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Abstract: With the increase of photovoltaic penetration rate, the fluctuation of photovoltaic power
generation affects the reliability of ship power grids. Marine PV grid-connected systems with high
penetration rates should generally have a low voltage ride-through capability. In the present paper,
a strategy in which super capacitors are applied for energy storage in a marine photovoltaic grid-
connected system is proposed, and an inverter adopts independent decoupling control of active and
reactive currents to improve the LVRT capability of photovoltaic grid-connected systems. In addition,
a comprehensive control strategy is also designed to control the supercapacitor, to regulate the active
power through the control method of the voltage outer loop and the current inner loop, in order
to maintain the DC bus voltage stability. At the same time, the inverter can increase the reactive
power output to support the grid voltage. The advantage of this system is in smoothing the power
imbalance in a short time, enhancing the low voltage ride-through capability of the photovoltaic grid-
connected system, improving the power quality, and ensuring the safety and stability of the ship’s
power grid. MATLAB/Simulink were employed to establish a ro-ro ship super capacitor–marine
photovoltaic grid-connected power system model and to carry out simulation experiments by setting
the grid voltage drop. The results show that when the grid voltage drops, the inverter adjusts the
distribution of active and reactive power. The power factor drops from 1 to 0.77, and the effective
value of the voltage drop increases from 150 V to 156 V, which proves that this strategy effectively
reduces the depth of the grid voltage drop and improves the low voltage ride-through capability of
the photovoltaic grid-connected system.

Keywords: marine photovoltaic grid connected system; super capacitor; low voltage ride through;
reactive power output

1. Introduction

Marine photovoltaic technology has developed rapidly in recent years, and this trend is
expected to continue, driven by continuous cost reductions and policy support [1–3]. Unlike
land power grids, a ship power system is a special system with a very small capacity [4].
Integrating a photovoltaic system of the same capacity into a ship power grid system
produces a greater photovoltaic penetration rate than in a land grid [5]. As the penetration
rate of photovoltaics increases, several technical problems related to power quality will
arise [6–8]. In addition to avoiding the influence of photovoltaic power fluctuation on the
reliability of the ship power grid, it is important to strengthen the self-protection ability
of the photovoltaic power generation system in the case of a short circuit fault of the ship
power grid, to avoid more serious current impacts. Therefore, in order to ensure the safe and
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stable operation of marine power systems, a marine photovoltaic grid-connected system
with high penetration rate should usually have a low voltage ride through capability.

A low voltage ride through capability was proposed in wind power grid connections,
and has gradually been applied to the photovoltaic power generation field [9]. It means
the photovoltaic power generation system can stay on the grid and continue to operate
for a certain period of time when the grid voltage sags, and can provide a reactive power
output to help with grid voltage recovery. In the land-use photovoltaic grid-connected
specification, the low-voltage ride through curve is shown in Figure 1. When the voltage of
the grid-connected point drops to 20% of the rated voltage, the photovoltaic grid-connected
system should be able to ensure continuous grid-connected operation for one second. When
the voltage of the grid-connected point can recover to 90% of the rated voltage within three
seconds after falling, the photovoltaic power station should be able to ensure uninterrupted
operation of the grid connection [10–16].

Energies 2022, 15, x FOR PEER REVIEW 2 of 19 
 

Energies 2022, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/energies 
 

protection ability of the photovoltaic power generation system in the case of a short circuit 
fault of the ship power grid, to avoid more serious current impacts. Therefore, in order to 
ensure the safe and stable operation of marine power systems, a marine photovoltaic grid-
connected system with high penetration rate should usually have a low voltage ride 
through capability. 

