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Abstract: Incorporating Internet of Things (IoT) technology into the operation of buildings is expected
to generate immense synergy, thereby saving energy and improving occupant comfort by overcoming
the limitations of the existing system. Preventing operations in the absence of occupants can save
energy, and the occupants’ preferred operating temperature should be used as the control set-point
rather than the nominal temperature. In this study, IoT technology and image sensors are used to
rapidly detect indoor environment changes, and a method is proposed to utilize air quality and
thermal comfort as the control set-points. A real-time ventilation control algorithm is proposed based
on the CO2 concentration calculated according to the number of occupants. To check the thermal
comfort level, the real-time operating temperature estimated from the surface temperature data of
the infrared array sensor is reflected in the comfort zone defined by the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE). The deficiencies in indoor environment
conditions caused by the temporal and spatial lag of sensors in the old system are minimized using
IoT technology, which also facilitates wireless communications. The image sensors can be used for
multiple purposes based on various interpretations of the image information obtained.

Keywords: indoor environmental quality; Internet of Things; machine learning; affordable technology;
ventilation control; operative temperature

1. Introduction
1.1. Background

Heating, ventilation, and air conditioning (HVAC) systems are commonly used in
buildings to provide convenience and comfort to occupants. In the era of the climate
crisis, there is considerable motivation to reduce the energy demand of buildings to reduce
CO2 emissions and thereby the environmental effect. Efforts are ongoing to improving
operational efficiency and thereby reduce the energy used in operating buildings. The CO2
emission can be reduced by improving the energy efficiency of the building operations.
To improve the energy efficiency, it is very important to minimize the redundant energy
demand while providing an appropriate level of energy where needed, rather than forcibly
restricting the use of a system. Energy requirements vary depending on the type of
building and its purpose. Most buildings are constructed for occupants, and this means
that most spaces should be well-controlled to achieve a balance between energy demand
and occupant comfort. The provision of the required energy demand does not aim to
simply reach set-points such as the nominal temperature and humidity, but to achieve the
set-points that reflect integrative factors such as occupant comfort [1,2].
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1.1.1. Current Challenges

Many studies are carried out to obtain and apply objective indicators reflecting com-
plex factors, and their number is accelerating with the application of advanced techniques
such as machine learning. Nevertheless, in many cases, it is necessary to collect data
through the use of measuring devices from manufacturers such as Testo and to utilize
costly high-performance workstations to analyze the collected data. In such cases, the per-
formance and results are of high quality, but the methods are too expensive for practical
application in real-world environments. These issues suggest the need for an affordable de-
vice that can collect and analyze data at a reasonable price. The availability of such a device
promises the high likelihood of overcoming the limitations of conventional buildings.

Among these limitations, the first is the building automation system (BAS). BAS has
not progressed to reflect the changes in the installation and use of building systems over
30 years, since it was first proposed in the 1990s. The direct digital control system used in
BAS connects and monitors building systems such as facilities and monitoring systems
by wire. Physical retrofitting, such as improving and replacing a system partly or entirely,
is not common, owing to its excessive time and cost. Many buildings that adopted the initial
BAS are not fully functioning at present owing to aging; in such cases, partial retrofitting in
place of improvement and replacement of the entire system is very difficult. The second
limitation is related to the building energy management system (BEMS). BEMS adds the
functionalities of monitoring and operator control to the existing BAS; it has similar physical
limitations as BAS. The building energy reduction using BEMS is difficult to attain without
the active correction efforts of knowledgeable operators who have received professional
education. This is the reason that they typically reside in the buildings they manage.
However, when buildings are managed by such operators, the general set-points based on
their experience and on building codes are used as the operational standards.

1.1.2. Possibility of Improving a Conventional System by Using IoT Technology

Owing to the influence of the fourth industrial revolution, new technologies such
as Internet of Things (IoT), cloud computing, and big data have been recently applied to
building architecture, and digital technologies, which have been difficult to implement in
the past owing to complicated procedures and processes, have been realized. However,
in terms of building management, approaches such as data measurement and communica-
tion are in their nascent stages with limited applications, and extended application to the
entire construction process is very limited in reality.

Proper utilization of IoT technology can overcome the temporal and physical lim-
itations of the existing system, as well as ensure optimal and reasonable operation by
considering occupant comfort instead of relying on the operator’s experience and building
codes. IoT technology mainly comprises three parts—sensing, data processing, and net-
work technology, as shown in Figure 1 [3]. In the field of construction, it can be used
for various purposes such as design, construction, operation, maintenance, and safety.
Post installation, sensors used in building operations must always detect the operating
state until they are replaced owing to failure. As the monitoring result is provided to the
operating platform or operator immediately upon detection, it has a very high probability
of use; hence, IoT technology is actively used in buildings [4].

Sensors used in building operations are classified into monitoring sensors and indoor
environment sensors [5] according to their use. Monitoring sensors detect the status
of actuators, cold water temperature, chilled water temperature, and control points of
mechanical system hardware, such as fan revolution. Indoor environment sensors generate
information on the “space to be controlled”, such as the room air temperature, occupant
state, humidity, and illuminance level. Depending on the size of the building, the number
of sensing points for these sensors ranges from tens to thousands, but most of the sensors
are installed for a specific purpose. Owing to the nature of the wired sensor, additional
maintenance costs and labor costs due to reasons such as periodic repair continue to occur
frequently until the building is no longer in use [6].
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Figure 1. Integration of IoT technology into an intelligent building.

