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Abstract: The state of charge (SOC) of a lithium battery system is critical since it indicates the
remaining operating hours, full charge time, and peak power of the battery. This paper recommends
an extended Rauch–Tung–Striebel smoother (ERTSS) for estimating SOC. It is implemented based
on an improved equivalent circuit model with hysteresis voltage. The smoothing step of ERTSS
will reduce the estimation error further. Additionally, the genetic algorithm (GA) is employed for
searching the optimal ERTSS’s smoothing time interval. Various dynamic cell tests are conducted to
verify the model’s accuracy and error estimation deviation. The test results demonstrate that ERTSS’s
SOC estimation error is limited to 4% with an initial error between −25 ◦C and 45 ◦C and that the
root mean square error (RMSE) of ERTSS’s SOC estimation is approximately 5% lower than that of
extended Kalman filter (EKF). The ERTSS improves the SOC estimation accuracy at all operating
temperatures of batteries.

Keywords: state of charge; lithium-ion battery; extended Kalman filter; extended Rauch–Tung–
Striebel smoother; equivalent circuit model; parameter identification

1. Introduction

Lithium batteries have become the primary choice for battery electric cars due to
their energy density, power density, and long cycle life. The energy density of commercial
lithium-ion batteries with graphite anodes has exceeded 300 Wh/kg [1,2], and high-capacity
anode materials have been proposed to replace graphite to obtain a higher energy density
than graphite can provide. Nonetheless, high energy density poses significant hurdles
to the safety of lithium battery systems [3]. Therefore, it is critical to construct a highly
accurate and stable SOC estimator.

Various commercial SOC estimators exist. The most common is coulomb counting,
which integrates current and time. As it accumulates current inaccuracy, it must be cal-
ibrated routinely. Then there is the open circuit voltage (OCV) method [4]. The battery
needs to rest for at least seven hours before calibrating the SOC using OCV [5]. In addition,
the OCV-SOC relationship of the lithium iron phosphate (LFP) battery is flat [6]; hence the
fundamental OCV method cannot be used [7].

To acquire accurate SOC, the researchers propose methods based on cell models [8,9].
Typical battery models are the electrochemical model and the equivalent circuit model [10,11].

The electrochemical model represents the electrochemical response of the parti-
cles [1,11]. To grasp the electrochemical model’s parameters requires a half-cell and
numerous tests [12,13]. While it precisely depicts the battery’s internal working process,
it is hardly compatible with the existing battery management system (BMS) because it
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requires online parameter updates and numerous computing, which is not feasible with
the BMS.

The equivalent circuit model comprises multiple resistance–capacitance (RC) pairs,
one or two independent resistances, and a single voltage source [14]. It cannot describe
the micro reactions of the battery, but it is trivial to implement on the BMS. There are
many kinds of research about online parameters identification for the cell equivalent
circuit model. The recursive total least squares approach is one of the most promising
methods for cell model parameters identification online [15,16]. However, the equivalent
circuit model typically ignores the coulomb efficiency, hysteresis process, and battery
health condition [17,18]. Furthermore, the cell capacity will reduce as the discharge cycle
increases [16,19]. The cell capacity’s degradation should be considered for the robustness
of the cell model.

The non-linear Kalman filter is one of the most promising methods based on the
equivalent circuit model for estimating SOC [20–22]. It recursively predicts and updates
the possible value of SOC using Bayesian filter theory while also incorporating feedback
correction to improve estimate accuracy.

Many studies have attempted to estimate the SOC using various non-linear Kalman
filters accurately. Knap V. and Stroe D. et al. [4] estimated the SOC of energy storage
systems based on an EKF and an unscented Kalman filter (UKF). Li L. et al. [23] proposed
a method for updating temperature-related variables and estimating the system state
that combined temperature-based coulomb counting and adaptive particle filtering (APF).
Wei Z. et al. [24] identified the battery system’s parameters using a two-stage recursive
least squares algorithm and estimated the state of charge using a Luenberger observer.
Shu X. et al. [25] used an adaptive fusion algorithm with a recursive least squares algorithm
and an adaptive H-infinity filter to estimate the SOC. Li W. et al. [11] estimated the state
of charge, lithium-ion concentrations, and potentials of lithium-ion batteries using an
extended single-particle model. Qiu X. et al. [26] suggested three algorithms to solve the
state estimation problems associated with lithium-ion batteries. They estimated the SOC
using a Kalman filter with backward smoothing square root cubature (BS-SRCKF). Then,
a multiscale hybrid Kalman filter was adapted to estimate the SOH. Finally, an improved
cuckoo search algorithm was employed to improve the estimator’s performance using a
particle filter. Mawonou K. et al. [27] described a method for identifying fractional-order
models using impedance spectroscopy (EIS) data. Then, they implemented an extended
Kalman filter to estimate the lithium-ion battery system’s state of charge. Zhou Z. et al. [28]
proposed a method for estimating the state of charge (SOC) of a series-connected battery
pack using a recursive least squares-adaptive extended Kalman filter. Zhang W. et al. [29]
offered an improved adaptive battery state estimator for estimating the state of charge.
Table 1 compares the studies’ methods, cell models, and estimation errors. Since the
validation conditions and error definitions are different, the value of errors does mean
estimation accuracy. Despite the proposed methods yielding precise SOC, many researchers
only test the method under an average operating temperature of batteries. As the authors
of [4,24] pointed out, the parameters of the cell model have a temperature dependence,
and there is a need for estimating SOC under all operational temperatures, such are driving
BEVs in winter and summer.

