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Abstract: This paper studies the problem of fault detection for continuous time linear switched
systems in the presence of disturbance. For this purpose, a fault detection sliding mode observer
approach is designed to generate the residual signal. To minimize the effect of disturbance from
the residual, the problem is formulated into H∞ filtering technique to increase more robustness. To
deal with the issue of the switched systems stability, the Lyapunov-Krasovskii functional method is
utilized along with average dwell time, and linear matrix inequalities are formulated to derive the
sufficient conditions. The residual signal is evaluated, and an adaptive threshold is computed for
both modes of the switched system. Finally, a simulation example for a case study of boost converter
and a numerical example with both abrupt and incipient faults are illustrated to prove the efficacy of
the proposed method.

Keywords: fault detection; H∞ control; linear matrix inequalities; sliding mode observer;
switched systems

1. Introduction

Fault diagnosis has a significant demand to achieve high performance, safety, and
reliability in practical engineering systems. For complex systems in industry, the possibility
of occurring faults increases because of the huge presence of actuators, sensors, and process
components. Therefore, Fault Detection (FD) has become an active research area in the
field of control systems. Among various fault diagnosis techniques, the model-based FD
method [1,2] is the most popular analytical scheme because a model is run in parallel
with the original system in a computer, instead of a redundant hardware component
being installed. Observer-based fault diagnosis is a special type of model-based approach
in which, with the availability of the system model in Reference [3–5], an observer is
designed to estimate error between the actual system and the observer. Thus, observer-
based fault diagnosis is developed in the context of entrenched theory of control and
observer. Various methods have been suggested for fault diagnosis purpose, such as
unknown input observer method, reduced order observer method, adaptive observer
method, Sliding Mode Observer (SMO) method, high gain observer method, etc. [2–4,6].

Due to increase in robustness to unknown inputs, disturbances and uncertainties,
sliding mode techniques have emerged as a hot research area in control community. Ref. [7]
proposed an adaptive Sliding Mode Controller (SMC) for tracking accuracy of a DC-DC
buck converter with time varying disturbances and uncertainties. The SMC problem is
solved in Reference [8] for discrete time switched systems by means of an event triggered
strategy. A second order SMC is designed and implemented in Reference [9] for a buck
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converter under external disturbances and model uncertainties. However, it should noted
that the SMO-based fault diagnosis method [10,11] has been one of the most prominent
methods because of its faster response, and the convergence rate of observer and system
states are asymptotically stable. In addition, estimated output error converges to zero
finitely. The SMO design method provides a nonlinear switching term to feedback output
estimation error in nonlinear fashion [11], which is used to eliminate disturbances and faults.
Another important property of SMO is the sliding surface, also called the sliding patch.
It is that section where sliding motion ensures, and any deviation from this sliding area
results in an observer failure to converge. A large proportion of literature associated with
the SMO method has been studied for several systems, such as switching systems [12,13],
linear systems [14], and markovian jump systems [15].