The indoor environment information delivered to the monitoring system is compared
with the set-point, and the operation of the building system is controlled based on the
set operation system. The set-point of the building system is often decided based on the
criteria universally specified in the building code or the operator’s experience. In fact,
the set-point for public buildings in South Korea is required to be 28 ◦C for cooling in
summer and 18 ◦C for heating in winter, according to the building code. This results in
redundancy in energy utilization because cooling, heating, and ventilation are operated
according to a preset set-point, regardless of the room occupancy status. Such set-points
are hardly considered reasonable and often result in occupant discomfort because the
occupant’s comfort requirements are not sufficiently guaranteed owing to the simple use of
one-dimensional standards such as room air temperature. This means that the “space to
be controlled” is not properly controlled. The American Society of Heating, Refrigerating,
and Air-Conditioning Engineers (ASHRAE) Standard 55 explains that even in a room
separated into individual spaces [7], radiant temperature asymmetry with large solar heat
gain can occur in the areas close to windows and doors, which can cause thermal discomfort
to the occupants (Figure 2). In addition, the settings for spatial control may vary depending
on the range or area detected by the sensor.
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The utilization of IoT devices allows for physical and systematic improvement of the
indoor environment. The IoT devices used for physical improvement overcome the specific
limitations associated with wireless devices such as Wi-Fi and Bluetooth, demonstrating
the effect of multiple sensors with only a single sensor. Systematic improvement will enable
reasonable control according to the purpose of the space, such as controlling the occupant’s
thermal comfort, indoor air quality, and energy savings by utilizing the data transmitted
from the sensor. In particular, changes in the indoor environment can be detected rapidly,
allowing for appropriate control to adjust to the frequency of changes. In other words,
systematic improvement will allow for more accurate and faster judgment of the situation,
which will eventually be the first step in reducing redundant energy while still meeting the
occupant comfort requirements.

1.1.3. Need for Control Standards Reflecting Indoor Environment Quality

In South Korea, mechanical facilities (air conditioning equipment and ventilation equip-
ment) in general buildings are designated by building code to operate at an average of
18–20 ◦C or lower for heating and 26–28 ◦C or higher for cooling [8]. Operating a building
based on temperature as the only operation control standard is not reasonable considering
both indoor comfort and energy savings. It is necessary to consider the comfort index, which
largely reflects subjective factors, as the control standard to save energy or improve the
comfort level, rather than using the data collected from the sensor as the control standard.

Recent studies have analyzed and improved the indoor environmental quality (IEQ)
for the purpose of controlling the indoor comfort. Graham proposed a two-fold classifica-
tion of indoor environment data: (1) data that require the supervision of occupants and
(2) objective data obtained through measurement and monitoring. He argued that the IEQ
can be analyzed based on both data types. IEQ is divided into four objective elements—
thermal comfort, indoor air quality (IAQ), visual comfort, and acoustic comfort—and
consists of subjective sub-elements [9]. Because of the characteristics of IEQ, it is very
difficult to convert the subjective factors into an objective numerical value; however,
many researchers are engaged in ongoing efforts to achieve ventilator control based on
the CO2 concentration in order to secure IAQ. To control based on comfort, it is essential
to reflect the subjective factors as a control criterion. Traditionally, data have been ac-
quired through surveys and interviews, and recently, advanced IoT technologies have been
employed, including wearable devices and analysis platforms, which allow for accurate
analysis through quantification of physiological responses such as the heart rate in the space.

Buildings in the past aimed at protecting the occupant from the external environment,
but modern buildings are required to play the role of a sanctuary for life, providing safety
and comfort to the occupants (Table 1) [10,11]. There are four types of comfort indices,
and an appropriate standard for each purpose is required to achieve comfort. The air quality,
carbon monoxide concentration, carbon dioxide concentration, ozone, and nitrogen oxide
are used as standards for monitoring the concentration of pollutants in the air. Illuminance,
luminance, and lighting color are adjusted for visual comfort. Standards reflecting wind
speed, humidity, air temperature, surface temperature, clo value, and metabolic rate are
required for thermal comfort. For a comfortable acoustic environment, the degree of sound
absorption and sound level in decibels can be considered as the standard.

Table 1. Components of indoor environmental quality.

Thermal Comfort Indoor Air Quality (IAQ) Visual Comfort Acoustic Comfort

Air velocity
Humidity

Air/surface
temperature

Clothing
Insulation

Activity level

Carbon monoxide
Carbon dioxide

Ozone
Nitrogen oxides

Mold and bacteria
Smoke

Volatile organic compounds

Visual ergonomics
Glare

Natural light
Artificial lighting

Privacy
Building design

Sound insulation
Noise levels

Privacy
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1.2. Literature Review

Hardware-based research for the improvement of physical comfort mainly involves
physical methods and basic system settings, such as connecting IoT devices and necessary
sensors, installing devices that use the features of IoT technology, or setting the storage
necessary to collect the measured data. Software research for systematic improvement
involves processing and using the data after specifying the set-points for building operation
control. With the advancement in digital technology, research using IoT devices is being
actively conducted in the field of architecture. Previous studies on the application of IoT
devices for operation and control, which are likely to be the most common uses of these
devices, are described below.

The literature review was conducted to summarize the research on the controllability of
buildings through data collected using IoT devices and remote control. Shigaki and Yashiro
enabled the control of lighting, heating, and cooling based on the data obtained from sensors
attached to a real building by using IoT devices. The indoor environment was evaluated and
controlled by the occupants, which improved the occupant comfort, health, convenience,
and safety. The use of cloud technology allowed for remote operation and control of the
device [12]. Plageras et al. stored the data gathered by the temperature, humidity, motion,
and illuminance sensors in the cloud server through IoT devices, and enabled analysis and
control in the cloud server for the ultimate goal of realizing a smart city. In addition, remote
control was enabled by connecting to the user’s cloud server [13]. In a study by Song and
Kim, IoT devices were connected to a direct digital controller, a watt-hour meter, and a
temperature and humidity sensor to collect and store data on the IoT cloud server to enable
monitoring and control. A control algorithm for saving energy was built based on such
a configuration, allowing operators to remotely check the status of the system and make
decisions [14]. Through these studies, it was identified that it is possible to use physical
connections and that it is feasible to control not only the indoor electric heat pump (EHP),
but also large equipment such as the main heat pump of a building.