We propose an extended Rauch–Tung–Striebel smoother (ERTSS) to estimate the
SOC of the lithium-ion battery systems. The Rauch–Tung–Striebel smoother (RTSS) is
the corresponding closed-form smoother for linear Gaussian state-space models, and the
ERTSS is the approximate non-linear smoothing algorithm corresponding to EKF [30,31].
The ERTSS estimates state that each step is conditional on all measurements, while the EKF
only uses the measurements obtained before. As the ERTSS uses all the measurements
for one time interval, it can be used to reconstruct states that happened before the current
time. The algorithm’s performance was then evaluated using actual battery test data. The
validation results demonstrated that the method acquired a precise estimation of SOC at all
operational temperatures of batteries.
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The rest of this article is structured as follows. Section 2 describes the battery model,
1/30C low current charge and discharge test, and the identification of model parameters.
Section 3 introduces the ERTSS algorithm, dynamic working condition testing, and dynamic
battery model parameter identification. Section 4 uses the dynamic working condition test
to verify and analyze the accuracy and smoothing effect of the ERTSS algorithm. Finally,
Section 5 concludes.

Table 1. Typical Kalman-based methods for SOC estimation.

Authors Methods Model Error

Knap V. et al. [4] unscented Kalman filter (UKF) an open circuit voltage (OCV)
model Mean RMSE: <=4.2% (@5 ◦C–45 ◦C)

Li L. et al. [23] Adaptive particle filter and
coulomb counting

a temperature correction
equivalent circuit model

Maximum absolute error
<=3.64% (@−5 ◦C–15 ◦C)

Wei Z. et al. [24] a Luenberger observer first-order RC model RMSE: <=0.89% (@22 ◦C)
Xing Shu [25] adaptive H-infinity filter first-order RC model Maximum absolute error <=0.7% (@25 ◦C)

Li W. et al. [11] adaptive unscented Kalman filter
(UKF)

reduced-order electrochemical
models Mean absolute error: <=2.81% (@25 ◦C)

Qiu X. et al. [26] multiscale hybrid Kalman filter
(MHKF) second-order RC model Maximum absolute error: <=1.41% (@25 ◦C)

Mawonou K. et al. [27] extended Kalman filter (EKF) a fractional order model (FOM) Maximum absolute error: <=6.58% (@0 ◦C)

Zhou Z. et al. [28] recursive least squares-adaptive
EKF first-order RC model Maximum absolute error: <=1.6% (@25 ◦C)

Zhang W. et al. [29] adaptive UKF first-order RC model Root mean square error: <=1.56% (@25 ◦C)

2. Enhanced Equivalent Circuit Model of Lithium-Ion Battery
2.1. Fundamental Equivalent Circuit Model

Figure 1 illustrates a typical lithium-ion battery’s equivalent circuit model. VOCV is the
OCV of a battery [32]. R0 denotes the series resistance of a battery, while Rhyst represents
the hysteresis voltage of a battery. The two parallel resistance and capacitance subcircuits
(R1, C1), (R2, C2) refer to diffusion effects.

Figure 1. Equivalent circuit cell model.

The continuous-time equations according to the equivalent circuit model are:

z(t) = z(t0)−
1
Q

∫ t

t0

i(τ)η(τ)dτ (1)

v(t) = OCV(z(t))− R1iR1(t)− R2iR2(t)− R0i(t) (2)
diR1(t)

dt
= − 1

R1C1
iR1(t) +

1
R1C1

i(t) (3)

diR2(t)

dt
= − 1

R2C2
iR2(t) +

1
R2C2

i(t) (4)

Equations (1)–(4) can be written as a discrete-time model:
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z[k + 1] = z[k]− ∆t

Q
η[k]i[k] (5)

v[k] = OCV(z[k])− R1iR1 [k]− R2iR2 [k]− R0i[k] (6)

iR1 [k + 1] = exp
(
− 1

R1C1

)
iR1 [k] +

(
1− exp

(
− 1

R1C1

))
i[k] (7)

iR2 [k + 1] = exp
(
− 1

R2C2

)
iR2 [k] +

(
1− exp

(
− 1

R2C2

))
i[k] (8)

The terms z(t) and z[k + 1] represent the SOC, whereas z(t0) signifies the initial SOC.
Q represents the cell’s capacity, and τ is a placeholder for the time variable inside the
integral. η(τ) and η[k] represent the coulomb efficiency. v(t) and v[k] denote the cell
terminal voltage, whereas OCV(z(t)) and OCV(z[k]) indicate the open-circuit voltage
(OCV), which is a function of SOC and temperature. i(t) and i[k] stand for the charge or
discharge current, respectively. iR1(t) and iR1 [k] represent the current through R1, while
iR2(t) and iR2 [k] denote the current through R2.

2.2. Hysteresis Voltage

The fundamental equivalent circuit model omits the hysteresis in the terminal voltage,
which may lead to significant SOC estimation errors, especially for the cell with an iron-
phosphate positive electrode. There are two kinds of hysteresis voltage during charging and
discharging, and one is SOC-varying hysteresis, the other is instantaneous hysteresis [32].

A SOC-varying hysteresis equation is:

dh(z, t)
dz

= γsgn(ż)(M(z, ż)− h(z, t)) (9)

where M(z, ż) is a function of SOC and the change rate of SOC, which signifies the polariza-
tion due to hysteresis. M(z, ż) is positive for charge procedure and negative for discharge
procedure. h(z, t) denotes the dynamic hysteresis voltage as a function of SOC and time. γ
is a positive constant, which scales the rate of decay. sgn(ż) is a sign function.