On the other hand, fault diagnosis for switched systems is an additional demand and
attractive choice [16]. Switched systems are normally used when there is the need to model
a system which undergoes certain abrupt changes. Switched systems are common in aca-
demic study and engineering applications, such as process control, communication systems,
aircrafts, and power systems. Fruitful results on switched systems associated with ob-
server design, stability and stabilization, and controller design have been produced [17,18].
In Reference [19], the authors reported an FD filter design for continuous time switched
linear systems. An observer is designed in Reference [20] based on unknown switching
while investigating switched systems. Robust Fault Estimation (FE) for switched systems
in the presence of unknown inputs based on switched Lyapunov function and Average
Dwell Time (ADT) approach is studied in Reference [21]. A hybrid observer-based Fault
Detection and Isolation (FDI), in Reference [22], is developed for discrete time switched
systems. Various practical examples for switched systems fault diagnosis are studied in
the literature, including fault diagnosis based on SMO in Reference [12,23] that uses a
practical example of a DC-DC boost converter which acts as a switched system model.
FD for multi cellular and boost converter is illustrated in Reference [24] by using reduced
order SMO. In addition, in Reference [25], a DC-DC buck boost converter is used as an
application of switched systems that detect and estimate sensor faults. In Reference [26],
a sensor-less Induction motor drive is used as a real time application for SMO-based fault
diagnosis purposes. SMO for large scale systems in Reference [27] is used for robust Fault
Detection and Estimation (FDE). In Reference [13], two types of observers are designed
for switched systems that investigate their state and FE problems. A robust SMO for FD
sensitive to both disturbance and fault is estimated in Reference [14,28]. An adaptive fuzzy
finite-time control problem is designed in Reference [29] for nonlinear switched systems
with prescribed performance. In addition, the control problem in Reference [30] is studied
uncertain under actuated nonlinear switched systems with actuator faults using adaptive
fuzzy hierarchical SMC. An observer-based Takagi-Sugeno (T-S) fuzzy model is considered
in Reference [31], to formulate the quantized output for discrete-time nonlinear systems.
A non-fragile H∞ filtering problem is considered for continuous time T-S fuzzy systems
in Reference [32]. One pioneering work is described in Reference [33] for discrete time
polynomial fuzzy systems. The fault detection filter problem is combined with H−/H∞
optimization such that it achieves the best robustness and sensitivity to disturbance and
fault, respectively. This motivated us further to investigate the robust fault detection prob-
lem for switched systems by using SMO. More recently, one of the challenging problems
for model-based hybrid system was studied in Reference [34], for discrete component
prognosis with intermittent faults.

Although there exist several achievements in the area of SMO-based fault diagnosis
for switched systems, a few results are available in Reference [12,23,25]. However, it still
necessary to pay more attention to explore further in this area. Our major focus in this
work is the SMO-based FD, taking the switched system in continuous time in the presence
of disturbances and faults. This paper has the following main contributions. First, in
order to make the residual signal robust regarding disturbance effects, we transform the
switched system and residual error dynamics into an augmented form. Second, the problem
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is formulated into H∞ performance index to minimize disturbance effect from residual,
and a Lyapunov function is also used for switched system stability, while considering
Average Dwell Time (ADT) constraints. Hence, the dwell time restriction is relaxed for
each mode of the switched system by means of ADT. Third, the evaluated residual with
adaptive threshold is derived in the design technique for perfect fault detection. Finally,
two simulation examples depict the performance of the prospective method.

The remaining part in this paper is arranged into the following sections: The switched
system model description and SMO design is illustrated in Section 2. The main results
are described in Section 3. Residual evaluation and adaptive threshold computation steps
are derived in Section 4. Simulation results are demonstrated with two examples in
Section 5, and Section 6 presents the conclusion.

2. Description of the System
2.1. Switched System Design

Switched system in continuous time case represents the following class as:

{ ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Edσ(t)d(t) + E f σ(t) f (t)
y(t) = Cσ(t)x(t) + Dσ(t)u(t) + Fdσ(t)d(t) + Ff σ(t) f (t)

, (1)

where x(t) ∈ Rn and u(t) ∈ Rm are state and input vectors. y(t) ∈ Rp, d(t) ∈ Rr, and
f (t) ∈ Rs are output, disturbance, and fault vectors, respectively. Aσ(t), Bσ(t), Cσ(t), Dσ(t),
Edσ(t), Fdσ(t), E f σ(t), and Ff σ(t) are matrices of suitable dimensions for each modes. We
denote σ(t) = i, which is known as the switching signal of the subsystem, as Aσ(t)=Ai.

2.2. Sliding Mode Observer Design

The SMO design for the switched system model is given to construct residual signal
for effective fault detection as

˙̂x(t) = Aσ̂(t)
x̂(t) + Bσ̂(t)

u(t) + Glσ̂(t)(ey(t)) + ν(t)
ŷ(t) = Cσ̂(t)

x̂(t) + Dσ̂(t)
u(t)

r(t) = y(t)− ŷ(t)
. (2)

Here, σ̂(t) = i is the observer switching signal. As both subsystem and observer are
switching in a synchronous manner, the phenomenon of synchronous switching arises
between them. Thus, we assume two modes of the switched system, in which Mode 1
is operated for σ(t) = 1, and Mode 2 is also active when σ(t) = 0. Gl is the traditional
linear Luenberger observer gain which may be used to expand sliding area, and ν(t) is the
nonlinear injection term involved in SMO. The output error to be estimated is ey(t), and
e(t) is state error estimation. The nonlinear switching term is given below, where Pi is a
positive definite matrix, and ρ a positive scalar.