Subsequently, the effect of interlocking machine learning with a control was inves-
tigated through the connection of IoT devices and cloud servers. Li et al. suggested the
efficient operation of smart homes by linking IoT systems installed in the smart homes to
machine learning. A control scheme for collecting power data based on wireless networks
through IoT devices and machine learning for the demand-based prediction of power
consumption was proposed [15]. In a study by Ray, an IoT-based system was constructed
using the MISSENARD index by considering the effect of thermal comfort on lifestyle,
productivity, and health. The system consisted of a control, sensor, network, and cloud,
enabling data storage, visualization, and analysis [16]. Zhang et al. proposed a plug-and-
play learning method by using IoT technology to automatically determine the thermal state
of each space without manual configuration. The temperature data of the smart thermostat
were used as the standard to determine the thermal state of the space [17]. Salamone et al.
proposed a method that used a device called a smart lamp, which aims to optimize the
status of the occupants’ thermal comfort while saving energy. The methodology presented
in ASHRAE 55-2013 was used as the standard for thermal comfort, and an algorithm
for saving cooling energy was proposed [18]. In a study by Zhang et al., the predictive
mean value (PMV), which is a thermal comfort indicator, was inferred by using the data
gathered through IoT sensors. A deep neural network was used to infer the PMV thermal
comfort model, and the thermal comfort model index was reflected in the cooling standard.
The HVAC system of the building was operated in summer, considering energy savings by
setting limits on the thermal comfort model index to minimize the energy consumption [19].
In these studies, the air conditioning and heating equipment was controlled utilizing com-
plex standards such as for thermal comfort that were based on the data collected from the
IoT device. To deduce the complex factors such as occupant comfort, the incorporation of
hardware improved for the application of techniques beyond machine learning is required.

Taking all of the above studies into consideration, an examination of the hardware
used in previous studies on IoT technology shows that a connection is established between
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the sensor and the monitoring system [20]. This was because connecting the existing sensors
with the IoT devices allowed the data to be wirelessly transferred to the monitoring system
via wireless communications for monitoring and utilization. The application of early IoT
technology to building operations and control systems demonstrated limited functionality
in terms of multidimensional and massive information processing, such as machine learning
and platforms for monitoring and feedback, owing to the technical limitations of IoT
devices. Therefore, machine learning, such as deep neural networks, requires a separate
high-performance computing device, which is not affordable [2]. The installation and
application of additional expensive equipment for applying technology did not seem to
be much different from the approach adopted for BEMS, which only added a monitoring
function to BAS. The approach is considered a case of applying advanced technology,
not affordable technology [1,21]. Therefore, it is necessary to use an IoT device to enable
data collection, storage, computation, and algorithm application in the affordable device
itself, and the device must also be reliable.

1.3. Study Objectives

Figure 3 shows how IoT technology is improved in conventional building, to which
conventional systems such as BAS and BEMS are applied. Conventional building is
inefficient in control due to wired-based control and sensing, simple control methods,
and time delay. This eventually leads to problems such as high retrofit costs, uncomfortable
environments, and continuous use of inefficient devices. The following effects are expected
when IoT technology is used. The first is the application of a wireless-based system,
enabling the continuous upgrade of hardware and software of the control system in the
building. Improving the hardware of wired systems applied to conventional systems
causes material costs and labor costs, and it is difficult to continuously upgrade software.
Second, computational and machine learning functions can be mounted, and various
results can be derived using a single sensor using them. For example, data such as the
number of people and carbon dioxide concentration can be collected from one image sensor.
Finally, it is possible to improve the comfort of the occupants and to control and sense
for comfort. Information such as comfort is very difficult to estimate using fragmentary
information such as temperature and humidity. However, it is expected that IoT technology
that can combine various applications such as machine learning and various sensors will
be sufficiently possible [22,23].
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The objective of this study is to allow for real-time control based on the ability to
collect accurate and fast occupant status and thermal conditions of the indoor environment
from IoT devices to use the required amount of energy appropriately [24]. Accordingly,
a convolutional neural network (CNN) [25], one of the machine learning techniques for
determining the information contained in images, was used to obtain the occupant sta-
tus data, and affordable technology (e.g., Infrared (IR) array sensor) was used to collect
the thermal condition data [26,27]; the results were then verified. In the information re-
lated to the thermal environment [28], operative temperature is a very reliable indicator,
but there are difficulties in monitoring and using the globe temperature. Although the IR
array sensor is not a commonly used sensor, it has the advantage of being able to easily
acquire the operative temperature by utilizing the feature of surface temperature detection.
When connected with a Raspberry Pi, it enables the creation, visualization, and delivery of
various results based on the surface temperature, thus playing the role of a platform for var-
ious purposes while controlling the facility operation with condition logging. This reduces
the need for a separate expensive arithmetic unit and leads to cost savings. This study
proposes a real-time ventilation control algorithm based on the occupant data and a scheme
for checking the real-time thermal comfort status after comparing the thermal data with the
ASHRAE Standard 55 Thermal Comfort data. The characteristics of IoT technology are uti-
lized to overcome the limitations of the existing system by using a single sensor for multiple
purposes [29,30] and rapidly responding to changes in the indoor environment [31].

2. Materials and Methods

This study aimed to determine whether it was possible to collect and utilize the number
of occupants and thermal information, which were the factors for the real-time ventilation
control algorithm and real-time thermal comfort condition, based on the experimentally
measured indoor environment information.

A considerable amount of research has been conducted on converting the information
in the image into data along with the active development of machine learning. Image
data were used to obtain the occupant data as accurately as possible with the visual data
obtained by humans. As a representative approach for acquiring the images, the Pi camera,
which is easily linked with an IoT device, was used, and a CNN, which is a type of machine
learning, was used to detect the information contained in the images. Among the numerous
open-source CNN algorithms on the web, the YOLOv4 algorithm was found suitable for
this study.

A thermostat is generally used as the standard for controlling the heating and cooling
equipment. It measures the air temperature at a specific location, resulting in the use of an
inaccurate temperature value as the control index due to thermal asymmetry. Therefore,
an infrared thermal camera was used to acquire the thermal data in a more reasonable
manner. Commercially available thermal cameras are not only very expensive, but also
have many limitations related to their use, as they are manufactured and sold as finished
products, with a unique algorithm specific to the manufacturer. Therefore, in this study,
an IR array sensor was used in place of a thermal imaging camera to collect the thermal
data, and a thermal sensor, which could be linked with the IoT device, was separately
installed and used after modifying the C++ code to meet the purpose.