Multiply both sides of Equation (9) by dz/dt, then substitute dz/dt = −η(t)i(t)/Q
into the right side of the equation. Thus,

ḣ(t) = −
∣∣∣∣η(t)i(t)γQ

∣∣∣∣h(t) + ∣∣∣∣η(t)i(t)γQ

∣∣∣∣M(z, ż) (10)

To fit the differential equation of the fundamental model, (10) is transformed into a
difference equation:

h[k + 1] = exp(−|η[k]i[k]γ∆t
Q

|)h[k]− (1− exp(|η[k]i[k]γ∆t
Q

|))sgn(i[k]) (11)

where, −M ≤ h[k] ≤ M, −1 ≤ h[k] ≤ 1.
Then the SOC-varying hysteresis voltage is:

vSOChyst = Mh[k] (12)

When the sign of the current changes, we should consider the instantaneous hysteresis.
Define s[k] as:

s[k] =

{
sgn(i[k]), ik > 0
s[k− 1], otherwise.

(13)

Then the instantaneous hysteresis model is modeled as:

vinsthyst = M0s[k] (14)
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According to Equations (12)–(14), the hysteresis voltage is:

vhyst = Mh[k] + M0s[k] (15)

2.3. Enhanced Circuit Model

With these hysteresis voltage equations, the enhanced equivalent circuit model are: z[k + 1]
iR[k + 1]
h[k + 1]

 =

1 0 0
0 ARC 0
0 0 AH [k]

 z[k]
iR[k]
h[k]

+

 η[k]∆t
Q 0

BRC 0
0 (AH [k]− 1)

[ i[k]
sgn(i[k])

]
(16)

ARC =

[
exp(− ∆t

R1C1
) 0

0 exp(− ∆t
R2C2

)

]
(17)

BRC =

[
(1− exp(− ∆t

R1C1
)) 0

0 (1− exp(− ∆t
R2C2

))

]
(18)

Thus, the cell model’s output equation is:

v[k] = OCV(z[k], T[k]) + Mh[k] + M0s[k]− R1iR1 [k]− R2iR2 [k]− R0i[k] (19)

Equations (16)–(19) formulate the space state model of the cell. Figure 2 shows the
enhanced circuit cell model.

Figure 2. Enhanced circuit cell model.

3. SOC Estimation

The structure of the estimation method is depicted in Figure 3. The battery manage-
ment system continuously monitors the cell’s voltage, temperature, and current. We then
employ the parameter identification approach to determine the parameters of the battery
model. Finally, the ERTSS estimates the SOC using the cell model.

3.1. ERTSS

The ERTSS algorithm comprises two major parts. One is the standard EKF, and the
other is the ERTS smoother [30]. We implement the EKF to obtain the fundamental SOC pre-
diction, then the estimation results and the covariance are provided to the ERTS smoother,
producing smooth results.

If the process and measurement noises can be assumed to be additive, the generic
non-linear state space model is as follows:

xk = f (xk−1) + qk−1,

yk = h(xk) + rk
(20)

where xk ∈ Rn is the vector of state, yk is the vector of measurements, qk−1 ∼ N(0, Qk−1)
is the Gaussian process noise, rk ∼ N(0, R) is the Gaussian measurement noise, f (·) is the
dynamic model function, and h(·) is the measurement model function.
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Dynamic Test

Voltages, 
Currents

Temperatures

SOC, V
Prior Prediction Observation Smoothing

……

Genetic 
Algorithm

Optimal 

ERTSS algorithm

Figure 3. System structure.

Specifically, the Bayesian smoothing method requires that the state space model (20)
be written as follows:

x0 ∼ p(x0)

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk)

(21)

where x0 denotes the initial state at time step k = 0, p(xk | xk−1) specifies the transition
probability distribution of the dynamic model. p(yk | xk) represents the conditional
probability distribution of the measurement given the state xk, and yk is the model’s output
at time step k.

The ERTSS forms a Gaussian approximation to the smoothing distribution as follows:

p(xk | y1:T) ' N(xk | ms
k, Ps

k) (22)

where y1:T is a set containing the measurement vectors {y1, . . . , yk}, ms
k is the mean com-

puted by the ERTS smoother for the time step k, and Ps
k is the covariance computed by the

ERTS smoother for the time step k. N(·) represents a Gaussian distribution.
Smoothing distributions are the marginal distributions of the state xk given a certain

interval {y1, . . . , yk} of the measurement with T > k:

p(xk | y1:T) (23)

For the ERTSS, the smoothing distribution and filtering distribution of the last time
step T are the same, ms

T = mT , Ps
T = PT . To apply the ERTSS, we need to use the EKF to

predict the last time step T, then compute the smoothing distribution of time step T − 1
from the smoothing distribution of time step T, recursively, we reconstruct the state.

The prediction and update equations of the first order extended Kalman filter
(EKF) [30,31] in the non-additive noise case are:
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Prediction:

m−k = f (mk−1, 0) (24)

P−k = Fx(mk−1)Pk−1FT
x (mk−1) + Fq(mk−1)Qk−1FT

q (mk−1) (25)

Update:

vk = yk − h(m−k , 0) (26)

Sk = Hx(m−k )P
−
k HT

x (m
−
k ) + Hr(m−k )Rk HT

r (m
−
k )] (27)

Kk = P−k Hx
T(m−k )S

−1
k (28)

mk = m−k + Kkvk (29)

Pk = P−k − KkSkKT
k (30)

where m−k is the predicted mean of the EKF at time step k before the measurement yk, f (·)
is the dynamic transition function of the space model. The matrix P−k is the predicted
covariance of the EKF at the time step k before the measurement yk. vk is a innovation
vector of the EKF at step k, and h(·) is the measurement model function in the state space
model. Fx(·), Fq(·), Hx(·), Hr(·) is the Jacobian matrix of f (x), h(x) with respect to state
and noise. Kk is the gain matrix of the extended Kalman filter, mk is the of the extended
Kalman filter at time step k, and Pk is the covariance of the EKF at the time step k.