ν(t) = ρP−1
i

e(t)
‖ e(t) ‖ .

Remark 1. The nonlinear injection term ν(t) is going to be discontinuous, and any mismatch
between what the plant is doing and what the observer is doing will come through on that signal.
This is a very important property for fault detection and monitoring of the system. The observer is
also associated with nonlinear switching and has no problems for high gains because of a model run
in a computer, which switches as much as possible.

The error dynamics and generated residual signal are given as:
ė(t) = (Ai − GliCi)e(t) + (Edi − GliFdi)d(t)

+(E f i − GliFf i) f (t)− ν(t)
r(t) = Cie(t) + Fdid(t) + Ff i f (t)

. (3)
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Definition 1. See Reference [35]. ADT is defined as the switching signal between consecutive
switching at least τav. This technique is less conservative than that of arbitrary switching because of
slow switching.

Let Nσ(ta, tb) be the number of switching in switching signal σ(t) during the interval
(ta, tb), if the following condition holds

Nσ(ta, tb) ≤ No +
tb − ta

τav
,

where No > 0 and τav > 0 are chattering bound and ADT, respectively.

Lemma 1. See Reference [19]. There exists a Lyapunov function Vi(x(t)) for the switched system,
along with ADT, which is said to be globally asymptotically stable, satisfying the performance of
H∞ with an index no greater than γ = max(γi) as

V̇i(x(t)) ≤ −βVi(x(t))− rT(t)r(t) + γ2
i uT(t)u(t).

ADT is defined as

τa > τ∗a =
lnµ

ς
.

3. Main Results

In this section, we provide a solution to the FD problem based on SMO with H∞
filtering. The Lyapunov-Krasovskii functional method is used for switched system sta-
bility, and Linear Matrix Inequalities (LMI’s) are derived to provide sufficient conditions.
The schematic diagram in Figure 1 illustrates a clear description of the complete design
procedure of system, with the observer to produce the residual. This difference in plant
and observer output is evaluated, along with varying thresholds for perfect fault detection,
as shown in separate blocks of figure. Input to the system is fault and disturbance. Our
assumption in switching between the observer and the subsystem is synchronous, i.e., they
are switching at the same time without any delay in identifying the observer.

Threshold 

Computation

Fault 

DetectionResidual

ො𝑦

-
+

ො𝜎(𝑡)

𝑓(𝑡)

𝑑(𝑡)
𝜎(𝑡)

𝑦

𝑢(𝑡)

Switched 

System Model

Sliding Mode 

Observer Design

𝑦
Residual 

Evaluation

Figure 1. Design scheme of fault detection.

Here, our aim is to reduce disturbance effect from residual signal, so (3) is modified as{
ė(t) = Āie(t) + B̄did(t)− ν(t)
r(t) = C̄ie(t) + D̄did(t).

(4)

Remark 2. We transform the error and residual generator dynamics of the switched system into an
augmented form as in (4), so as to reduce disturbance effect from the residual signal.
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Theorem 1. Given the constants µ > 0, β > 0, ρ > 0, if there exists a positive definite matrix
Pi > 0, then the following inequality becomes true, and system (4) is asymptotically stable and
achieves robust performance (9).

ĀT
i Pi + Pi Āi + βPi Pi B̄di C̄T

i
∗ −γ2

i I D̄T
di

∗ ∗ −I

 < 0. (5)

Proof of Theorem 1. Define the common Lyapunov function for system (4) as

Vi(e(t)) = eT(t)Pie(t). (6)

Taking derivative of (6) gives

V̇i(e(t)) = ėT(t)Pie(t) + eT(t)Pi ė(t). (7)

The robust performance of the residual signal to disturbance is as follows:

‖ r(t) ‖2

‖ d(t) ‖2
< γi, (8)

where (8) can be rewritten as

rT(t)r(t) < γ2
i dT(t)d(t).