The experiment performed in this study was divided into two parts. The first part
of the experiment was intended to collect the image data and surface temperature data
from the Pi camera and IR array sensor connected to the IoT device. The second part of
the experiment was intended to calculate the CO2 concentration based on the number
of occupants assessed from the image data and the operative temperature based on the
surface temperature data, and to verify the reliability of the obtained results.

The experiment was conducted in three phases, with different requirements in each
phase (Figure 4). In the first phase, it was essential to check the normal operation of the
IoT device after setting it up and connecting the sensor for the first time. The Raspberry
Pi code was modified to collect data according to the set size and time. The collection of



Energies 2022, 15, 921 8 of 28

image data obtained with the Pi camera, application of the ventilation control algorithm,
and ability to reflect the data on the thermal comfort chart of the IR array sensor were
verified simultaneously.
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Figure 4. Full process in the IoT device.

In the second phase, the IR array sensor and globe temperature sensor were used to
acquire simultaneous measurements. To minimize external influences on the experimental
space, the access of the occupants was restricted, thus allowing for only the effect of
temperature change by infiltration and solar radiation.

In the third phase, after running the CNN algorithm, an experiment was conducted
to obtain the number of occupants after one or more occupants entered or exited the
monitored space and to log the number of occupants continuously. Considering the size of
the experimental space, up to four occupants were allowed to enter the space. In addition,
this experiment attempted to examine whether the number of occupants was accurately
counted even when the occupants were seated in an unmoving state or moving about in
the experimental space.

The occupant data and thermal condition data obtained during the experiment are
inadequate to verify the ventilation control algorithm and thermal comfort status, which
were the ultimate goals of this study. Therefore, additional necessary factors such as the
ventilation set-point, CO2 emission rate per capita [32], and mean radiant temperature
(MRT) calculation were considered based on the results of previous studies.

2.1. Experimental Instrumentation

The IoT device used in this study was a Raspberry Pi [33], a low-cost small computer
developed by the Raspberry Pi Foundation, United Kingdom, to promote education in
basic computer science in schools and developing countries. Because it is a Linux-based
small computer, it has the advantage of allowing the installation and use of Python for
calculations and machine learning algorithms; it performs calculations up to the level
of the latest data-driven machine learning functions. In addition, it supports wireless
communications such as Wi-Fi and Bluetooth, which are characteristics of IoT devices,
enabling it to perform sensing and networking and to act as a platform for monitoring and
feedback. To proceed with learning and calculating with the extracted data, this study used
a program based on the Python language to accommodate additional sensors or equipment
in the future.
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Table 2 shows sensors that are used in the experiment. The Pi camera [34] used in
the study had a resolution of eight megapixels and a shooting angle of 160◦, enabling
image data collection without blind spots in the experimental space. IR wavelengths of
all objects existing within the shooting angle were measured with an IR array sensor [34],
and temperature data were collected as 768 pixels with 32 × 24 arrays. The sensor could
detect temperatures in the range of −40 ◦C to 300 ◦C with an error range of ±1 ◦C,
and could detect targets within a radius of up to 7 m. However, with regard to accuracy,
it was adequate to have a distance of 2–3 m from the target. In the method of calculating
the temperature from the IR wavelength, the average IR wavelength of the area included in
one pixel was converted to the temperature. As the distance between the sensor position
and the target increased, the area included in one pixel gradually increased, resulting in
lower accuracy. Lastly, the thermo-hygrometer sensor measured the temperature in the
range of −40 ◦C to 80 ◦C, with an error range of ±0.5 ◦C. The humidity was measured with
an error range of ±2% and 0% to 100% relative humidity.

Table 2. Sensors.

Characteristic Pi Camera MLX90640 DHT22 RPTF-2 TR-76Ui

Appearance
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Table 3. Experimental outline. 

Parameter Specification 

Location Seoul 

Type Office 

Floor 4th Floor 

Direction East 

Room height 3.4 m 

Area 23 m2 

Data type Real image Surface temperature
Thermal image

Air temperature/
humidity

Globe
temperature

CO2
concentration

Performance 8 megapixels
160◦ angle

768 pixels (32 × 24)
110◦ × 75◦

−40–300 ◦C (±1)
7 m distance

−40–80 ◦C (±0.5)
RH: 0% to 100% (±2) −5–60 ◦C (±1.5) 0–9000 ppm

(±50 ppm +5%)

The globe temperature sensor and CO2 sensor were installed to verify the operat-
ing temperature and CO2 concentration measured in the above experiment. The globe
temperature sensor was a resistance temperature detector for measuring temperatures
between −5 ◦C and 60 ◦C, with an error range of ±1.5 ◦C, which could be used as the MRT.
The indoor TR-76Ui data logger manufactured by T&D Corporation was used as the CO2
sensor. This equipment detects CO2 concentrations from 0 to 9999 ppm with an error range
of ±50 ppm +5%. The CO2 concentration was measured using this equipment to calculate
the infiltration rate for the ventilation algorithm [35], and the calculation results for the
CO2 concentration based on the number of occupants were verified [36].

2.2. Experimental Set-Up

The experiment was conducted in the office space at Yonsei University, located in
Seoul. Figure 5 shows the experimental space and set devices, and the experimental outline
is shown in Table 3. Figure 5 shows the cross section of the experimental space, where
the locations of the IoT device (Figure 6) used for the experiment and the sensors used for
verification are indicated. The Raspberry Pi camera and IR array sensor were installed at
a point 2.2 m from the floor to be able to focus in the direction of the window from the
doorway. The globe temperature sensor and CO2 concentration sensor were installed 1.6 m
from the floor at the center of the experimental space [37].
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2.3. Thermal Data Collection

The IR array sensor detects IR wavelengths between 5 and 12 µm and converts the
readings to surface temperatures. The result indicates the surface temperature of the
detected object. Figure 7 shows the range detected by the IR array sensor used in this
study. It detects an area of approximately 60% of the entire experimental space, and two
types of data, as shown in Figures 8 and 9, can be collected based on the IR wavelengths
of all objects within the detection range. Figure 8 shows the IR wavelength expressed
as a temperature value and converted into a heat map as a thermal image. Figure 9
shows the same temperature value converted and saved in the form of a matrix in Excel.
The temperature data in the matrix form consisted of 768 pixels (32 pixels horizontally and
24 pixels vertically), i.e., 768 temperature data were collected. Thermal image data were not
used; rather, only temperature data in the matrix form, as shown in Figure 8, were used.
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Figure 9. Surface temperature array data.