A low voltage ride through capability was proposed in wind power grid connections, 
and has gradually been applied to the photovoltaic power generation field [9]. It means 
the photovoltaic power generation system can stay on the grid and continue to operate 
for a certain period of time when the grid voltage sags, and can provide a reactive power 
output to help with grid voltage recovery. In the land-use photovoltaic grid-connected 
specification, the low-voltage ride through curve is shown in Figure 1. When the voltage 
of the grid-connected point drops to 20% of the rated voltage, the photovoltaic grid-con-
nected system should be able to ensure continuous grid-connected operation for one sec-
ond. When the voltage of the grid-connected point can recover to 90% of the rated voltage 
within three seconds after falling, the photovoltaic power station should be able to ensure 
uninterrupted operation of the grid connection [10–16]. 

 
Figure 1. Low voltage ride through curve [17]. 

At present, a large number of studies have been carried out on the low voltage ride 
through of photovoltaic grid-connected systems. Sadeghkhani et al. proposed introducing 
a droop-based low voltage ride through strategy into grid-connected micro-grids and to 
implement it by using a controller with an interface voltage source converter (VSC) [18]. 
Similarly, Brandao et al. also considered a constant average active power control strategy 
for three-phase four-wire grid-connected inverters in a natural coordinate system [19]. On 
this basis, Shah et al. proposed a control algorithm based on an adaptive observer for the 
low voltage ride through capability of the two-stage grid-connected solar conversion sys-
tems (SECS). Adaptive observer technology was adopted to improve the power quality 
characteristics and estimate the fundamental component of the load current more accu-
rately [20]. He et al. proposed a coordinated control scheme of low voltage ride through 
(LVRT) for an intelligent solar inverter, which can absorb more solar energy by controlling 
the DC link and photovoltaic unloading [21]. The above studies mainly focused on large 
and medium-sized land-based photovoltaic power stations, and rarely involved micro-
grids, such as a ship power grid. However, a ship photovoltaic grid-connected system 
generally needs to be equipped with energy storage equipment to realize a smooth output 
of grid-connected power. In addition, energy quality can be improved and energy effi-
ciency maximized through on-demand regulation of the energy supply. Energy storage 
systems have been put into commercial use as typical renewable energy and energy sav-
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At present, a large number of studies have been carried out on the low voltage ride
through of photovoltaic grid-connected systems. Sadeghkhani et al. proposed introducing
a droop-based low voltage ride through strategy into grid-connected micro-grids and to
implement it by using a controller with an interface voltage source converter (VSC) [18].
Similarly, Brandao et al. also considered a constant average active power control strategy for
three-phase four-wire grid-connected inverters in a natural coordinate system [19]. On this
basis, Shah et al. proposed a control algorithm based on an adaptive observer for the low
voltage ride through capability of the two-stage grid-connected solar conversion systems
(SECS). Adaptive observer technology was adopted to improve the power quality charac-
teristics and estimate the fundamental component of the load current more accurately [20].
He et al. proposed a coordinated control scheme of low voltage ride through (LVRT) for an
intelligent solar inverter, which can absorb more solar energy by controlling the DC link and
photovoltaic unloading [21]. The above studies mainly focused on large and medium-sized
land-based photovoltaic power stations, and rarely involved micro-grids, such as a ship
power grid. However, a ship photovoltaic grid-connected system generally needs to be
equipped with energy storage equipment to realize a smooth output of grid-connected
power. In addition, energy quality can be improved and energy efficiency maximized
through on-demand regulation of the energy supply. Energy storage systems have been put
into commercial use as typical renewable energy and energy saving systems [22–26]. Ehsan
Reihani et al. proposed the introduction of a battery energy storage system to analyze the
effectiveness of BESS for peak clipping and smoothing the load curve of an actual circuit on
Maui, Hawaii [27]. Iromi Ranaweera et al. addressed an energy management system for a
PV system coupled with battery energy storage [28]. Therefore, energy storage equipment
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is used to absorb the unbalanced power between the DC side and AC side of the inverter
during voltage sag, and the DC bus voltage is stabilized to enhance the LVRT capability of
the photovoltaic grid-connected system, which does not increase the investment cost of the
system, and also simplifies the control of the photovoltaic grid-connected system.