To make residual signal attenuating the disturbance effect, the following H∞ perfor-
mance index holds for the FD observer as∫ ∞

0
rT(t)r(t)dt < γ2

i

∫ ∞

0
dT(t)d(t)dt. (9)

�

Remark 3. Note that, in order to make the residual signal robust regarding disturbance, the
optimization algorithm of H∞ performance is combined with our switched system. Thus, the
residual signal minimizes the effect of disturbance and achieve more robustness.

Therefore, by considering nonzero d(t) ∈ l2[0, ∞), and under zero initial conditions,
the performance index is modified by using Lemma 1.

rT(t)r(t)− γ2
i dT(t)d(t) + V̇i(e(t)) + βVi(e(t)) ≤ 0. (10)

By substituting the value of ė(t) from (4) into (7), we get

V̇i(e(t)) =
[Āie(t) + B̄did(t)− ν(t)]T Pie(t)
+eT(t)Pi[Āie(t) + B̄did(t)− ν(t)]

. (11)

Expand (11) by substituting the value of ν(t) derived as

V̇i(e(t)) =
eT(t)ĀT

i Pie(t) + eT(t)Pi Āie(t) + dT(t)B̄T
diPie(t)

+eT(t)Pi B̄did(t)− 2ρ‖ e(t) ‖ . (12)

Substitute r(t), Vi(e(t)), and V̇i(e(t)), from (4), (6), and (12) in (10), evaluates the
inequality as

[C̄ie(t) + D̄did(t)]T × [C̄ie(t) + D̄did(t)]− γ2
i dT(t)d(t) + eT(t)ĀT

i Pie(t)
+eT(t)Pi Āie(t) + dT(t)B̄T

diPie(t) + eT(t)Pi B̄did(t)
+βeT(t)Pie(t)− 2ρ‖ e(t) ‖ ≤ 0

. (13)



Energies 2022, 15, 1090 6 of 15

In the above equation, ρ is a positive constant, and the second norm of ‖ e(t) ‖ is also
positive. Therefore, −2ρ‖ e(t) ‖ < 0. These inequalities above can be written as[

e(t)
d(t)

]T

u
[

e(t)
d(t)

]
≤ 0; (14)

here, u < 0 becomes

u =

 4a Pi B̄di + C̄T
i D̄di

B̄T
diPi + D̄T

diC̄i −γ2
i I + D̄T

diD̄di

 (15)

4a = ĀT
i Pi + Pi Āi + C̄T

i C̄i + βPi.

From the definition of Schur complement [36], we know that the following condi-
tions hold:

a) S =

[
S11 S12
ST

12 S22

]
< 0

b) S22 < 0, S11 − S12S−1
22 ST

12 < 0
. (16)

Hence, (15) is expanded into the following form[
4b Pi B̄di

B̄T
diPi −γ2

i I

]
+

[
C̄T

i C̄i C̄T
i D̄di

D̄T
diC̄i D̄T

diD̄di

]
≤ 0 (17)

4b = ĀT
i Pi + Pi Āi + βPi.

By using (16), we get the inequality asĀT
i Pi + Pi Āi + βPi Pi B̄di C̄T

i
∗ −γ2

i I D̄T
di

∗ ∗ −I

 < 0. (18)

To transform the above nonlinear matrix inequality into LMI, we first substitute the
values of Āi, B̄di, C̄i, D̄di, and taking the change of variables as Ri = PiGli and RT

i = GT
li PT

i
gives the following LMIs

Āi = Ai − GliCi, B̄di = Edi − GliFdi, C̄i = Ci, D̄di = Fdi

∧i =

 ∧11 ∧12 ∧13
∗ ∧22 ∧23
∗ ∗ ∧33


∧11 = AT

i Pi − CT
i RT

i + Pi Ai − RiCi + βPi
∧12 = PiEdi − RiFdi, ∧13 = CT

i
∧22 = −γ2

i I, ∧23 = FT
di

∧33 = −I

.