2.4. Occupant Data Collection

In this study, the image data of the experimental space were collected using a Pi camera.
Most available techniques cannot collect the occupant data as accurately as human visual
inspection. In many previous studies, the occupant data were obtained using a passive
IR sensor or calculated based on the rate of increase in CO2 concentration. Although
satisfactory results may have been reported for the experimental arrangement specially
installed for the study, there were many cases of inaccurate occupant detection using
sensors in daily life, such as failure to detect an occupant with no movement, for example,
a sleeping occupant.

Therefore, this study aimed to collect the occupant data using image information
to make judgments as accurate as human visual information [38,39]. The CNN detec-
tion model YOLOv4 was selected from among the previously published open-source
CNN-based machine learning models for image analysis, as it is suited to the camera
characteristics and has the highest accuracy.

Figure 10 shows the image before the detection of the number of occupants from
the image, and Figure 11 shows the image after the detection. The YOLOv4 algorithm
was installed on the Raspberry Pi device to detect the number of occupants in a space.
The targeted accuracy of determining an object as a human by the algorithm was 96% to
99%. However, because the accuracy of the algorithm may differ from the actual result, a
separate verification process was required. A visual examination of 120 different result data
revealed only one error in one image, where a chair was detected as a person, indicating
that the scheme was highly accurate and suitable for practical use.
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3. Results and Discussion

Chapter 3 uses the collected data to determine where the operative temperature is
located within the comfort range. In addition, the carbon dioxide concentration was cal-
culated using the detected number of occupants, and accuracy was performed through
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comparison with the actual data. Finally, the utilization of IoT equipment was maxi-
mized through the proposal of a ventilation control algorithm using the calculated carbon
dioxide concentration.

3.1. Use of Thermal Environment Information
3.1.1. Operative Temperature

Although temperature, which is an indicator of the thermal status of the space,
is used as a general HVAC set-point, it is difficult to consider it as an indicator of the
thermal comfort of an occupant. To ensure the thermal comfort of the occupant, an appro-
priate set-point is required, for which the operating temperature is an index used in the
ASHRAE comfort chart. The operative temperature is suitable for use as an index for the
occupant’s thermal comfort, as the thermal comfort status of the space can be determined
based on this temperature.

The operative temperature can be calculated simply as the median value of the mean
radiant temperature (MRT) and air temperature (Table 4) [6], but it is not easy to obtain the
MRT. To determine the MRT of the space, the temperature emitted from the surface can be
measured by installing a globe temperature sensor at the center of the space. It is easier to
obtain the MRT by using a globe temperature sensor than by calculation; however, owing
to the nature of the globe temperature sensor, there are practical difficulties in installing
and using it in an indoor space [40,41].

Table 4. Operative temperature equation.

Description Equation

Operating temperature, OT OT = MRT+Ta
2

To overcome this limitation, this study aimed to obtain a value that can replace the
MRT by using an IR array sensor. For instance, a globe temperature sensor should be
installed at the center of the space and 1 m in height from the floor. However, if it is
installed in this way in general buildings such as hospitals and commercial buildings,
which will allow for accurate measurement of the temperature, it will also create physical
interference with occupants, causing uncomfortable situations. This method does not take
into account the practical applicability, and it was to improve applicability that this study
was carried out.

The data collected with the IR array sensor were represented as matrix data contain-
ing 768 temperature values, which were the surface temperatures of objects occupying
approximately 60% of the experimental space. This study aimed to compare the operating
temperature obtained as the mean of 768 temperatures (mean surface temperature (MST))
and that obtained using the globe temperature (MRT).

3.1.2. Comparison of Surface-Temperature-Based Operative Temperature and
Globe-Temperature-Based Operative Temperature

The IoT device connected to the globe temperature sensor and IR array sensor was
installed as shown in Figure 5. The experiment was conducted from 02:00 a.m. to 14:00 p.m.
for three days from 24 September to 26 September 2020, and a total of 4320 data were
collected. The experiment was conducted in the absence of occupants in the experimental
space. Figure 12 shows the experimental results. From the start of the experiment at
02:00 a.m. until sunrise, the operative temperatures remained almost the same. After dawn,
the globe-temperature-based operative temperature was measured to be at least 0.3 to 1 ◦C
higher, and the difference between the two temperatures decreased from noon onward.
The MST was always lower than the MRT, and the data were not constant, with many
changes over a short period. A similar phenomenon was observed throughout the three
days of the experiment, which was explained as follows.
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First, the results were affected by the orientation of the windows. In the space, the win-
dows were facing east, which allowed the radiant heat from the sun to affect the indoor
space after sunrise, thereby causing changes in the temperature. Although the sunrays
penetrating the window were blocked as much as possible by window blinds to minimize
the solar heat, the radiant heat could not be blocked entirely owing to the insufficient heat
blocking performance of the window blinds. Second, the MST temperature data showed
numerous changes, which seemed to have been due to the characteristics of the IR array
sensor. The surface temperature collected by the IR array sensor was used to express the
IR wavelength as a temperature using a formula. At this time, it was set to calculate the
monitored IR wavelength 16 times per second; therefore, all 768 units of temperature data
showed different temperature values according to the changing wavelength. Because the
change occurred in a very small range with no significant effect on the result, it was not
classified as an error in the separate data preprocessing step.

Regression analysis was performed to compare the MST-based operating temperature
and MRT-based operating temperature by date, and the results are shown in the graph at
the bottom of Figure 12. The R-squared value, i.e., the coefficient of determination, obtained
from the results of the experiment conducted over three days was in the range of 0.94–0.96.
An R-squared value higher than 0.8 and closer to 1 indicates a significant relationship,
and the two sets of data demonstrated a very significant relationship based on the values
mentioned above, suggesting that the MST-based operating temperature could replace the
MRT-based operative temperature.