Among all the kinds of energy storage device, although lithium batteries have a high
energy density, they are inferior to super capacitors in response speed, cycle life, and
working efficiency [29]. A performance index comparison is shown in Table 1. The power
of a photovoltaic grid-connected system is fed into the ship power station in real time,
and an energy storage device is required to respond quickly and temporarily suppress the
instantaneous power difference between the DC input side and the AC output side of the
grid-connected inverter, which can reduce the instantaneous load volatility of the generator
set operating in the network. Therefore, super capacitors have been widely used in this
field [30].

Table 1. Comparison of performance indicators of energy storage components.

Performance
Comparison

Charging
Time/(s) Discharge Time/(s) Power Den-

sity/(W/kg)

Charge and
Discharge

Efficiency/(%)

Product
Maintenance

Service
Life/(Years)

Lithium battery (3.6~18) × 103 (1.08~10.8) × 103 <103 70–85 high cost 4–6

Super capacitor 0.3~30 0.3~30 <104 85–98 low cost 10–15

In recent years, with the development of super capacitor technology, the advantages
of super capacitors have become more obvious. Their fast response speed can make up for
the intermittent fluctuation of photovoltaic output power [31]. Some scholars proposed
the use of a voltage and current double closed-loop control strategy, to avoid the pumping
of bus voltage by controlling the super capacitor and absorbing the DC bus feedback
current into the ship electric propulsion system. Super capacitors and flywheel energy
storage have also been introduced into the DC bus on the propulsion side of the ship
electric propulsion system to improve the transient stability of the DC bus voltage and
to improve the transient characteristics of the whole system. Super capacitors have not
yet been applied in marine photovoltaic systems, while there have been attempts in land
photovoltaic systems. Bertrand et al. analyzed the characteristics of super capacitors
and battery energy storage, proposed a hybrid energy storage system, and established
a simplified micro-grid model for verification [32]. Some scholars have adopted super
capacitors as energy storage units in photovoltaic grid-connected systems to regulate
the output power of photovoltaic power generation systems, established a bidirectional
DC/DC converter model, and proposed a power and current double closed-loop control
strategy to make the output power of inverters controllable.

Based on the above research, this paper proposes a low voltage ride through control
strategy of a super capacitor, to avoid the danger caused by severe power quality problems
of a ship power grid. During the voltage sag of the grid, the photovoltaic controller still
works in the maximum power mode, and the super capacitor absorbs the excess energy, to
realize the power balance between the direct side and the alternating side of the inverter, so
as to ensure that the inverter will not be off-grid due to the output overcurrent protection.
First, the paper introduces the structure of the marine photovoltaic grid-connected system.
Second, a model and control strategy of the marine photovoltaic grid-connected system are
determined. Then, a system simulation experiment and analysis are carried out. Finally,
the analysis of the experimental results is summarized.

2. Structure of Marine Photovoltaic Grid-Connected System

The structure of the marine photovoltaic grid-connected system is shown in Figure 2.
The power generated by the photovoltaic array is output after tracking the maximum
power of the photovoltaic controller. The super capacitor is connected to the DC bus
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through a bidirectional DC/DC converter, which can be used as an energy storage device
to store excess photoelectric energy. When voltage drops occur in the ship power system,
the charge and discharge of the super capacitor can ensure the voltage stability of the DC
bus and enhance the low voltage ride through of the inverter. The inverter converts the
direct current into alternating current and then merges it into the main bus bar of the ship
power station to supply power to the electric load together with the diesel generator.
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Figure 2. The structure of the marine photovoltaic grid-connected system.

3. Model and Control Strategy

A DC bus voltage regulation control strategy is designed into the bidirectional DC/DC
converter charge–discharge control strategy of the supercapacitor control system. In
Figure 3, the control principle of the marine photovoltaic grid-connected power system
with enhanced low-voltage ride-through capability is shown.