The linear observer gain Gli for both the modes of the switched system is determined
by solving the matrix variables Pi and Ri from the given LMIs as

Gli = P−1
i Ri. (19)

4. Residual Evaluation and Adaptive Threshold Computation

Generally, residual signal is corrupted with unknown inputs and disturbances, even
when there is no fault in the system. So, based on available residual signal, the residual
is evaluated for successful fault detection. A threshold setup over a zero fault case with
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bounded disturbance exists. Thus, comparison of the generated residual with that of the
threshold accurately detects the occurrence of fault. Several functions of evaluation are
discussed in the literature, e.g., for switched systems in Reference [37]. We choose the
residual evaluation function as

‖ R(t) ‖2,τ=‖ Rd(t) ‖2,τ + ‖ Ru(t) ‖2,τ ,

where Rd(t) and Ru(t) can be defined as

Rd(t) = R(t) f=0,u=0, Ru = R(t) f=0,d=0.

The threshold can be determined by Jth = Jthd + Jthu, which has two parts, consisting
of the constant and input dependent varying threshold, as in Reference [38].

Jth = Jthd + γv

√∫ t+τ

0
u(t)Tu(t)d(t), (20)

where the starting time of evaluation is 0, and the evaluation window is τ.

γv = sup ‖ Ru(t) ‖2 / ‖ u(t) ‖2,

Jthd = sup
f=0,d∈l2

‖ Rd(t) ‖2,τ . (21)

Remark 4. The threshold in (20) is adaptive because any change in the system input results in a
change of the variable threshold part.

For the decision of fault to occur, the following decision rules are employed:
(1) ‖ R(t) ‖2,τ> Jth Fault is detected.
(2) ‖ R(t) ‖2,τ< Jth No fault is detected.

5. Simulation Examples

In this section, we give two examples, including a case study of boost converter and
a numerical example with both incipient and abrupt faults, to illustrate usefulness of the
proposed mechanism.

5.1. Example 1: A Case Study of Boost Converter

A boost converter is a specific type of power converters which acts as a switch system,
as shown in Figure 2. We consider the boost converter circuit in Reference [39] driven by
pulse width modulation technique. The dynamic model of the switching system is given as:

A1 =

[
− 1

RC
1
C

− 1
L 0

]
, B1 =

[
0
1
L

]
, A2 =

[
− 1

RC 0
0 0

]
, B2 =

[
0
1
L

]
.

Figure 2. Boost converter circuit.
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Let x(t) = [vc(t) iL(t)]T be the state vector, where vc(t) is the capacitor voltage, and
iL(t) is the inductor current. By using the same normalization technique as in Reference [39,40],
the design matrices for both the modes of switch systems are given as:

A1 =

[
−1 1
−1 0

]
, B1 =

[
0
1

]
, C1 =

[
0.8 0
0 0.6

]
, D1 =

[
0
1

]
Ed1 =

[
0.5 0.2

0.01 0.3

]
, Fd1 =

[
0.1 0.02

0.02 0.2

]
, E f 1 =

[
0.1
0.1

]
, Ff 1 =

[
0.1
0.2

]
A2 =

[
−1 0
0 0

]
, B2 =

[
0
1

]
, C2 =

[
0.4 0
0 0.3

]
, D2 =

[
0
1

]
Ed2 =

[
0.2 0.01

0.01 0.1

]
, Fd2 =

[
0.1 0.3
0.02 0.1

]
, E f 2 =

[
0.1
0.1

]
, Ff 2 =

[
0.1
0.2

]
.

The positive definite matrix variables and the observer gain matrices for both the
modes of the switched systems can be determined from the LMIs.

P1 =

[
1.695 −0.740
−0.740 2.347

]
, P2 =

[
0.671 −0.007
−0.007 12.30

]
, Gl1 =

[
6.464 −0.050
1.553 1.424

]
Gl2 =

[
0.009 2.702
−0.146 1.403

] .

The fault signal with a unit magnitude of a pulse generator is simulated between
40 and 60 s in MATLAB/Simulink. The simulation time is set as T = 100 s and takes the
L2 norm bounded disturbance signal as d ≤ 0.5. Thus, (5) provides a feasible solution
by choosing γ = 0.12, for a good disturbance attenuation level. For the switching signal,
choose the parameter value as µ = 1.5 and ς = 0.35, to calculate average dwell time as
1.1584. Hence, the switching interval from one mode to the other is greater than 1.1584.
Switching signals of subsystem, observer, and fault signal are shown in Figure 3.