3.1.3. Utilization of Indoor Thermal Comfort Data

Based on the operative temperature obtained with the IR array sensor and the relative
humidity data obtained with the thermo-hygrometer sensor, the thermal comfort state at
the moment the data were obtained could be determined by using a chart with the ASHRAE
comfort zone. However, as the comfort range of ASHRAE Standard 55 did not specify a
lower limit for the humidity, the range required modification. Because the saturated water
vapor ratio differs according to the relative humidity ratio depending on the temperature,
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the relative humidity increases as the temperature decreases, and vice versa, even for the
same absolute water vapor ratio. Regardless of the temperature, an occupant of a space
with very low relative humidity may experience discomfort due to conditions such as
dry eye and skin psoriasis. Previous studies reported that to prevent discomfort due to
low relative humidity [42], it is desirable to reset the comfort range by setting the relative
humidity below 20% as the range indicating discomfort, as shown in Figure 13 [43].
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(ASHRAE) thermal comfort chart.

Rather than plotting a graph of the operative temperature and relative humidity
collected based on the chart with the ASHRAE comfort zone, the method of converting the
relative humidity ratio into the absolute humidity ratio and graphically representing the
result was selected. As shown in Figure 13, an absolute humidity ratio over 0.012 is outside
the comfort zone. Thus, to accurately utilize the humidity ratio, the relative humidity
should be converted into absolute humidity.

The thermodynamic fundamental equation in Table 5 was used to convert the relative
humidity ratio to the absolute humidity ratio. For temperature and relative humidity,
the data obtained from the IoT devices were used, and the air pressure applied when
converting the absolute humidity ratio was set as the standard atmospheric pressure to
calculate the saturated water vapor pressure.

Table 5. Absolute humidity equation.

Description Equation

Absolute humidity, e
(water vapor in kg/dry air in kg) ω = mυ

ma
= PυV/RυT

PaV/RaT = 0.662Pυ
P−Pυ

Assuming that the air velocity and physical activity level reflected the ASHRAE
Standard 55 criteria, the operative temperature and absolute humidity ratio were reflected
in the graph, as shown in Figure 14; the thermal comfort status can be observed on the
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chart. Blue dots represent the data collected on 24 September, green dots on 25 September,
and yellow dots on 26 September. The comfort range is indicated in red and blue; the red
area corresponds to 1.0 clo, and the blue area on the right corresponds to 0.5 clo in terms
of the clothing quantity. Because the clothing required is less in late spring and summer,
cooling and dehumidification can be performed by checking the thermal comfort status
based on the blue area. In late autumn and winter, when additional clothing is required,
heating and humidification can be performed by checking the thermal comfort status based
on the red area.
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3.2. Use of Occupant Information
3.2.1. Determining CO2 Emission Per Capita

To ensure the reliability of the calculated CO2 concentration data, the CO2 concentra-
tion was measured in the same space as that reflected in the experiment scenario. In the
experiment, a CO2 concentration sensor was installed at the same location as the globe
temperature sensor, as shown in Figure 5. The occupant was asked to sit at the desk and
work, as shown in Figure 7. If the position of the sensor is too close to the occupant,
changes such as an abnormally high CO2 concentration can occur. Therefore, the sensor
was installed at a distance of 1.5 m from the occupant. The experiment began after the first
occupant entered the space and worked alone for 90 min; then, two occupants stayed in the
space from 90 to 206 min. After 206 min from the start of the experiment, the space was
maintained in an unoccupied state for the collection of CO2 concentration data. The air
change rate was calculated using the mass conservation equation to reflect the decrease
in CO2 concentration in the calculated value based on the number of occupants, due to
infiltration occurring during non-occupancy. As a result, the air change rate per hour was
calculated to be 0.198 times.

To assess the CO2 concentration, the CO2 emissions per capita should be known.
Research on CO2 emissions according to the living space, amount of activity, sex, age,
and weight has been actively conducted, and CO2 emissions can be determined according
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to the situation and conditions. Table 6 shows the conditions used to determine the CO2
emissions per capita for this scenario. This study set the CO2 emissions per capita to
0.0057 L/s, the result for the experiment scenario, indicating that 342 ppm of carbon
dioxide was generated per minute considering the size of the space [31].

Table 6. Initial values for ventilation control algorithm.

Experiment Scenario
Parameter Value Notes

Location Office Volume: 78.3 m3

Average of CO2 generation per person: 0.0048 L/s
Sex Male
Age 30–39

MET 1.5 Sitting tasks
Light effort

Occupants 1–4
Result

CO2 generation per person: 0.0057 L/s
MET—metabolic equivalent of task.

3.2.2. Comparison of Measured and Calculated Values of CO2 Concentration Based on the
Number of Occupants

Based on the set amount of carbon dioxide generated per capita, the CO2 concentration
per minute was calculated according to the number of occupants. In Figure 15, the orange
curve represents the actual data measured using the CO2 sensor, and the blue curve
represents the calculated result based on the CO2 emissions per capita. There was one
occupant initially; another person entered the experimental space after Point A, and the
two occupants left at Point B. Both the data and result demonstrated very similar trends,
and the CO2 concentration decreased because of infiltration from the beginning of the
non-occupancy state.
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Figure 16 shows the regression analysis results for the rate of increase in the CO2
concentration measured and the calculated emission results, and Figure 17 presents the
regression analysis results for the rate of decrease in these two quantities. In both cases,
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the R-squared value exceeded 0.99, indicating the high significance of the two datasets.
Nevertheless, the accuracy of the calculated data was degraded, as the air change rate due
to infiltration was unknown. The above method is not suitable for use in cases where the
air change rate is unknown.
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3.2.3. Real-Time Ventilation Control Algorithm

This study intended to suggest a real-time ventilation control algorithm for the living
space by calculating the CO2 concentration based on the number of occupants detected
using an IoT device. Many previous studies have been conducted on the ventilation criteria
considering air quality. ASHRAE 62.1 presents the ventilation set-points according to
indices such as building type, occupant status, and set-point. Domestic buildings must
comply with the maintenance standards according to the type of building and pollutants
in accordance with the Indoor Air Quality Control Act, and the CO2 concentration must
be maintained below 1000 ppm. Proposing a ventilation set-point based on the CO2
concentration might not consider the other environmental factors affecting the human body,
however, because controlling the ventilation based on the CO2 concentration would also
discharge other pollutants and maintain indoor air comfort.