3.1. Mathematical Model and Maximum Power Point Tracking of the Photovoltaic Cell

Photovoltaic cells convert light energy into electrical energy, according to the photo-
voltaic effect of semiconductor materials [33]. Belhachat and Larbes built a photovoltaic
array model under local shadows, considering the influence of local shadows on photo-
voltaic output [34]. Zerhouni et al. took into account the internal resistance loss of the
photovoltaic array and established a photovoltaic array model using the photovoltaic
cell parameters under the standard conditions provided by the battery manufacturer [35].
Simulink provides a simulation model of photovoltaic cells, and an equivalent circuit
diagram is shown in Figure 4. Ipv and Id are the photo-generated current and current
flowing through diode, respectively, and Rs is the series resistance representing the internal
loss in Figure 3. With the increase of service time, this value of Rs will increase, and the
photovoltaic output power will decrease. Rsh is the side leakage resistance. U and I are the
output voltage and current of the photovoltaic cell.
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According to Kirchhoff’s current law:

I = Ipv − Id − Ish (1)

The current expression of an ideal diode is

Id = I0(exp
[

q(U + IRs)

AKT

]
− 1) (2)

The output current of photovoltaic cells can be obtained by combining Formulas (1)
and (2):

I = Ipv − I0

{
exp

[
q(U + IRs)

AKT

]
− 1
}
− U + IRs

Rsh
(3)
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In this formula, q, I0, A, K, T are respectively the amount of charge (the value is
1.6 × 10−19), the diode reverse saturation current, the quality factor (the value is between
1–2), the Boltzmann constant (the value is 1.38 × 10−23), and absolute temperature.

For photovoltaic cells, the value of the bypass resistance Rsh is very large, and the
value of the series resistance Rs is very small, so the term (U + IRS)/Rsh is often ignored
under ideal conditions. The output characteristics of photovoltaic cells in actual working
conditions are mainly affected by irradiance and ambient temperature. Let Isc, Vsc, Im,
Vm be the short-circuit current, open-circuit voltage, maximum power point current, and
maximum power point voltage of photovoltaic cells under standard test conditions (irradi-
ance S = 1000 W/m2, ambient temperature T = 25 ◦C, atmospheric quality AM = 1.5). Then
Formula (3) is converted into:

I = Isc

{
1− C1

[
exp(

V
C2Voc

)− 1
]}

(4)

C1 = (1− Im

Isc
) exp(− Vm

C2Voc
) (5)

C2 = (
Vm

Vsc
− 1)/ ln(1− Im

Isc
) (6)

In the process of use, it is necessary to consider the impact of non-standard environ-
ments, and modify the parameters such as photovoltaic voltage and current. The correction
formula is as follows: 

∆T = T − Tre f
∆S = S

Sre f
− 1

I′sc = Isc
S

Sre f
(1 + a∆T)

V′oc = Voc(1− c∆T) ln(e + b∆S)
I′m = Im

S
Sre f

(1 + a∆T)

V′m = Vm(1− c∆T) ln(e + b∆S)

(7)

In this formula, V′oc, I′sc, V′m, I′m represent the corrected open-circuit voltage, short-
circuit current, MPPT voltage, and maximum power point current. The typical values of a,
b, and c in engineering are 0.0025 C−1, 0.5 m2/W, and 0.00288 C−1, respectively.

3.2. Photovoltaic Cell Simulation Model

According to a mathematical model of a photovoltaic cell derived in a previous article,
MATLAB/Simulink was used to build a photovoltaic cell simulation model.

The simulation object of the photovoltaic cell module in this paper is the YLM
series P-type monocrystalline silicon photovoltaic cell panel produced by Yingli Com-
pany, the model is YL285D-30b, and the parameters are listed in Table 2 under standard
test conditions.

Table 2. PV module parameters.