The equations for the ERTSS are:

m−k+1 = f (mk) (31)

P−k+1 = Fx(mk)PkFT
x (mk) + Fq(mk)QkFT

q (mk) (32)

Gk = PkFT
x (mk)[Pk+1]

−1 (33)

ms
k = mk + Gk[m

s
k+1 −m−k+1] (34)

Ps
k = Pk + Gk[P

s
k+1 − P−k+1]G

T
k (35)

where m−k+1 and P−k+1 mean and covariance by the extended Kalman filter. The matrix P−k+1
represents the covariance of the EKF at time step k + 1, and Qk is the covariance of process
noise at the jump from step k to k + 1. Gk is the gain matrix, and Pk is the covariance of the
EKF at the time step k. ms

k is the mean computed by the RTS smoother for the time step k,
and ms

k+1 is the mean computed by the RTS smoother for time step k + 1. Ps
k represents the

covariance computed by the RTS smoother for the time step k.
The first two Equations (31) and (32) of the ERTSS procedure are simply prediction

equations of the extended Kalman filter. Equations (31)–(35) gives a recursive procedure
which can be used for obtaining the smoothing distribution of time step k from the smooth-
ing distribution of time step k + 1.

The matrix Fx(mk),Fq(mk), Hx(mk), Hr(mk) are the Jacobian matrices of f (x), h(x)
evaluated at mk with respect to state and noise. We employ the ERTSS procedure with the
cell model (16)–(19). The Jacobian matrices are:

Fx(mk) =
∂ f (xk, uk, qk)

∂xk

∣∣∣∣
xk=mk ,qk=q̄

=

1 0 0
0 ARC 0
0 0 ĀH,k

 (36)

Fq(mk) =
∂ f (xk, uk, qk)

∂qk

∣∣∣∣
xk=mk ,qk=q̄

=

−∆t
Q 0

BRC 0
B̄H,k AH,k

 (37)
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Hx(mk) =
∂h(xk, uk, rk)

∂xk

∣∣∣∣
xk=mk ,qk=r̄

=


∂OCV(zk)

∂zk

∣∣∣
zk=ẑ−k

−(R1 + R2)
M


T

(38)

Hr(mk) =
∂h(xk, uk, rk)

∂rk

∣∣∣∣
xk=mk ,rk=r̄

=
[
1 M0

]
(39)

As BRC is given in Equation (18), AH,k is defined as follows:

AH,k = exp(−
∣∣∣∣ (ik + qk)γ∆t

Q

∣∣∣∣) (40)

ĀH,k and B̄H,k are the partial derivatives concerning the state and evaluating it at the
setpoint, respectively.

ĀH,k =
∂hk+1

∂hk

∣∣∣∣hk = ĥ+k
qk = q̄

= exp(−
∣∣∣∣ (ik + q̄)γ∆t

Q

∣∣∣∣) (41)

B̄H,k =
∂hk+1
∂qk

∣∣∣∣hk = ĥ+k
qk = q̄

= −
∣∣∣∣γ∆t

Q

∣∣∣∣ĀH,k

(
1 + sgn(ik + q̄)ĥ+k

)
(42)

We can approximate the OCV partial derivative in (38) using the battery test data [33].
According to Equations (36)–(42), the linearization cell model is:

xk =
[
zk iR,k hk

]T (43)

uk =
[
ik sgn(ik)

]T (44)

xk+1 = Fx(mk)kxk + Fq(mk)kuk + qk (45)

yk = Fq(mk)kxk + Hr(mk)kuk + rk (46)

Thus, we will substitute these equations into the ERTSS flow for the SOC estimation.

3.2. Genetic Algorithm

An ERTS smoother usually computes the smooth distribution of the time step T − 1
from the last time step T [31]. The last time step of SOC estimation typically means power
off, but there is no need for SOC reconstruction if the battery is off. Choosing an optimal
start time step and a suitable time step interval is necessary to make the ERTSS work online
for SOC estimation. At the beginning of the ERTSS, the EKF predicts the SOC from step 0
to the start step θ0, and the ERTS smoother computes the smooth distribution backward
to step 0, and the ERTSS output the smooth SOC. Then the EKF predicts the SOC from
step θ0 to θ0 + θ∆, and the ERTS smoother computes the smooth distribution backward
again.Figure 4 shows the procedure of the ERTSS.

To obtain an optimal θ0, θ∆, we formalize the problem as a non-linear mixed-integer
programming problem as follows:

min︸︷︷︸
θ

f (θ) (47)

Subject to:

θ =
[
θ0 θ∆

]T (48)

f (θ) =
θ0

∑
i=1

(ẑi − zi)
2 +

N

∑
k=1

θ0+kθ∆

∑
j=θ0+(k−1)θ∆

(ẑj − zj)
2 +

n

∑
m=M

(ẑm − zm)
2 (49)
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N =

⌊
n− θ0

θ∆

⌋
(50)

M = n−mod
(

n− θ0

θ∆

)
(51)

θ ∈ {θ0, θ1 ∈ (0, 360], θ ∈ N∗} (52)

where θ designates the step parameters of the ERTSS, θ0 signifies the start time step,
and θ∆ indicates the regression interval steps. ẑi, ẑj, ẑm represent the ith, jth, and mth SOC
estimation by ERTSS, while zi, zj, zm represent the ith, jth, and mth SOC actual value. N
is the loop cycle of the ERTSS, and n denotes the incremental steps of ERTSS, while M
represents the last step which is less than θ∆.