Table 7 shows the initial input data used in the ventilation control algorithm, which
can be largely divided into basic data and data that require actual measurements. The basic
data include the information that can be obtained from drawings, standards, reference
materials, etc., without conducting separate measurements, and the other data can be
obtained only by measuring the CO2 concentration in the non-occupancy state prior to
installing the IoT device. As the algorithm components that required measurement had a
very large effect on the CO2 concentration and were essential elements that enabled the
cumulative management of CO2 concentration data, they had to be measured. In Table 7,
air change rates are set differently depending on the number of people. This is because
the indoor carbon dioxide concentration increases more rapidly as the number of people
increases, and for this purpose, an algorithm was devised to set the amount of ventilation
and operate ventilation facilities.

Table 7. Initial values for the ventilation algorithm.

Category Parameter Initial Value Air Change Rate (ACR)

Base
Values

Outdoor CO2
concentration 450 ppm 1 person: 0.46 times/h

(36 m3)
Volume 78.3 m3

CO2 emission
per person

0.0057 L/s
(342 ppm) 2 persons: 0.92 times/h

(72 m3)CO2 limit standard 1000 ppm
Number of
occupants Real-time result 3 persons: 1.38 times/h

(108 m3)

Measured
Values

Initial CO2
concentration 547 ppm 4 persons: 1.84 times/h

(144 m3)Infiltration rate 0.198 times/h

Figure 18 shows the algorithm flow chart for ventilation control. The CO2 concen-
tration calculation result can be cumulatively updated in minutes, which allows for fast
tracking and management. The initial setting of the algorithm was decided based on the
input values in Table 5. Subsequently, the algorithm was set to determine the occupancy
and operate the ventilation system according to the number of occupants to meet the venti-
lation requirements. The ventilation requirements suitable for the number of occupants
should be calculated based on the carbon dioxide generated per capita. The ventilation re-
quirement was set to supply ventilation at the rate of 0.46 times/h (36 m3) for one occupant
to 1.84 times/h (144 m3) for as many as four occupants.
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An algorithm was set up to operate the ventilation system based on the calculated
CO2 concentration data through the following process. First, the presence or absence of
occupants was determined to maintain the air change rate at 0.198 times/h when there was
no occupant or when the CO2 concentration did not exceed 1000 ppm even in the presence
of occupants. When occupants were present, ventilation was provided from the instant
when the CO2 concentration exceeded 1000 ppm. At this time, the air change rate was
applied by considering the ventilation requirement for the number of occupants. After
the IoT device created for this study was turned on, all calculation results for the CO2
concentration could be accumulated and stored until the device was turned off. Therefore,
the device could function as a carbon dioxide sensor during operation.

The result calculated in the IoT device is converted into an operation signal and sent
to the ventilation device for ventilation suitable for the number of occupants. The amount
of ventilation (ACR) calculated for each number of people can be identified in Table 5 or
the ACR value can be matched for each H value in the algorithm. In addition, a display
function was included to enable continuous monitoring of the situation in minutes.

The most important part of Figure 18 is calculating AT. The first is that the AT value
must be configured to be calculated by reflecting the passage of time and fresh air from
outdoors. The second is that external air flowing into the room also contains carbon dioxide.



Energies 2022, 15, 921 22 of 28

Therefore, the mass balance equation (Table 8) was used to accurately calculate the indoor
carbon dioxide concentration. [44]

Table 8. Mass balance equation.

Description Equation

Mass balance equation dCin(t)
dt = p × α × Cout − α × Cin − λ × Cin

The CO2 emission generated indoors was 17.74 ppm/min based on the maximum
occupancy of four people. The scheme proposed in this study revealed that the amount
of CO2 generated between the time when the CO2 concentration exceeded 1000 ppm and
the time when the air was supplied was very small. As the effect of the CO2 concentration
occurring at this time on the room was insignificant, the proposed scheme was considered
to allow for real-time control.

Figure 19 shows a graph of the change in CO2 concentration and the ventilation system
status for the hypothetical occupant scenario reflected in the algorithm. The number of
occupants was set to a maximum of four, and the situations in which an occupied room
became unoccupied, or the number of occupants increased or decreased, were considered.
The rise in CO2 concentration occurred progressively with the number of occupants. When
the number of occupants decreased to 0, the CO2 concentration was less than 1000 ppm,
and it decreased further owing to air exchange by infiltration. Later, ventilation was
provided as the CO2 concentration increased owing to the presence of two occupants and
exceeded 1000 ppm. At this time, ventilation control suitable for the number of occupants
was performed to maintain the CO2 concentration at 1000 ppm until the space became
unoccupied. After the start of the unoccupied state, the CO2 concentration gradually
decreased because of air exchange by infiltration, converging to 450 ppm, which is the CO2
concentration of outdoor air. These results suggest that the IoT device can replace a carbon
dioxide sensor as long as the number of occupants and the measured initial input data
are accurate.
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3.3. Discussion and Summary

In this study, image data were collected from the Pi camera by connecting image sen-
sors to the IoT device, and surface temperature data were collected using an IR array sensor.
The indoor environment information was obtained with this configuration. In addition,
this study proposed a scheme for real-time ventilation control by considering air quality
based on the occupant data and real-time thermal comfort status monitored using the
surface temperature. A comparison of the operating temperature based on the surface
temperature with the operating temperature based on the global temperature showed that
the coefficient of determination was close to 0.95. The calculated CO2 concentration based
on the number of occupants and the measurement result using a CO2 concentration sensor
showed a coefficient of determination close to 0.99, indicating high significance.

Because the operative temperature is an index for thermal comfort and the CO2
concentration is an index for air quality, the scheme using an IoT device, proposed in this
study, appeared to sufficiently consider occupant comfort. This meant that it was possible
to collect multi-purpose and multidimensional indoor environment information beyond the
limits of single-purpose, one-dimensional control reference detection by actively utilizing
the characteristics of IoT technology instead of using it as a sensor device with a wireless
communication function. In addition, the results of this study suggest that the proposed
scheme can overcome the temporal and spatial lags caused by physical limitations related
to the installation location of the sensor for collecting indoor environment data based on
reasonable building operation standards.