String
Relationship

Total
Power/kW

Open Circuit
Voltage/V

Short Circuit
Current/A

Peak
Voltage/V

Peak
Current/A

18 series
20 parallel 102.7 712.8 188.2 570.6 180

When the simulation sets the environment temperature T as constant at 25 ◦C and the
irradiance S as 400 W/m2, 700 W/m2, and 1000 W/m2, respectively, the changes in the
power and current of the photovoltaic array with voltage are as shown in Figure 5.
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The simulation set the irradiance S to be constant at 1000 W/m2, and when the ambient
temperature T is 10 ◦C, 25 ◦C, and 40 ◦C respectively, the changes in the power and current
of the photovoltaic array with voltage are as shown in Figure 6.
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The output characteristics of photovoltaic cells are affected by both ambient tempera-
ture and irradiance. As shown in Figure 4, when the ambient temperature is constant, with
the increase of irradiance, the open circuit voltage of photovoltaic cells increases slightly,
and the peak power and short-circuit current are obvious. As shown in Figure 5, when
the irradiance is constant, as the ambient temperature rises, the short-circuit current of the
photovoltaic cell gradually increases, while the open circuit voltage and maximum power
gradually decrease, showing that the irradiance changes. The impact on photovoltaic out-
put characteristics is greater than temperature changes. The output characteristic curve of
the photovoltaic cell model built in this paper is basically the same as the actual photovoltaic
cell panel characteristic curve, which can be used in the simulation experiment later.

In order to maximize the efficiency of photovoltaic power utilization, the photovoltaic
controller needs to track its maximum power point tracking (MPPT). The essence of max-
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imum power tracking is to match the load equivalent resistance with the photovoltaic
internal resistance, by changing the on and off of the switch tube. The voltage level of
the super capacitor and the DC bus is much lower than the MPPT voltage of the photo-
voltaic array. Therefore, the photovoltaic controller in this paper uses a BUCK step-down
circuit and uses the variable step perturbation observation method to track the photovoltaic
maximum power point.

3.3. Inverter Control Strategy

The output control of the inverter adopts the PQ control strategy, which can control the
output power of the system by adjusting the magnitude and phase of the output current, so
as to realize the transmission of all the generated power to the ship power grid. In essence,
the strategy is the control of the active current and reactive current. Power output control
can be achieved by tracking the current components id and iq on the dq axis to the reference
current i∗d and i∗q through the current inner loop. According to instantaneous power theory,
the inverter output reference current is i∗d = 2

3
Pre f
ud

i∗q = − 2
3

Qre f
ud

(8)

The mathematical model of the grid-connected inverter in the dq coordinate system is[
ud
uq

]
=

[
sL + R ωL
−ωL sL + R

][
id
iq

]
+

[
νd
νq

]
(9)

In this equation, ud and uq are the grid voltage, and vd and vq are the inverter voltage
control reference values. It can be seen from the equation that there is a strong coupling
between the currents of the dq axis, and id and iq need to be decoupled in order to adjust
them independently. The current decoupling control principle of id and iq is shown in
Figure 7. PI adjustment is used to eliminate static errors, so that id and iq can track to
i∗d and i∗q accurately. By introducing the current state feedback through feed-forward
decoupling, independent control of the dq axis current can be achieved, and the feed-
forward compensation will increase, so that the influence of grid voltage on the control
system can be reduced.
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When feed-forward decoupling is adopted, the control equation is[
vd
vq

]
=

[
ud
uq

]
−
(

Kp +
Ki
s

)[
i∗d −id
i∗q −id

]
−
[
−ωLid
ωLid

]
(10)

The reference voltages vd and vq obtained by current control are transformed by dp
inverting to obtain the modulation signal Uref, and then sinusoidal pulse width modulation
(SPWM) is applied to generate 6 PWM signals to control the IGBT of the inverter bridge as
on or off. This is to realize the DC to three-phase AC inverter and power output.