The function f (θ) calculates the square errors of the SOC estimation by ERTSS. We
use the genetic algorithm to search for optimal θ for minimum square errors of the
SOC estimation.

As an essential indicator of the battery system, the SOC should at least update every
10 min (360 s). Based on this assumption, we give the upper limit value of θ as in (52).

0Time step:

M

Predict

Smooth

Predict Predict Predict

Smooth Smooth Smooth

Figure 4. ERTSS work flow.

4. Experiment and Validation
4.1. Battery Test

To verify the ERTSS method, we implement experimental battery datasets performed
under varying temperatures and dynamic current profiles [33]. Figure 5 shows the OCV
test procedure. It comprises three main phases.

Fully charge the cell with the standard 
charge procedure (e.g., C/3, CCCV, @25℃). 

Soak the cell at the test temperature for at 
least 2h.

Discharge the cell until cell voltage equals 
(C/30, CC).

Soak the cell at 25℃ for at least 2h.

Discharge or charge the cell until the cell 
voltage equals (C/30, CC).

Soak the cell at the test temperature for at 
least 2h.

Charge the cell until cell voltage equals 
(C/30, CC).

Soak the cell at 25℃ for at least 2h.

Discharge or charge the cell until the cell 
voltage equals (C/30, CC).

Discharge Charge

Figure 5. OCV test procedure. CCCV refers to constant current and constant voltage charge strategy.
CC stands for constant current charge strategy.

Firstly, the cell needs to be fully charged with the standard charge procedure, typically
constant current and constant voltage (CCCV). Then, the cell is discharged with a C/30
charge rate and varying temperatures. Finally, the cell is charged with a C/30 charge
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rate and varying temperatures. Table 2 lists the main specifications of the under-test cell.
The test data was sampled and saved at 1 Hz by the battery test equipment. The cell was
soaked in the environment chamber to maintain the ambient temperature during the test
procedure. The temperature of the chamber was set from −25 ◦C to 45 ◦C.

The dynamic test procedure also contains three main phases as the OCV test procedure.
The difference between the OCV and dynamic tests is that the charge rate has been changed
from a constant C/30 rate to a dynamic current profile (federal urban drive schedule—
FUDS [34]) during the discharge phase. Figure 6 depicts the dynamic current profiles.

Table 2. Main specifications of the under-test cell.

Parameters Value

Nominal capacity 6 Ah at 25 ◦C
Discharge cutoff voltage 2.0 V

Charge cutoff voltage 4.2 V
Nominal open circuit voltage 3.6 V

0 200 400 600 800 1000 1200
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)
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Figure 6. Dynamic current profile at 5 ◦C.

4.2. Cell Model Parameters Identification

Prior to implementing the ERTSS method, we formulate the parameters using an
optimization algorithm. The procedure for identifying the parameters is as follows:

1. Extract the OCV and Q parameters from the OCV test data.
2. Apply the dynamic tests’ current data to calculate the h[k] and s[k] parameters with a

given γ initial.
3. Use a subspace identification method to obtain R1, C1, R2, C2 parameters.
4. Transform Equation (19) into a vectorize equation:

ṽ[k]︸︷︷︸
Y

=
[
h[k] s[k] −i[k] −iR1 [k] −iR2 [k]

]︸ ︷︷ ︸
C


M
M0
R0
R1
R2


︸ ︷︷ ︸

X

(53)

Then obtain X parameters through the least-squares equation X = C−1Y.
5. Apply optimization algorithm to obtain γ with a cost function:

J(γ) =
1
m

√
(v(γ)− v)2 (54)
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where m denotes the size of the test data, v(γ) is the estimation cell voltage with a
given γ, and v is the measured cell voltage during the test.

We employ the cell model with a single RC subcircuit to reduce computational costs.
Table 3 gives the parameters identification result of the test cell. M0 at 5 ◦C is 0 because we
rounded the data, the actual value is less than 0.0001. Other than η, Q, and R0, the other
parameters only have numerical meanings. Figure 7 exhibits the OCV and SOC relationship.
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Figure 7. OCV versus SOC at various temperatures.

Table 3. Results of identifying the cell model parameters.

Parameters −25 ◦C −15 ◦C −5 ◦C 5 ◦C 15 ◦C 25 ◦C 35 ◦C 45 ◦C

η 0.9830 0.9844 0.9833 0.9883 0.9894 0.9929 0.9942 0.9953
Q 5.0755 5.0791 5.0656 5.1331 5.1044 5.1344 5.1629 5.1432
γ 65.7728 5.4554 250.00 103.048 58.1570 61.7498 59.0179 1.0000

M0 0.0167 0.0199 0.0091 0 0.0003 0.0025 0.0035 0.0026
M 0.2362 0.1558 0.0852 0.0809 0.0614 0.0443 0.0336 0.0971
R0 0.2151 0.1280 0.0661 0.0312 0.0179 0.0112 0.0081 0.0058

R1C1 0.8887 0.9571 1.2866 1.8302 2.4261 2.4107 2.5699 2.7953
R1 0.0984 0.0484 0.0202 0.0072 0.0052 0.0025 0.0020 0.0022

4.3. ERTSS Estimation

Having obtained the model parameters, we apply the model to the ERTSS method
for estimating SOC. Coulomb counting (CC) is a low-cost and straightforward method for
estimating SOC. We also implement it for SOC estimation. To demonstrate the improve-
ment, we set an initial error rate of approximately 10% for both CC and ERTSS. In this
case, the battery test equipment provides the reference SOC with highly precise current
and voltage sensors. Figure 8 illustrates the results of SOC estimation by the ERTSS and
CC at various temperatures. After less than 100 min of testing, the ERTSS reduces the
SOC estimation error by approximately 5%, whereas the CC cannot deflate the original
SOC error.