Table 9 summarizes the available methods for the camera and IR array sensors. The data
corresponding to the camera and IR array sensor are depicted separately, and four steps were
developed to process the raw data. The result for each step can be obtained by calculation
or by using the algorithm. More specifically, when the output of Step 1 is obtained as the
result of the calculation or algorithm, it can be used to obtain the output of Step 2. If the
output of Step 4 is obtained by proceeding sequentially, 30 types of outputs can be obtained
in a short time from the IR array sensor, and if a Pi camera is used, 14 types of outputs can
be obtained in a short time. If the performance of the IoT devices is ensured, outputs can be
obtained more quickly from the two types of sensors; however, when actually controlling
the equipment for cooling, heating, and ventilation, there would be time points of use and
time points of non-use depending on the characteristics of the output. This necessitates
classification of the outputs; however, this requires the premise that there is a log function
that does not delete but continuously tracks and manages the data at the time points of
non-use of the equipment.
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Table 9. Variety of purposes using the IoT device with camera and IR array sensor.

IoT device

Sensor
Data Processing

Raw
Data

Step 1
Result

Step 2
Result

Step 3
Result

Step 4
Result

Cal Algo Cal Algo Cal Algo Cal Algo

IR array
sensor

Surface
temperature

• Surface
classification

• Average of surface
temperatures • Operative

temperature
• Thermal comfort

• Heating/Cooling
set-point

Window surface
temperature

Solar radiation
• Cold draft

• Floor surface
temperature • Floor heating

condition

• Heating unit
classification

• Occupant
detection

• Occupant
pattern • • Metabolic rate

• CO2

• Ventilation algorithm

• Air change ratio
(by infiltration)

• Air change
set-point

• Heat loss
(by air change)

• IAQ set-point

• Target surface
temperature

• Fire alarm
• Body temperature • Interior heat gain• Device temperature

• Visualization
• Occupant

detection • Night detection

• Heat bridge • Crack and infiltration

Camera Image

• Movement
detection • Trespass

monitoring

• Occupant
detection

• Number of
occupants • CO2

• Ventilation algorithm

• Air change ratio
(by infiltration)

• Air change
set-point

• Heat loss
(by air change)

• IAQ set-point
• Occupant density
• Metabolic rate • Body heat gain

• Brightness
• Light control
• Blind control
• Fire alarm

Cal, calculated; Algo, algorithm.
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4. Conclusions
4.1. Highlights and Implications

In this study, the number of people in a building space was measured using an
image sensor, and based on this count, the CO2 concentration was tracked and managed.
When these results were compared with those obtained from an actual CO2 measuring
instrument, very meaningful results were obtained. It was concluded that this method is
more applicable and accurate than the method of estimating the number of people based
on the CO2 concentration. Although this study was limited to determining the time to
start the simple operation of ventilation equipment, the method provided the ventilation
starting time with a high accuracy. Furthermore, the results indicate that the method can
measure the operative temperature, indicating the occupants’ comfort status, using the IR
array sensor regardless of the sensor’s location. This is an attractive feature because the
globe temperature sensor is difficult to use as it causes major inconvenience for occupants
owing to the location at which it needs to be installed. Using the method developed in this
study, this challenge can be addressed.

We encourage practitioners to follow the information collection methods presented
in Table 8 and the procedures provided in this paper. Further empirical studies on the
energy savings and comfort improvement effects are required. As the energy saving control
performed by increasing the efficiency of building operation and the operation control
to meet the demands of the occupants for indoor comfort are inversely proportional to
each other, it is very difficult to satisfy both requirements. The proper application of
technological innovation, especially IoT technology, being achieved in the fourth industrial
revolution, rather than simply using the wireless communication function of the IoT
technology, will allow these conflicting requirements to be successfully managed.

4.2. Future Work

The thermal image obtained with a high-performance IR array sensor can represent the
shape of the occupant more accurately, allowing occupant data collection while ensuring
privacy. However, high-performance thermal sensors are very expensive, and they are
difficult to apply in terms of market competitiveness. This is because the IoT device used
in the experiment covers an area of 23 m2 with a length of 3.5 m and a width of 6.5 m,
and for larger spaces, we need to increase the number of installed devices. Therefore, it is
desirable to install a large number of IoT devices to obtain accurate and precise results,
but if expensive thermal cameras are used for this, the total cost of devices will increase
exponentially, which reduces affordability. The thermo-hygrometer was an expensive
device in the early days of its invention, but it has now become inexpensive and has
improved in accuracy. Thus, with further advances in technology over time, it will be
possible to overcome these limitations.

The CNN algorithm was applied to IoT devices by using Python-based open-source
coding information. In this study, only the occupant data were extracted from the images
using the CNN algorithm. Avoiding the imposition of this constraint will allow for the
detection of not only heat sources such as laptops and computers in the image, but also
objects associated with the occupants’ activity. The reason for detecting objects associated
with the occupants’ activity is that the metabolic equivalent of task (MET) value changes
depending on the activity, and the value of the internal heat gain generated from the
occupant changes according to the MET value, resulting in different cooling, heating,
and ventilation requirements. Additional comfort-related indices such as activity (MET)
and amount of clothing (clo) can be collected based on this function, and the characteristics
of the open-source CNN algorithm will allow for universal utilization with no additional
adjustment required for installing IoT devices.

Regarding the extensibility of the Pi camera, it will be possible to detect all objects
such as PCs and laptops by lifting the limit set for the object detection function of CNN to
detect only humans. It will be possible to let the Pi camera play the role of an illuminance
sensor for indoor lighting control by classifying the level of brightness with respect to the
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light entering the space from outside. It can also be used simultaneously for other purposes
such as safety and crime prevention. However, it can be useless without light (visible light)
owing to the limitations of the general camera functions. Because the IR sensor operates on
IR rather than visible light, it can be used even in a dark space without light. In terms of
operation, it will be possible to classify an occupant’s activity by observing the heat status
of the occupant, and it will be possible to calculate the amount of heat generated more
accurately by measuring the temperature of the devices.
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