3.4. Charge/Discharge Control of Super Capacitor

The structure of the energy storage device composed of a super capacitor and bidirec-
tional DC/DC converter is shown in Figure 8. The DC bus is located on the high-voltage
side, and the super capacitor is located on the low-voltage side. The equivalent model of
the super capacitor is formed by the resistor Rc and capacitor Csc in series, in which Rc
represents the energy consumption during charging and discharging of the super capacitor,
and the bidirectional DC/DC converter adopts a bidirectional half-bridge structure.
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The control of charging and discharging of the super capacitor is essentially the control
of the operation mode of the bidirectional DC/DC converter. The bidirectional DC/DC
converter adopts the control mode of the outer loop of the bus voltage and inner loop of
the inductance current [36], and aims to stabilize the DC bus voltage. A control structure
block diagram of the bidirectional DC/DC converter is shown in Figure 9. The DC bus
voltage will basically keep stable when the power of the DC input side and AC output
side of the inverter maintain a dynamic balance, while the power differences between the
DC input side and AC output side will cause a change of bus voltage. The charging and
discharging of the super capacitor controlled by the outer voltage loop can keep the DC
bus voltage stable, thus maintaining a power balance between the input and output of
the inverter. Considering the maximum current limit for charging and discharging of the
super capacitor, the reference current of the inner loop obtained from the outer voltage
loop is limited. Through the on or off of the IGBT driven by the PWM signal, the reference
current I∗sc will control the charging and discharging of the super capacitor, to keep the bus
voltage stable.
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The double closed-loop control structure, with the DC bus voltage control as the outer
loop and the inductor current control as the inner loop, controls the bidirectional DC/DC
converter to stabilize the DC bus voltage, as shown in Figure 10.
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3.5. LVRT Control Strategy

According to the grid-connection criterion, the relationship between reactive current
output and voltage sag depth is shown in Figure 11, in which U is set as the voltage of the
photovoltaic connection point.
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In Figure 8, the mathematical expression of reactive current output and power grid
voltage sag depth is as follows:

i∗q = 0, 0.9 ≤ U
Un
≤ 1

i∗q = 2 Un−U
Un

in, 0.5 ≤ U
Un

< 0.9
i∗q = in, 0 ≤ U

Un
< 0.5

(11)

The inverter operates at a unit power factor before the grid voltage sag, and its current
is assumed to be is. When the voltage sags, the voltage sag depth is calculated by the
voltage amplitude of the phase locking loop circuit. Then, the output of the reactive power
reference current i∗q is calculated according to Equation (11).

During the grid voltage sag, if is ≤ i∗q , the active reference current output by the

inverter after the voltage sag is i∗d = 0, if is > i∗q , then i∗d =
√

is2 − (i∗q )
2.
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According to the equation of active reference current, when the voltage sags, only
the output power factor of the current inverter needs to be adjusted, on condition that the
inverter can provide sufficient reactive power output. If the reactive power output capacity
of the inverter is insufficient, the active current output should be set to 0, so that all the
reactive power can be output. No matter what method is adopted, the effective value of
the power grid voltage sag will change, and so will the output power of the inverter. There
will be unbalanced power between the DC side and the AC side of the inverter, resulting
in voltage fluctuation at the DC bus. According to the aforementioned control mode of
voltage outer loop and current inner loop, the control capacitor absorbs the unbalanced
power, so as to realize low voltage ride through of the photovoltaic grid-connected system.

In this section, the concept of modularized modeling is adopted to establish the
photovoltaic cell array and the MPPT control model based on the variable-step disturbance
observation method; the power regulation device is composed of a super capacitor and
bidirectional DC/DC converter, and the super capacitor adopts the equivalent circuit model.
The two-way DC/DC converter is a two-way half-bridge structure; the PQ control strategy
is used to control the output of the grid-connected inverter, and the supercapacitor power
adjustment device adopts the double-loop control method of the power outer loop and the
current inner loop to control the power. A sudden change in compensation or absorption
makes the output power of the grid-connected inverter change slowly at a set rate; when
the grid voltage drops, a low-voltage ride-through strategy based on supercapacitors is
proposed, and the supercapacitor is used to absorb the unbalanced power during the grid
voltage sag fault.