Figure 9 plots the histogram of SOC estimation error by ERTSS at various temperatures.
According to the SOC error distribution, the probability of SOC estimation error less than
4% is bigger than 95%. The estimation errors at the beginning are larger than 4% since the
estimator has an initial error of 10%. Figure 10 illustrates the SOC estimation errors using
ERTSS at various temperatures. In the range of −25 ◦C to 45 ◦C, the maximum absolute
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estimation error is less than 4% neglecting the outliers. ERTSS acquires its minimum
median value at −5 ◦C. The estimation error increases as the temperature drops or rises.
The upper quartile of estimation error reaches a maximum at −25 ◦C and 45 ◦C. Essentially,
the cell model increases nonlinearity as the temperature deviates from 15 ◦C.

Figure 8. SOC estimation by ERTSS and coulomb counting. SOCreal represents the reference SOC,
SOCertss represents ERTSS SOC estimation, and SOCcc represents coulomb counting (CC) SOC esti-
mation.
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Figure 9. Histogram of SOC estimation error by ERTSS at various temperatures.
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Figure 10. SOC estimation error of ERTSS at various temperatures.

Figure 11 depicts the SOC estimation error by CC. The highest upper quartile of the
SOC estimation error by CC is about 9.75% from −25 ◦C to 45 ◦C, while ERTSS is about 4%.
In addition, the CC estimator cannot retune the initial SOC error, and it accumulates the
error until the next SOC calibration.

Root square error (RSE) and root mean square error (RMSE) are introduced to reflect
the estimation error further.

RSE[k] =
√

100× (z̃[k]− z[k])2 (55)

RMSE =

√
1
m

m

∑
k=1

(z̃[k]− z[k])2 =

√
1

100×m

m

∑
k=1

RSE[k]2 (56)

where RSE[k] denotes the error at time step k, as (z̃[k]− z[k])2 is very small, it is multiplied
by 100 and thus represents them in a figure clearly. RMSE is the statistical indicator for
the error from time step 1 to m. z̃[k] represents the SOC estimation at time step k, and z[k]
means the SOC reference at time step k. m is the total time steps number.
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Figure 11. SOC estimation error by CC at various temperatures.

The EKF is also implemented for SOC estimation compared with ERTSS. Figure 12
plots the RSE result of EKF and ERTSS at 25 ◦C. The results at other temperatures are
similar to the one at 25 ◦C. From the zoom part of Figure 12, the RSE of ERTSS is less
than the RSE of EKF at the smooth steps. For the estimation at time step k, the ERTSS
used the measurements and estimations across the time interval, while the EKF only used
the measurement and estimation at time step k− 1. We can improve the RSE results of
the ERTSS by increasing the smoothing interval time. However, we should choose the
smoothing interval carefully, the minimum SOC refresh rate must be considered according
to the applications.
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Figure 12. RSE of ERTSS and EKF at 25 ◦C.

Figure 13 depicts the SOC estimation RMSE of EKF at various temperatures. As dis-
cussed in (56), RMSE is a statistical result of the RSE, so RMSE reflects the error fluctuation
somehow. ERTSS’s RMSE is lower than EKF at all temperatures, so the estimation of SOC
by ERTSS is more precise than EKF. Specifically, ERTSS can reduce the RMSE of SOC
estimation by about 5% based on EKF.
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Both the EKF and ERTSS provide accurate SOC estimation across the entire SOC
range of batteries. Furthermore, the ERTSS acquires a smaller RMSE than EKF, suitable
for estimating residual miles in battery electric vehicles. The SOC estimation of the ERTSS
should have less uncertainty than the EKF.

0

1

2

3

-25 -15 -5 5 15 25 35 45
Temperature( C)

R
M
SE

Method

EKF

ERTSS

Figure 13. RMSE of the SOC estimation for both ERTSS and EKF.

The ERTSS offers several advantages for online SOC estimation:

• As it uses all measurements over a time interval, the smoothing step can be used as an
interpolation when some measurements are missing or abnormal, such as the safety
mode of some battery systems when the current sensor has an open-wire fault.

• For the energy networks with battery storage systems, which may not require strict
real-time estimation, the ERTSS could optimize the SOC estimations before the current
time step. These will help the further power supply.

• Since the smoothing step decreases the estimation error, it will help to improve the
optimization of power flow in hybrid electric vehicles.

Since the ERTSS has one more smoothing step than the EKF, some concerns should be
considered when it is applied to some real-time applications:

• The state transformation matrix can be computed offline and saved as a lookup table,
whereas the cell capacity Q and ohmic resistance R0 should be updated by the state of
health estimations.

• The smoothing step of ERTSS needs more storage space than the EKF for saving the
measurements and estimations at every time interval. If there are serious storage
limitations, a small time interval should be chosen.

• The SOC changes quickly for some applications, such as an A0 class electric vehicle
with a small battery. ERTSS requires more computation than EKF, the smoothing step
time must be evaluated if it sacrifices the SOC refresh rate.

5. Conclusions

SOC is an essential indicator of the lithium-ion battery system, particularly for applica-
tions in long-range battery electric vehicles. As the ambient temperature of batteries varies
greatly, and since the cell model exhibits an unreliable nonlinearity at low temperatures,
the SOC estimation methods must be validated with all battery operational temperatures.
The proposed ERTSS based on an enhanced equivalent circuit cell model acquires a low
estimation error and a low RMSE under the whole operational temperatures. It exhibits the
following characteristics:

• The ERTSS method can estimate SOC with an accuracy of approximately 4% as the
ambient temperature changes from−25 ◦C to 45 ◦C with an initial error of 10%. In low-
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temperature and high-temperature applications, the ERTSS accuracy decreases, but it
is still better than the CC and the EKF.