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

(a
)

Switching and Fault Signals

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

(b
)

0 10 20 30 40 50 60 70 80 90 100

Time[sec]

0

0.5

1

(c
)

Figure 3. (a) Subsystem switching signal. (b) Observer switching signal. (c) Fault signal.

The residual signal generated with and without the presence of fault is illustrated
in Figure 4. Here, the nonzero residual signals, even in the absence of faults, need to
be evaluated.



Energies 2022, 15, 1090 9 of 15

0 10 20 30 40 50 60 70 80 90 100

-0.02

0

0.02

0.04

(a
)

Residual signal

0 10 20 30 40 50 60 70 80 90 100

Time[sec]

0

0.05

0.1

0.15

0.2

0.25

(b
)

Figure 4. (a) Residual signals without fault. (b) Residual signals with fault.

Figure 5 shows the evaluated residual along with adaptive threshold and state tra-
jectory of the system, which maintains its stability, even when the fault is applied. The
adaptive threshold is computed by using (20), in which the constant threshold is calculated
offline as jthd = 0.0563 for both of the modes. In addition, the adaptive threshold is com-
puted at τ = 47.694 as jthadpt = 0.6244. Thus, fault is detected when the evaluated residual
is greater than its threshold, i.e., r = 0.6246 > 0.6244.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

(a
)

Evaluated residuals with adaptive threshold

Evaluated residual signal

Adaptive threshold

0 10 20 30 40 50 60 70 80 90 100

Time[sec]

-0.5

0

0.5

1

1.5

(b
)

System States

v
c
(t)

i
L
(t)

Figure 5. (a) Evaluated residual with adaptive threshold. (b) Switched system states.

5.2. Example 2: A Numerical Example

Consider the general system from (1), with two modes in state space form, which is:{
ẋ(t) = Aix(t) + Biu(t) + Edid(t) + E f i f (t)
y(t) = Cix(t) + Diu(t) + Fdid(t) + Ff i f (t)

.

For i ∈ [1, 2], we consider two modes of the switched system. Mode 1 is in operation
when subsystem 1 of the switched system and subsystem 1 of the observer are active.
Similarly, for Mode 2, subsystem 2 of the switched system and observer are activated. We
also assume a known switching sequence as σ(t) = 1, σ(t) = 0, for activation of both the
modes, respectively. Choose the system matrices as:
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System matrices for Mode 1:

A1 =

 −6 3 1
−0.3 −4 1
−2 −0.6 −1

, B1 =
[

0 0.6 0
]T , C1 =

 1 0 0
0 1 0
0 0 1


D1 =

[
0 0.5 0

]T , E f 1 =

 0.2
0.6
0.7

, Ff 1 =

 0.3
0.4
0.8


Ed1 =

 −0.3 0.2 0.04
0.2 −0.3 0.2
0.2 0.04 0.1

, Fd1 =

 0.1 0.02 0.14
0.03 −0.3 0.2
−0.06 0.03 0.4


.

System matrices for Mode 2:

A2 =

 −8 4 4
−2 −4 −1
−0.8 −1 −4

, B2 =
[

0 0.9 0
]T , C2 =

 1 0 0
0 1 0
0 0 1


D2 =

[
0 0.4 0

]T , E f 2 =

 0.2
0.9
0.6

, Ff 2 =

 0.7
0.1
0.4


Ed2 =

 −0.19 0.06 0.4
0.3 −0.6 0.2
0.2 0.06 0.02

, Fd2 =

 0.2 0.08 0.3
0.2 −0.4 0.2
−0.09 0.06 0.5


.

The positive definite matrices P1 and P2 are determined from the LMIs:

P1 =

 0.2867 0.1277 −0.2422
0.1277 0.4485 −0.1742
−0.2422 −0.1742 1.0202

, P2 =

 0.1516 −0.0039 0.0397
−0.0039 0.3355 −0.0758
0.0397 −0.0758 0.3816

.

In addition, the linear observer gain matrices are calculated from (19).

Gl1 =

 −1.14 −1.73 3.72
0.25 3.47 −0.44
0.39 0.18 1.54

, Gl2 =

 5.44 −0.16 0.69
0.0002 4.29 0.25
−0.06 0.65 2.15

.