4. System Simulation and Analysis
4.1. Simulation Parameters Design

MATLAB/Simulink was used to establish a grid-connected power system model of a
super capacitor marine photovoltaic system. The rated power of the main generator was
720 kW, the marine power grid frequency was 50 Hz, and the power grid phase voltage
was 400 V. The photovoltaic array was composed of 18 series and 20 parallel arrays. Under
standard test conditions, the peak power was 102.6 kW and the photovoltaic permeability
was 14.25%. The simulation parameters of each part are set as shown in Table 3.

The output of active current and reactive current was controlled by controlling the
active and reactive reference power of the inverter. RMS module obtained the effective
value of the grid voltage for switching judgment. When the voltage sag was less than 10%,
it entered the power leveling control, otherwise, it entered the low voltage crossing control.

4.2. Simulation Results Analysis

The change rate of the output power of the inverter was limited to 1 kW/s, and
the change of irradiance is shown in Figure 12. The initial value of the irradiance was
500 W/m2, and it started to fluctuate randomly at 100 s. At 200 s, the value of the irradiance
stabilized again at 500 W/m2.
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Table 3. Simulation parameters.

Equipment Parameter Value Unit

Photovoltaic
controller

C1 1.7 mF
L1 16 µH
D 0.1% -

Cdc 10 mF

Bidirectional DC/DC
converter

IGTT switching
frequency 4 kHz

C2 1 mF
L2 3 mH

Kp1 0.8 -
Ki1 100 -
Kp2 0.2 -
Ki2 30 -

Super capacitor

Operating voltage
range 240~300 VDC

Energy storage
capacity 6 kWh

Maximum output
current limit 400 A

Inverter

C3 20 µF
L3 0.5 mH

Kp3 0.01 -
Ki3 3 -
Kp2 120 -
Ki2 5 -

The changes of the grid frequency and grid phase voltage of the marine photovoltaic
grid-connected system are shown in Figures 13 and 14.
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According to Figures 13 and 14, the grid frequency and phase voltage showed the
same change state along with the random fluctuation of the irradiance. The fluctuation
ranges of the grid frequency and the phase voltage were 0.4 Hz and 14 V, respectively. After
the connection of the super capacitor, the grid frequency was maintained at 50 Hz and
the phase voltage was maintained at 400 V, which effectively reduces the impact of the
photovoltaic grid-connected system on the power quality of the ship power system.

It can be seen from Figure 15 that the grid voltage harmonics of the supercapacitor
system were not connected to about 3%. After the supercapacitor was connected, the
voltage harmonics were reduced to less than 1%, both of which are in line with the voltage
harmonics in the CCS marine photovoltaic grid-connected guidelines. The requirement is
that the wave content is less than 5%; the harmonics of the grid current that are not con-
nected to the supercapacitor system exceeded the specification requirements of the current
total harmonic content of less than 5% in the CCS marine photovoltaic grid-connected
guidelines, and after the supercapacitor was connected, the current harmonics dropped to
about 1%, which meets the specification requirements.
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In order to verify the low voltage ride through strategy of the photovoltaic grid-
connected system based on a super capacitor proposed above, the photovoltaic array was
set to work under standard test conditions (irradiance S = 1000 W/m2, ambient temperature
T = 25 ◦C) in the example simulation. The voltage variation curve of the marine power grid
is shown in Figure 16. Three-phase symmetric voltage sag occurred at 0.5 s with a 35% sag
depth, and it returned to normal at 0.8 s. The simulation results are shown in Figures 17–22.
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The following are concluded from Figures 17–22:

(1) In case of grid voltage sag, it can be seen from Figures 20a and 21 that the inverter
operates under unit power factor without LVRT control in grid-connected system and
does not output reactive power, but the active output power drops slightly due to
voltage sag. As shown in Figures 17a, 18a and 20a, as the photovoltaic array continues
to work at the maximum power state, an imbalance between the input power and
output power appears on the DC bus side, and the power difference acts on the DC
bus, and the DC bus voltage presents a rapid upward trend. The DC bus voltage
increases because the input power of the inverter is greater than the output power.
In order to ensure the power balance between the DC input and the AC output of
the inverter, the output current of the inverter will increase to 1.4 pu, which exceeds
the rated operating current and causes the inverter to be off-gird due to overcurrent
protection, thus increasing the fault range.