• The ERTSS method is a bit more complicated than the EKF method. There is only one
more prediction step than for the EKF, so it is acceptable to consider improvements in
estimation accuracy and more minor deviations for many safety-critical applications.

Overall, we can conclude that the ERTSS method is suitable for long-range battery
vehicles applications. However, the model does not consider changes in model parameters
due to the degradation of the cell’s health state, and the linearization error of the model
will increase at low temperatures and high temperatures. It is imperative to draw attention
to the cell model’s nonlinearity and contain its degradation for further study.
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GA Genetic Algorithm
LFP Lithium Iron Phosphate
OCV Open Circuit Voltage
RC Resistance-Capacitance
RTS Rauch–Tung–Striebel
RTSS Rauch–Tung–Striebel Smoother
SOC State of Charge
SOH State of Health
UKF Unscented Particle Filter

References
1. Park, S.; Jeong, S.Y.; Lee, T.K.; Park, M.W.; Lim, H.Y.; Sung, J.; Cho, J.; Kwak, S.K.; Hong, S.Y.; Choi, N.S. Replacing conventional

battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat. Commun. 2021,
12, 1–12. [CrossRef] [PubMed]

2. Armand, M.; Axmann, P.; Bresser, D.; Copley, M.; Edström, K.; Ekberg, C.; Guyomard, D.; Lestriez, B.; Novák, P.; Petranikova, M.;
et al. Lithium-ion batteries–Current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708. [CrossRef]

3. Yu, Q.; Wan, C.; Li, J.; Zhang, X.; Huang, Y.; Liu, T. An Open Circuit Voltage Model Fusion Method for State of Charge Estimation
of Lithium-Ion Batteries. Energies 2021, 14, 1797. [CrossRef]

4. Knap, V.; Stroe, D.I. Effects of open-circuit voltage tests and models on state-of-charge estimation for batteries in highly variable
temperature environments: Study case nano-satellites. J. Power Sources 2021, 498, 229913. [CrossRef]

5. Meng, J.; Ricco, M.; Acharya, A.B.; Luo, G.; Swierczynski, M.; Stroe, D.I.; Teodorescu, R. Low-complexity online estimation for
LiFePO4 battery state of charge in electric vehicles. J. Power Sources 2018, 395, 280–288. [CrossRef]

6. Ren, Z.; Du, C.; Wu, Z.; Shao, J.; Deng, W. A comparative study of the influence of different open circuit voltage tests on
model-based state of charge estimation for lithium-ion batteries. Int. J. Energy Res. 2021, 45, 13692–13711. [CrossRef]

http://doi.org/10.1038/s41467-021-21106-6
http://www.ncbi.nlm.nih.gov/pubmed/33547320
http://dx.doi.org/10.1016/j.jpowsour.2020.228708
http://dx.doi.org/10.3390/en14071797
http://dx.doi.org/10.1016/j.jpowsour.2021.229913
http://dx.doi.org/10.1016/j.jpowsour.2018.05.082
http://dx.doi.org/10.1002/er.6700


Energies 2022, 15, 963 17 of 17

7. Espedal, I.B.; Jinasena, A.; Burheim, O.S.; Lamb, J.J. Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery
Electric Vehicles. Energies 2021, 14, 3284. [CrossRef]

8. Su, L.; Zhou, G.; Hu, D.; Liu, Y.; Zhu, Y. Research on the State of Charge of Lithium-Ion Battery Based on the Fractional Order
Model. Energies 2021, 14, 6307. [CrossRef]

9. Wu, L.; Liu, K.; Pang, H.; Jin, J. Online SOC Estimation Based on Simplified Electrochemical Model for Lithium-Ion Batteries
Considering Current Bias. Energies 2021, 14, 5265. [CrossRef]

10. Rzepka, B.; Bischof, S.; Blank, T. Implementing an Extended Kalman Filter for SoC Estimation of a Li-Ion Battery with Hysteresis:
A Step-by-Step Guide. Energies 2021, 14, 3733. [CrossRef]

11. Li, W.; Fan, Y.; Ringbeck, F.; Jöst, D.; Han, X.; Ouyang, M.; Sauer, D.U. Electrochemical model-based state estimation for
lithium-ion batteries with adaptive unscented Kalman filter. J. Power Sources 2020, 476, 228534. [CrossRef]

12. Li, W.; Zhang, J.; Ringbeck, F.; Jöst, D.; Zhang, L.; Wei, Z.; Sauer, D.U. Physics-informed neural networks for electrode-level state
estimation in lithium-ion batteries. J. Power Sources 2021, 506, 230034. [CrossRef]

13. Ringbeck, F.; Garbade, M.; Sauer, D.U. Uncertainty-aware state estimation for electrochemical model-based fast charging control
of lithium-ion batteries. J. Power Sources 2020, 470, 228221. [CrossRef]

14. Hasan, R.; Scott, J. Extending Randles’s Battery Model to Predict Impedance, Charge–Voltage, and Runtime Characteristics. IEEE
Access 2020, 8, 85321–85328. [CrossRef]

15. Wei, Z.; Zou, C.; Leng, F.; Soong, B.H.; Tseng, K.J. Online Model Identification and State-of-Charge Estimate for Lithium-Ion
Battery With a Recursive Total Least Squares-Based Observer. IEEE Trans. Ind. Electron. 2018, 65, 1336–1346. [CrossRef]

16. He, J.; Wei, Z.; Bian, X.; Yan, F. State-of-Health Estimation of Lithium-Ion Batteries Using Incremental Capacity Analysis Based on
Voltage-Capacity Model. IEEE Trans. Transp. Electrif. 2020, 6, 417–426. [CrossRef]

