedback Using DR and Blockchain 

	Conclusions 
	References