(2) With LVRT control, the photovoltaic controller still operates in MPPT mode during
voltage sag. According to Figures 17b and 18b, in order to prevent the inverter from
being off-grid due to output overcurrent during voltage sag, the inverter reduces the
active power output and its output current is always less than 1.1 pu. During the
fault period, the super capacitor absorbs the energy difference between the inverter
and the controller, so that the DC bus voltage remains stable. The dynamic and static
response is ideal, with the overshoot of the DC bus less than 5%, the adjustment time
less than 0.1 s, and the steady-state voltage basically remaining at 380 V. It can be seen
from Figures 19 and 22 that the inverter adjusts the distribution of active and reactive
power when the grid voltage sags, with the power factor decreasing from 1 to 0.77
and the voltage sag increasing from 150 V to 156 V. The control strategy can absorb
excess photovoltaic energy through the super capacitor adjustment system, greatly
reduce the voltage rise of the DC bus of the photovoltaic power generation system,
and maintain the grid-connected current below the limit current value. After the fault
is removed, the marine diesel/photovoltaic grid-connected power system will quickly
return to the normal working state, enhancing the low voltage ride-through capability
of the system.

5. Conclusions

In this paper, the off-grid protection of a marine high permeability photovoltaic grid-
connected system under voltage sag is studied. A super capacitor can be used to suppress
the unbalanced power of the DC side of the inverter in a short period of time, enhance
the low voltage ride through ability of the photovoltaic grid-connected system, improve
the power quality, and ensure the safety and stability of the marine power grid. The main
conclusions are as follows:

(1) The use of super capacitors for ship energy storage can keep the DC bus voltage stable
and reduce the power injected into the photovoltaic inverter.

(2) The inverter can realize the independent control of dq axis current. At the same
time, the feedforward compensation of the grid voltage is added, which reduces the
influence of the grid voltage on the control system.

(3) When the ship grid voltage fluctuates, the photovoltaic grid-connected system control
strategy automatically adjusts the distribution of active power and reactive power to
help restore the grid voltage.
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Nomenclature

Ipv, Vpv PV source output voltage andcurrent I∗sc Reference current
Id Current flowing through the diode is Current of the inverter operating at unity power factor
Rs Series resistance characterizing internal loss C1 Photovoltaic controller capacitor
Rsh Bypass leakage resistance L1 Photovoltaic controller inductance
U PV cell output voltage D Photovoltaic controller duty cycle
I PV cell output current Cdc Photovoltaic controller DC bus capacitor
id Stator d-axis current component C2 Bidirectional DC/DC converter capacitor
iq Stator q-axis current component L2 Bidirectional DC/DC converter inductor
ud Grid d-axis voltage Kp1 Voltage outer loop proportional coefficient
uq Power grid q axis voltage Ki1 Integral coefficient of voltage outer loop
vd Stator d-axis reference voltage Kp2 Current inner loop proportional coefficient
vq Stator q-axis reference voltage Ki2 Current inner loop integral coefficient
i∗d Stator d-axis reference current C3 Inverter filter capacitor
i∗q Stator q-axis reference current L3 Inverter filter inductor
Uref Modulated signal Kp3 Power outer ring proportional coefficient
Rc Super capacitor model equivalent resistance Ki3 Power outer loop integral coefficient
Csc Equivalent capacitance of the supercapacitor model
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