17. Lee, J.H.; Lee, I.S. Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result. Energies 2021,
14, 4506. [CrossRef]

18. Yan, G.; Liu, D.; Li, J.; Mu, G. A cost accounting method of the Li-ion battery energy storage system for frequency regulation
considering the effect of life degradation. Prot. Control Mod. Power Syst. 2018, 3, 1–9. [CrossRef]

19. Wei, Z.; Zhao, J.; Xiong, R.; Dong, G.; Pou, J.; Tseng, K.J. Online Estimation of Power Capacity With Noise Effect Attenuation for
Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2019, 66, 5724–5735. [CrossRef]

20. Zhu, Q.; Li, L.; Hu, X.; Xiong, N.; Hu, G.D. H∞-Based Nonlinear Observer Design for State of Charge Estimation of Lithium-Ion
Battery With Polynomial Parameters. IEEE Trans. Veh. Technol. 2017, 66, 10853–10865. [CrossRef]

21. Hannan, M.A.; Lipu, M.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management
system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [CrossRef]

22. Li, J.; Gao, F.; Yan, G.; Zhang, T.; Li, J. Modeling and SOC estimation of lithium iron phosphate battery considering capacity loss.
Prot. Control Mod. Power Syst. 2018, 3, 1–9. [CrossRef]

23. Li, L.; Wang, C.; Yan, S.; Zhao, W. A combination state of charge estimation method for ternary polymer lithium battery
considering temperature influence. J. Power Sources 2021, 484, 229204. [CrossRef]

24. Wei, Z.; Dong, G.; Zhang, X.; Pou, J.; Quan, Z.; He, H. Noise-immune model identification and state-of-charge estimation for
lithium-ion battery using bilinear parameterization. IEEE Trans. Ind. Electron. 2020, 68, 312–323. [CrossRef]

25. Shu, X.; Li, G.; Shen, J.; Yan, W.; Chen, Z.; Liu, Y. An adaptive fusion estimation algorithm for state of charge of lithium-ion
batteries considering wide operating temperature and degradation. J. Power Sources 2020, 462, 228132. [CrossRef]

26. Qiu, X.; Wu, W.; Wang, S. Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter
and a novel state of charge estimation method. J. Power Sources 2020, 450, 227700. [CrossRef]

27. Mawonou, K.S.; Eddahech, A.; Dumur, D.; Beauvois, D.; Godoy, E. Improved state of charge estimation for Li-ion batteries using
fractional order extended Kalman filter. J. Power Sources 2019, 435, 226710. [CrossRef]

28. Zhou, Z.; Duan, B.; Kang, Y.; Cui, N.; Shang, Y.; Zhang, C. A low-complexity state of charge estimation method for series-connected
lithium-ion battery pack used in electric vehicles. J. Power Sources 2019, 441, 226972. [CrossRef]

29. Zhang, W.; Wang, L.; Wang, L.; Liao, C. An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries.
J. Power Sources 2018, 402, 422–433. [CrossRef]

30. Särkkä, S. Bayesian Filtering and Smoothing; Cambridge University Press: Cambridge, UK, 2013.
31. Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice with Matlab; John Wiley & Sons: Hoboken, NJ, USA, 2014.
32. Plett, G.L. Battery Management Systems, Volume I: Battery Modeling; Artech House: London, UK, 2015.
33. Plett, G.L. Battery Management Systems, Volume II: Equivalent-Circuit Methods; Artech House: London, UK, 2016.
34. Idaho National Engineering Laboratory, EG & G Idaho. A Simplified Version of the Federal Urban Driving Schedule for Electric Vehicle

Battery Testing; US Department of Energy Report DOE/ID-10146; US Department of Energy: Washington, DC, USA, 1988.

http://dx.doi.org/10.3390/en14113284
http://dx.doi.org/10.3390/en14196307
http://dx.doi.org/10.3390/en14175265
http://dx.doi.org/10.3390/en14133733
http://dx.doi.org/10.1016/j.jpowsour.2020.228534
http://dx.doi.org/10.1016/j.jpowsour.2021.230034
http://dx.doi.org/10.1016/j.jpowsour.2020.228221
http://dx.doi.org/10.1109/ACCESS.2020.2992771
http://dx.doi.org/10.1109/TIE.2017.2736480
http://dx.doi.org/10.1109/TTE.2020.2994543
http://dx.doi.org/10.3390/en14154506
http://dx.doi.org/10.1186/s41601-018-0076-2
http://dx.doi.org/10.1109/TIE.2018.2878122
http://dx.doi.org/10.1109/TVT.2017.2723522
http://dx.doi.org/10.1016/j.rser.2017.05.001
http://dx.doi.org/10.1186/s41601-018-0078-0
http://dx.doi.org/10.1016/j.jpowsour.2020.229204
http://dx.doi.org/10.1109/TIE.2019.2962429
http://dx.doi.org/10.1016/j.jpowsour.2020.228132
http://dx.doi.org/10.1016/j.jpowsour.2020.227700
http://dx.doi.org/10.1016/j.jpowsour.2019.226710
http://dx.doi.org/10.1016/j.jpowsour.2019.226972
http://dx.doi.org/10.1016/j.jpowsour.2018.09.016

	Introduction
	Enhanced Equivalent Circuit Model of Lithium-Ion Battery
	Fundamental Equivalent Circuit Model
	Hysteresis Voltage
	Enhanced Circuit Model

	SOC Estimation
	ERTSS
	Genetic Algorithm

	Experiment and Validation
	Battery Test
	Cell Model Parameters Identification
	ERTSS Estimation

	Conclusions
	References