The simulation time is set as T = 30sec. The disturbance attenuation level for both
modes are set as γ1 = 0.6734 and γ2 = 0.5467. By choosing the parameters values µ = 1.4,
ς = 0.2, ADT is set as 1.6823, which means that interval of switching among two subsystems
exceeds this value. The unknown input or disturbance is some type of random number
and is taken as d ∈ [−0.5, 0.5]. Due to importance in real physical systems, two types of
faults are considered in this paper, as in Reference [38], including abrupt faults in which
destructive system failure is prohibited by detecting the faults early or configuring the
systems earlier. On the other hand, for slowly developing or incipient faults, the time of
fault detection may be larger and cannot be easily detected. Hence, we apply these faults
to both the modes of the switched systems with bounded disturbance. Figure 6 shows the
switching signals of the subsystem and observer. Duration of Mode 1 is from time 0 to 5 s,
and that of Mode 2 from 5 to 10 s.
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Figure 6. (a) Subsystem switching signal. (b) Observer switching signal.

5.2.1. Abrupt Fault Case

Figure 7 illustrates two sudden faults of pulse generator signals at a phase delay of 3
and 8 s, respectively. It means the first fault is detected at Mode 1, and the second fault is
detected at Mode 2, alternatively.
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Figure 7. (a) Fault signal for Mode 1. (b) Fault signal for Mode 2.

The three types of residual signals generated for each mode are depicted in Figure 8.
In Figure 9, the evaluated residual signals are represented by solid lines, with adaptive
threshold represented by dashed lines. By computing, mathematically, the threshold is
set by using (20), where the constant threshold for both the modes is calculated offline as
jthd1 = 0.1451 and jthd2 = 0.2365. Thus, the adaptive threshold for Mode 1 is calculated at
τ = 3.7862 as Jth1 = 0.8456, and Jth2 = 0.6462 at τ = 8.563 for Mode 2. A fault is detected
when the residual evaluated is greater than its threshold, such as r1 = 0.8458 > 0.8456 and
r2 = 0.6465 > 0.6462, where r1 and r2 are residuals evaluated for both the modes.
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Figure 8. (a) Residual signals for Mode 1 (b) Residual signals for Mode 2.
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Figure 9. (a) Evaluated residual with adaptive threshold for Mode 1. (b) Evaluated residual with
adaptive threshold for Mode 2.

5.2.2. Incipient Fault Case

Slowly developing faults using ramp signal are applied between time 3 to 5 s for first
mode, and between time 5 to 10 s for the second mode as in Figure 10. The generated resid-
ual signals in Figure 11 show the fault occurrence with disturbance. The evaluated residual
signals and their threshold are given in Figure 12. Thus, setting of the threshold gives
Jth1 = 0.807 at τ = 3.38, and Jth2 = 0.6202 for τ = 7.51. Hence, the fault occurs when the
evaluated residuals exceed their threshold, as r1 = 0.809 > 0.807 and r2 = 0.6204 > 0.6202.
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Figure 10. (a) Fault signal for Mode 1. (b) Fault signal for Mode 2.
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Figure 11. (a) Residual signals for Mode 1. (b) Residuals signal for Mode 2.
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Figure 12. (a) Evaluated residual with adaptive threshold for Mode 1. (b) Evaluated residual with
adaptive threshold for Mode 2.

6. Conclusions

In this paper, we have discussed FD problem of switched linear systems based on
the SMO approach. H∞ criteria is implemented to achieve robustness of residual against
disturbances. The system stability issues are dealt with Lyapunov function, while taking
the ADT switching into account. For efficient detection of a fault, an adaptive threshold
is set up for both the modes. At the end, simulation results are illustrated, for efficacy
of our suggested approach. Thus, the developed method has the advantage of not only
detecting the fault perfectly but also providing robustness against process disturbances.
This has been verified in the design simulation examples. Recently, some useful results
have been presented on SMO-based robust fault diagnosis for switched systems using
H∞ performance. Moreover, this work can further be extended to fault diagnosis for
complex asynchronous switching systems, while using SMO. In addition, fault coupling
with disturbance and uncertainties using less conservative techniques, while investigating
switched systems, will be our further future work.
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